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20 Avenue des Buttes de Coësmes CS 14315 35043 Rennes Cedex, France

I. I NTRODUCTION

The purpose of this paper is to apply combi-
natorial techniques for computing coefficients of
rational formal series(Gk) in two noncommutative
variables and their differences at order k and k-1.
This in turn may help one to study validation of a
family (Bk) of bilinear systems, described by the
series(Gk) and global modeling of an unknown
dynamical system(Σ).
The model validation is a central problem in sys-
tem identification [2]. In almost cases, the model
validation consists, in a test that falsifies or not
falsifies the model, using a validation data set.
Computing and bounding these differences, we
propose an estimation of the error due to approxi-
mations by(Bk). This error computation is a sum
of differential monomials in the input functions
and behavior system. We identify each differential
monomial with its colored multiplicity and analyse
our computation in the light of the free differential
calculus.
We propose also a combinatorial interpretation
of coefficients of(Gk), according to [12]. These
coefficients are powers of an operatorΘ which is
in the monoid generated by two linear differential
operators∆ andΓ.
The n-th power ofΘ is equal to the sum of the
labels of all forests of colored increasing trees.
This error computation allows one to better mea-
sure the impact of noisy inputs on the convergence
of (Bk). Indeed, one can determine the contribu-
tion of the inputs and of the system in the error
computation.

II. A LOCAL MODELING OF THE UNKNOWN

SYSTEM

The problem consists in modeling an unknown
dynamic system(Σ) for t ∈ [0, T ] =

⋃

i∈I [ti, ti +
d], when knowing some correlated sets of in-
put/output.
We construct a behavioral model, based on the
identification of its input/output functional (the
generating series), in a neighborhood of everyti,
up to a given orderk [1], [4]. At once a local
modeling by a bilinear system(Bi)k around every

ti is provided. Then a family((Bi)i∈I)k, global
modeling of the unknown system is produced, such
that the outputs of(Σ) and((Bi)i∈I)k coincide up
to orderk.

III. T HE BILINEAR SYSTEM

We consider a certain class (GP ) enclosing the
electric equation

y(1)(t) = f(y(t)) + u(t) (1)

whereu(t) is the input function
Σ, the unknown system is an affine system.
In this case, equation (1) can be written

(Σ)

{

ẋ = A0(x) + A1(x)u(t)
y(t) = x(t)

• u(t) is the real input
• x(t) is the current state
• A0 = a(0) ∂

∂x
where a(0) = f(x)|x(0)

• A1 = ∂
∂x

The class (GP ) encloses the nonlinear differen-
tial equation relating the current excitation i(t) and
the voltage v(t) across a capacitor [9]

v(1) + k1v + k2v
2 = i(t)

Let a(i) = f (i)(x)|x(0)

We notice that the fundamental formula
[9]provides the following bilinear system(Bk),
approximating at order k :

{

ẋk(t) = (M0 + M1u(t))xk(t)
yk(t) = λxk(t)

whereλ = (x(0) 1 0 · · · 0)

xk(0) =











1
0
...
0











M0 = (Cz0zk
1
) (respM1 = (C

zk+1
1

)) expressed in
basis(Czk

1
).
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0 0 0 · · · 0
a(0) a(1) a(2) · · · a(k)

0 a(0) 2a(1) · · · 0
0 0 a(0) · · · 0
...

...
...

...
0 0 0 · · · 0



















M1 =



















0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 0



















So, at order k, we obtain the ith derivative of the
state vector x as a function of the previous ones.
Our solution consists of two steps : to compute
x

(k−n+i)
(k−n)k (0) and to compute the difference of the

ith derivativex
(i)
2k (0) − x

(i)
2(k−1)(0).

IV. F IRST STEP: COMPUTATION OF x
(k−n+i)
(k−n)k (0)

By derivating and term’s regrouping, we can
show that :

x
(k−n+i)
(k−n)k (0)

=
min(i+1,k−1)

∑

m=1

a(m)
k−n−1
∑

l=1

„

k − n − l + m − 1
m

«

(a(0) + u(0))l−1x
(k−n−l+m+i−m)
(k−n−l+m)k (0)

+
i+1
∑

m=1

u(m)
k−n−2
∑

l=1

„

k − n − l + i
m

«

(a(0) + u(0))l−1x
(k−n−l+i−m)
(k−n−l)k (0) + 1

(if m = i + 1)

We analyze now these equations in the light
of the free differential calculus. Considering the
derivativea(i) and u(i) specialized in time t=0 as
differential letters, it is clear that our computation
is a sum of differential monomials in a and u.

A. Colored partitions and multiplicities

A number partition or multiplicity is a se-
quenceµ = (µ1, µ2, µ3, · · · ) (often written as
1µ12µ23µ3 · · · ) of nonnegative integers. On a sin-
gle letter a, the differential monomials become :

aµ = (a(i1))e1(a(i2))e2 · · · (a(iq))eq ,

1 ≤ i1 < i2 < . . . iq

Such a monomial is indexed by the following
partition [10] :

µ = (i
µi1
1 i

µi2
2 · · · i

µiq
q )

Let C = {a, u} be a set of two colors. We
call colored partition on C an element of the free
monoid generated by the cartesian productN ×N
i.e. any finite sequence of couples of nonnegative
integers

µ = ((µa
1 , µu

1 ), (µa
2 , µu

2 ), · · · )

So, a colored partitionµ will denote the differential
monomial

aµ = (a(i1))e1 · · · (a(ip))ep(u(j1))f1 · · · (u(jq))fq

1 ≤ i1 < i2 < . . . ip, 1 ≤ j1 < i2 < . . . jq

where el (resp fl) = µa
il

(resp µu
jl

). The weight
and the size ofµ are defined as follows :

wgt(µ) =
∑

c

∑

k

k.µc
k

size(µ) =
∑

c

∑

k

µc
k

The empty partition is notedǫ.
If L is the set of colored partitions, we define a
partial order≪ on L :

ν = {(νa
i , νu

i )} ≪ µ = {(µa
i , µu

i )}

if
νa

i ≤ µa
i and νu

i ≤ µu
i ∀i

L, with this partial ordering forms a Young lattice.
[11]
We consider nowBi a subset ofL defined by :

{µ/wgt(µ) = i}

and we noteI(µmax) the order ideal generated by
µmax, if

µmax = max(µ/µ ∈ Bi)

B. Combinatorial analysis of our computation

Let us now interpret combinatorially our com-
putation by identifying each differential monomial
with its colored multiplicity. The recursive relation
is captured by the operation :

µmax ⊙ c =
∑

ν∈I(µmax)

wgt(ν)=j≤i

c(i−j+1).ν

By factorizing according to the colored partitions,
we get :

x
(k−n+i)
(k−n)k =

∑

c

∑

ν∈I(µmax)

wgt(ν)=j≤i

c(i−j+1).ν.g1
(c(i−j+1)ν)

where :

gl
a(m)ν = (a(0) + u(0))m+1

nl+m
∑

p=m

„

l
m

«

gp
v



and

gl
u(m)ν = (a(0) + u(0))m−1

nl
∑

p=1

„

l + i + 1
m

«

gp
v

with n1 = k − n − 1, nl = l ∀l > 1

gǫ = 1

C. Computation ofx(k−n+i)
(k−n)k (0)

We consider now permutations of a colored
partition µ on an alphabetX =

⋃

c∈C Xc. A
permutation [11] ofµ is a word in which each
letter belongs to X and for eachxi ∈ X, the total
number of appearances ofxi in the word isµc

i , for
somec ∈ C
Let us noteπ = ξ1ξ2 · · · ξsize(µ) a permutation of
µ andσµ the set of permutations ofµ.
Since, our alphabet

Xa = {a(p)|p = 1,min(k − 1, i + 1)}

and

Xu = {u(p)|p = 1, i + 1)}

ξj = c(ij)

, for some(c, ij).
x

(k−n+i)
(k−n)k is a linear combination of monomial

yλ1
1 · · · yλn

n (yi ∈ Xa

⋃

Xu) and all distinct mono-
mials obtained from it by a permutation of vari-
ables.
We get finally , if s = (

∑

j j| µu
j 6= 0) and r

=size(µ)

x
(k−n+i)
(k−n)k =

∑

wgt(µ)=i+1

µ.(a(0)+u(0))k−n+i−r−sgn
µ

gn
µ =

∑

π∈σµ

A1

r
∏

j=2

Aj + b

where:

Aj =







∑mj−1+ij

mj=ij

„

mj

ij

«

if ξj = a(ij)

∑mj−1

mj=1

„

mj + i − j + 2
ij

«

if ξj = u(ij)

A1 =







∑k−n−2+m
m1=m

„

m1

i1

«

if ξ1 = a(i1)

∑k−n−2
mj=1

„

m1 + i + 1
i1

«

if ξ1 = u(i1)

and b = 1 ifξ1 = u(i+1), 0 otherwise.

Remark : x
(k−n+i)
(k−n)k is not a symmetric

polynomial even if its structure is the same,
because input and system contributions are
different.

V. SECOND STEP: COMPUTATION OF

x
(k+i)
2k (0) − x

(k+i)
2(k−1)(0)

The first derivative coincide up to order k-2, but
at order k-1, we have
x

(k−1)
2k − x

(k−1)
2(k−1) = 0 andx

(k−1)
jk − x

(k−1)
j(k−1) 6= 0.

Let M (respP ) the set of partitions on the single
letter a (resp u)
Wi a subset ofM defined by

{ν|1 ≤ size(ν) ≤ i + 2}

Vi a subset ofP defined by

{λ|size(λ) = ⌊
i

2
⌋ , wgt(λ) ≤ i−2 or λ = u(i−2) or λ = u(i−1)}

andSl a subset ofL defined by

{µ|wgt(µ) = l}

We define now an operation∇ : M ×P ×L 7→ L

∇(ν, λ, µ) = ((νi + µa
i , λi + µc

i ))i

and a subsetPt of L ∀0 ≤ t ≤ i

Pt = {τ = ∇(ν, λ, µ)| µ ∈ St, λ ∈ Vi, ν ∈ Wi, wgt(τ) = k+i−1}

We obtain, by a straightforward computation :

x
(k+i)
2k −x

(k+i)
2(k−1) =

∑

∇(ν,λ,µ)∈Pt
0≤t≤i

∇(ν, λ, µ) hν .fλ.g1
µ.(a(0)+u(0))k+i−2−r1

where

fλ =
∑

π∈σλ

size(λ)
∏

l=1

„

k + i − 2l
k + i − 2l − ij

«

hν =

{

∑

π∈σ1
ν

∏r−2
j=1

„

ij + ij+1 − 1
ij+1

« „

k − 2
ir

«

if size(ν) 6= 1

1 if size(ν) = 1

with
r = size(ν

)
r1 = r + size(µ)

s = (
∑

j

j|µu
j 6= 0)

π = ξ1ξ2 · · · ξr

ξj = c(ij)

g1
µ defined previously.

σ1
ν = {π ∈ σν |π 6= ν1.µ, size(ν1) < size(ν)

and π 6= (a(1))r−1.ξr}

Taking into account thaty(i)
k (0) = x

(i)
2k (0), we

obtain a right computation of the output’s differ-
ence at order k and k-1. By majorization of these
output’s differences, and when k tends towards
infinity, we get an overestimation of the error due
to approximation by the(Bk)



VI. COEFFICIENTS OF THE GENERATING SERIES

We give, in this section, a combinatorial inter-
pretation of coefficients of generating series. In
[12], the author define increasing trees, model used
to describe powers of a differential linear operator.
We extend this concept to multiple operators by
introducing colored increasing trees.

A. Forest of colored increasing trees

A forest of increasing trees on{1, · · · , n}, ac-
cording to [12], is a set of rooted increasing trees,
the set of vertices of which is exactly [n] and such
each vertex is smaller than all its successors. To
take into account the multiplicity of operators,, we
use a notion of a “colored partition” ([11]). For
each vertex i, we color i any one ofci colors. Let
C the set of colors. We define colored increasing
trees on cartesian product{1, · · · , n} × C.

B. Combinatorial interpretation

The author shows that the n-power of a linear
differential operator is equal to the sum of the la-
bels of all forests of increasing trees on{1, · · ·n}.
So, in our case, the label of a forest on
{1, · · · , n}×C is a noncommutative monomial and
is defined as :

Π(i,c)∈{1,··· ,n}×CP (α(i,c)) ∂

∂q

k

where
P (q) = 1 or P (q) = a(0)

α(i, c) is the number of sons of the node (i,c)
k is the number of trees of the forest.

C. Application

We consider the class (GP ) given in the previous
section. According to ([5]), the coefficients of the
generating series are :

〈G | zi1zi2 · · · zik
〉 = [Ai1 ◦Ai2 ◦ · · · ◦Aik

◦h(q)]0

where :

Aij
= a(0) ∂

∂q

or

Aij
=

∂

∂q

Let us define two differential operators

∆ = a(0) ∂

∂q

Γ =
∂

∂q

These coefficients are powers of an operatorΘ
which is in the monoid generated by the two linear
differential operators∆ andΓ . C = {c1, c2}

The 2-power of operatorΘ is :

Θ2 = 〈G | z1z0〉+〈G | z0z1〉+〈G | z0z0〉+〈G | z1z1〉

The colored increased trees are :

O/

211

2

The labels of these trees are monomials
P (0)P (1) ∂

∂q
, P (0)2 ∂

∂q

2

Each colored vertex is associated toP (q) = 1 or
P (q) = a(0)

We note that, since the observation function h(q)
is the identity function, all the powers of∂

∂q

n
,

n ≥ 2 are zero.

VII. C ONCLUSION

The validation which is presented in this pa-
per is not statistical. It consists in valuing the
convergence of a bilinear models family(Bk) on
the unknown system(Σ) by an effective symbolic
computation. It displays the respective contribu-
tions of the input and of the system itself.
More than a symbolic validation, these comput-
ing tools are parameterized by the input and the
system’s behavior. They can particularly provide a
valuation process for rough and oscillating inputs
as well as for smooth inputs.
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