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. INTRODUCTION t; is provided. Then a family(B;);cr)x, global
The purpose of this paper is to apply combimOde“ng of the unknown system is prqduped, such

natorial techniques for computing coefficients oft the outputs o) and((B;)ie1). coincide up
rational formal serieéG},) in two noncommutative 1© Orderé.
variables and their differences at order k and k-1.
This in turn may help one to study validation of a Il. THE BILINEAR SYSTEM
family (By) of bilinear systems, described by the . _ _
series(Gy,) and global modeling of an unknown We consider a certain clas§ ®) enclosing the

dynamical systentX). electric equation
The model validation is a central problem in sys-
tem identification [2]. In almost cases, the model y(l)(t) = fly(t)) + u(t) (1)

validation consists, in a test that falsifies or not
falsifies the model, using a validation data set. ~ whereu(t) is the input function
Computing and bounding these differences, Wg, the unknown system is an affine system.
propose an estimation of the error due to approxin this case, equation (1) can be written
mations by(By). This error computation is a sum

of differential monomials in the input functions (v { & = Ao(x)+ Ari(z)u(t)
and behavior system. We identify each differential y(t) = ()

monomial with its colored multiplicity and analyse
our computation in the light of the free differential
calculus.

u(t) is the real input
o X(t) is the current state

_ ,(0) 9 0) _
We propose also a combinatorial interpretation * ,130 B a; )3z where  a©® = f(2)|(0)
of coefficients of(G},), according to [12]. These ° “' ~ o=
coefficients are powers of an operat®rwhich is The class §P) encloses the nonlinear differen-
in the monoid generated by two linear differentiafial equation relating the current excitation i(t) and

operatorsA andT. the voltage v(t) across a capacitor [9]
The n-th power of© is equal to the sum of the

labels of all forests of colored increasing trees. oW+ kv + kov? = i(t)
This error computation allows one to better mea-

sure the impact of noisy inputs on the convergence Let a9 = ()|,

of (By). Indeed, one can determine the contribie notice that the fundamental formula
tion of the inputs and of the system in the errof9]provides the following bilinear systeniBy),

computation. approximating at order Kk :
II. A LOCAL MODELING OF THE UNKNOWN { B(t) = (Mo + Mu(t))zk(t)
SYSTEM et) = Awi(t)

The problem consists in modeling an unknowivherex = (z(0) 1 0---0)
dynamic systen{X) for t € [0, T] = (¢ [ti, ts +

d], when knowing some correlated sets of in- 1
put/output. 24 (0) = 0
We construct a behavioral model, based on the :
identification of its input/output functional (the 0

generating series), in a neighborhood of every _
up to a given order: [1], [4]. At once a local Mo = (C,.x) (respM; = (Cx+1)) expressed in
modeling by a bilinear systerfi3;), around every basis(C.x).



Let C = {a,u} be a set of two colors. We

?0) ?1) ?2) (Ok) call colored partition on C an element of the free
a a a o a monoid generated by the cartesian prodick N
0 a® 24 ... 0 i.e. any finite sequence of couples of nonnegative
Mo=1 "0 0 a® - 0 integers
0 0 0 0 n= ((N%N%)v(ﬂgvﬂg)v”')
So, a colored partitiop will denote the differential
0 00 0 monomial
1 00 0
010 0 at = (al)yer . (al)yer (UYL (yGa))fa
Mi=110 01 0
1< <io<.iidyp, 1<51<in<. .. ]g
000 --- 0 where e, (resp fi) = pg, (resp uf). The weight

i i o and the size of: are defined as follows :
So, at order k, we obtain the ith derivative of the

state vector x as a function of the previous ones.
: i wgt(p) = k.us
Our solution consists of two steps : to compute 9tn) ZC:Z]; Hx

xéﬁjz)ﬁf)(o) and to compute the difference of the

ith derivativez!)) (0) — x;?k_l)(()). size(n) =) 1k
c k

(kfnﬂ')(o) The empty partition is noted

IV. FIRST STEP: COMPUTATION OF (), - . .
- , j If L is the set of colored partitions, we define a
By derivating and term’s regrouping, we Carbartial order< on L :

show that : " )
—n+i a . u a ,u
(- (0) v=AW )y <p=A{(ui wi)}
= if
min(i+1,k—1) k—n—1 v <uy o and v <plo Vi
Z Cb(m) Z (k—n—l+m—1)
' Py m L, with this partial ordering forms a Young lattice.
. [11]
— k—n—l4+m+i—m . .
(@@ + @)t IIEk_n_Hm)k. (0) We consider nowB; a subset of.. defined by :
* i1 kenea {n/wgt(p) =i}
Zu(m) (k—n—l+i> .
m and we notel (u,,q.) the order ideal generated by
m=1 =1 Hmazxs if
(0) (0)\l—1,,(k—n—Il+i—m)
(a +u ) ‘T(k—n—l)k (0) +1 Lomaz = max(u/u c Bl)

(if m=i+1)

We analyze now these equations in the ligh8. Combinatorial analysis of our computation
of the free _different_ial calculus. ConSidering the Let us now interpret Combinatoria”y our com-
derivativea'” andu(") specialized in time t=0 as putation by identifying each differential monomial
differential letters, it is clear that our computationyith its colored multiplicity. The recursive relation
is a sum of differential monomials in a and u. s captured by the operation :
A. Colored partitions and multiplicities Pmaz © € = Z I

vel(pmax)

A number partition or multiplicity is a se- wgt(v)=3<i
quencep = (w1, 2,43, ) (often written as

Lo . By factorizing according to the colored partitions,
1#2#23ks ... ) of nonnegative integers. On a sin- y g g P

gle letter a, the differential monomials become : e get:
A . = D D s
1<iy <ip<...ig e iy 2
Such a monomial is indexed by the following""®" :
peton himy = (0 420y S ()9t

iy Hig Hig )

u = (Zl 22 o Z(] p=m



and V. SECOND STEP COMPUTATION OF

k+i k+i
é]j )(0) B x;(:_)l)(ﬂ)

Ghyim, = (@l 4 u@)m=1 Z (l ot )gv The first derivative coincide up to order k-2, but
p=1 a%korld)er k-(}c, \1/\)/e have ko) (k )
withn; =k—-n—1, m=101 Vi>1 Top, ~ — Ty_yy = 0 anday,

Let M (respP) the set of partmons on the smgle
letter a (resp u)

Ge = 1
W, a subset of\/ defined by

C. Computation ofr(k ”2’)(0) il < size(v) <i+ 2}
We consider now permutations of a colored

partition ;2 on an alphabet = (J,., X.. A Vi @subsetof” defined by

permutation [11] ofy is a word in Wh|ch each ot _ o (i-2) G-

letter belongs to X and for each ¢ X, the total {Afsize(A) = L2J ywgh(A) <i=2 or A=u or A=u J

number of appearances ©f in the word isp.§, for — and S, a subset of. defined by

somec € C
Let us noterr = &6 -~ £i.c(u @ PErmutation of {ulwgt(p) =1}
p andoy, the set of permutations of. We define now an operatioW : M x P x L — L

Since, our alphabet 4
Vv, A, 1) = ((vi + 15 Ai + 1))

X, ={aPp=1,mink—1,i+1
{a™lp min( ! )} and asubseP, of L V0O<t<i

and P={r=V(v,\u)| uneS,eV,veW,wgt(r)=k+i—1}

Xo={uPp=1i+1)} _ | _

We obtain, by a straightforward computation :
c— ol) i i i—2—r
= AL SRR S P W B N CLUBSTL) Lashe
, for some(c, i;). Vis2uen
%7 s a linear combination of monomial
(k—n)k where
yt -y (v € X, |J X,) and all distinct mono- size())
mials obtained from it by a permutation of vari- k+i— 2l
ables yar fr= Z H <k+i72lfij)
) mTeoy =1
We get finally , if s = (32,4 nf # 0) and r o
=size(y) h { > reos H;f <1j +izjg:11 - 1> <k: 2) if size(v) #1
; , 1 if size(v) =1
k—n+i —n+i—r—5_n

D D A

wat(u)=i+1 wit

r = size(v
= Al Aj+0b )
w%;“ ]1;[2 ! r1 =1+ size(n)
where: s=()_jlut #0)
J
mji_1+1; m; . o i
== () if &= TG

A= , ) ‘
my—1 my +i—7j+2 ; o — g (15) i
Yoty (MR i g = £ = )

g;, defined previously.

LI () i G=a

A = e o
! an;lz <m1 ngl + 1) if &G=u" gl ={nco,|r#uvusize(v) < size(v)
and w# (aW)r7le)

Taking into account thag!”(0) = {V(0), we
Remark : xE’Z Z;j:) is not a symmetric obtain a right computation of the output’s differ-
polynomial even if its structure is the sameence at order k and k-1. By majorization of these
because input and system contributions amutput’s differences, and when k tends towards
different. infinity, we get an overestimation of the error due
to approximation by thé By)

and b = 1 if& = w1, 0 otherwise.



VI. COEFFICIENTS OF THE GENERATING SERIES  The 2-power of operato® is :

We give, in this section, a combinatorial inter-_,
pretation of coefficients of generating series. 19 = (G | 2120)+(G | 2021)+(G | 2020)+(G | z121)
[12], the author define increasing trees, model useq,o colored increased trees are -
to describe powers of a differential linear operator.
We extend this concept to multiple operators by
introducing colored increasing trees. @ @

A. Forest of colored increasing trees

A forest of increasing trees ofil,--- ,n}, ac- g

cording to [12], is a set of rooted increasing reeSpa |abels of these trees are monomials
the set of vertices of which is exactly [n] and suchy0) p1) 2 p(0)* o 2
oq’

each vertex is smaller than all its successors. E)ach colored vertaéx is associated Bdq) = 1 or
take into account the multiplicity of operators,, wep(q) — 4
use a notion of a “colored partition” ([11]). FOr\yeote that, since the observation function h(q)

each vertex i, we color i any one of colors. Let is the identity function, all the powers ogn,
C the set of colors. We define colored increasingb > 9 are zero a

trees on cartesian produft, --- ;n} x C.

VIl. CONCLUSION

B. mbinatorial interpretation S _ . .
Combinatorial interpretatio The validation which is presented in this pa-

The author shows that the n-power of a linegper is not statistical. It consists in valuing the
differential operator is equal to the sum of the |ac0nvergence of a bilinear models family3;) on
bels of all forests of increasing trees ¢h,---n}.  the unknown systenis) by an effective symbolic
So, in our case, the label of a forest omomputation. It displays the respective contribu-

{1,---,n}xCis a noncommutative monomial andkions of the input and of the system itself.
is defined as : More than a symbolic validation, these comput-
ok ing tools are parameterized by the input and the

o Plei)

Mie)efr, - nyx dq system’s behavior. They can particularly provide a

valuation process for rough and oscillating inputs

where as well as for smooth inputs.

P(q) =1or P(q) = a®
a(i, c) is the number of sons of the node (i,c)

k is the number of trees of the forest. REFERENCES
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