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On approximation of nonlinear generating series
by rational series

Mikhail V. Foursov and Christiane Hespel

Abstract—In his article we propose an improvement of the
method of identification and modeling of dynamical systems of
Hespel–Jacob in the case of a single input. Our new method
allows one to construct, whenever possible, the unique bilinear
system of minimal rank satisfying all conditions obtained during
the process of identification of the coefficients of the generating
series of the dynamical system. Most importantly, we can un-
ambiguously recognize a rational power series of rankr from
the information obtained from the first 2r − 1 derivatives of the
output of the dynamical system.

Index Terms—Formal power series, Hankel matrices, dynam-
ical systems, finite analysis of dynamical systems, generating
series, identification of dynamical systems, modeling of dynamical
systems.

I. I NTRODUCTION

The causal input/output functionals can be described by a
certain noncommutative formal power series: the generating
(or Fliess) series. The generating series is a canonical repre-
sentation of the causal functional, in the sense that different
functionals have different generating series. The functional
corresponding to a generating series is obtained as a product
with another noncommutative power series depending on the
input: the Chen series.

If the system of equations defining a causal functional is
not known, we may consider it as a black box [12], [14]
and identify the coefficients of the generating series from the
input/output behavior. It was shown by Hespel and Jacob that
it is possible to identify the coefficients of the generating
seriesG using a sufficient number of appropriate correlated
input/output sets and their derivatives, up to an arbitraryorder
k [10], [11]. The proof is of a combinatorial nature, the
coefficient of the generating series being binomial coefficients.

Once a generating series is identified up to orderk, it
is possible to construct a rational series of minimal rank
that coincides with it up to orderk [7], [8], [9]. A rational
series corresponds to a bilinear dynamical system that can be
constructed using the dependencies between the columns of
its Hankel matrix. As a result, the method of Hespel–Jacob
allows one to construct a bilinear system that approximatesan
unknown system with an error ofO(tk).

Since the combinatorial explosion makes it difficult to
identify the coefficients of high order, it would be quite
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interesting to better profit from all the information available to
us and identify more generating series coefficients. Moreover,
in general, there may be more than one rational series of
minimal rank that coincides with a given nonlinear generating
series up to orderk.

In this article, we thus propose to reduce as much as possible
the problem of choosing one of those rational series, for the
case of systems with a single input. The main idea is to use the
partial information about the coefficients of orders greater then
k that was obtained during the identification. Indeed, during
the modeling step, one uses only the values of the coefficients
of orders up tok. However, some of linear combinations of
the coefficients of higher order were also identified at the
identification step. We propose thus an algorithm that uses
this additional information in order to give the rational series
that fits best to the known data. In the cases when the series
is rational of rankr such that the output derivatives of orders
up to2r−1 were used during the identification, we show that
this rational series can be uniquely determined.

II. PRELIMINARIES

By a dynamical system we will mean an affine system of
ordinary differential equations of the form

(Σ)











q̇(t) =v0(q) +
m

∑

j=1

vj(q)uj(t),

y(t) =h(q(t)),

(II.1)

where

1) u(t) = (u1(t), . . . , um(t)) is the input vector,
2) q(t) ∈ M is the current state, whereM is a real

differential manifold,
3) {v0, . . . ,vm} is a family of smooth vector fields onM,
4) h : M → R is a smooth function called the observation

map,
5) y(t) ∈ R is the output function.

We will be working with the causal functional that
associates to the set ofm input functions (commands)
u(t) the corresponding output functiony(t). To the com-
mandsu1(t), u2(t), . . . , um(t) we associate analphabetZ =
{z0, z1, . . . , zm} of (m+1) letters,z0 being associated to the
drift (which we will represent as an additional constant input
functionu0(t) ≡ 1). To every multi-indexI = (i1, i2, . . . , ik)
we associate a wordw = zI = zi1zi2 · · · zik

. These words
formZ∗, the free monoid overZ. (The empty word is denoted
by ε.)



The behavior of causal functionals is uniquely described by
two noncommutative power series: the generating series and
the Chen series.

The generating seriesG =
∑

w∈Z∗〈G|zI〉zI [4] is the
geometric contribution and it is independent of the input. Its
coefficients〈G|zI〉 are obtained by iteratively applying Lie
derivatives corresponding to the vector fields to the observation
map and evaluating the resulting expression at the initial state
q0:

〈G|zI〉 = 〈G|zi1zi2 · · · zik
〉 = vi1 ◦ vi2 ◦ · · · ◦ vik

◦ h
∣

∣

q0

.

The generating series completely describes the causal func-
tional. More precisely, two formal power series define the same
functional if and only if they are equal [5], [16].

TheChen seriesCu(t) =
∑

w∈Z∗〈Cu(t)|zI〉zI measures the
input contribution [1], [2], and is independent of the system.
The coefficients of the Chen series are calculated recursively
by integration using the following two relations:

• 〈Cu(t)|ε〉 = 1,

• 〈Cu(t)|w〉 =

∫ t

0

〈Cu(τ)|v〉uj(τ)dτ for a wordw = vzj .

The causal functionaly(t) is then obtained locally as the
product of the generating series and the Chen series [6]:

y(t) = 〈G||Cu(t)〉 =
∑

w∈Z∗

〈G|w〉〈Cu(t)|w〉 (II.2)

This formula is known as thePeano–Baker formula, as well
as theFliess’ fundamental formula. Differentiating (II.2), we
obtain

dny(t)

dtn
=

∑

w∈Z∗

〈G|w〉
〈 dn

dtn
Cu(t)

∣

∣

∣w
〉

. (II.3)

Note that only the time derivatives of the Chen series appear
in this expression. Their exact or at least recursive formula is
needed. It can be shown in a straightforward way that [15]

dn

dtn
Cu(t) = Cu(t)An(t), (II.4)

where the noncommutative polynomialsAn(t) are recursively
defined by the following relations

A0(t) = 1, An+1(t) = Lu(t)An(t) +
d

dt
An(t), (II.5)

whereLu(t) =
∑

zi∈Z
ui(t)zi. Thus we finally obtain that

dn

dtn
y(t)

∣

∣

∣

∣

t=0

=
∑

w∈Z∗

〈G|w〉〈An(0)|w〉 (II.6)

TheHankel matrixof a formal power seriesG is an infinite
matrix with columns and rows indexed by the monomials
from Z∗ ordered lexicographically, such that the entry on the
intersection of the rowu and the columnv is 〈G|uv〉.
Theorem II.1. A (real–valued) formal power series is recog-
nizable if and only if its Hankel matrix has finite rank [3].

Theorem II.2. A (real–valued) formal power series is rational
if and only if it is recognizable [13].

The following result due to Fliess is also important in this
article.

Theorem II.3. If all the rows (columns) corresponding to
monomials of a certain fixed length are linear combinations of
previous rows (columns), then all the following rows (columns)
are also linear combinations thereof.

Corollary II.4. If a rational series in two variables is of
rank n, then the upper left block of the Hankel matrix of size
(2n − 1) × (2n − 1) is of rankn.

Algorithm II.5. The method of Hespel–Jacob consists in two
steps: identification of the coefficients of the generating series
and construction of a bilinear model. A short description
follows. For a complete description, see [7], [8], [9], [10],
[11].

• Identification.
The derivatives of the output are linear in the generat-
ing series coefficients and polynomial in the inputsuj

and their derivatives (cf. (II.6)). Choosing appropriate
input/output sets, certain linear combinations of the gen-
erating series coefficients can be identified (those are
exactly the coefficients of the monomials in the inputs
and their derivatives).
On the second stage of identification, the identified lin-
ear combinations are used to find the generating series
coefficients themselves. Identification of coefficients of
orders up tok can be done using the output derivatives
of orders up tom = k + ⌊k/2⌋(k − ⌊k/2⌋), in the case
of a series in two letters. However, not all the linear
combinations are used during this step, but only those
involving the coefficients of orders≤ k. The remaining
linear combinations give only partial information about
the individual coefficients.

• Modeling.
During the identification, the coefficients of the generat-
ing series were identified up to orderk. These values are
inserted into the Hankel matrix whose column basis is
then calculated. The bilinear model is of the form

{

ẋ(t) = (M0 + u(t)M1)x(t),

x(0) = x0,

whereM0 andM1 are matrices that are computed by ex-
pressing, in terms of the basis vectors, the left–multiplica-
tive action of the letters ofZ on the basis vectors. As the
Hankel matrix is not completely determined, one obtains
multi–parameter families of linear combinations of the
basis vectors. The algorithm proposes to choose the linear
combination that depends on the leftmost basis vectors.

We note that some partial information obtained during the
identification is not used in the modeling. The main goal
of this article is to fill this gap and to try to construct the
unique model that fits best to all the available information.
However, the unique model exists only if the generating series
is rational of an appropriate rank. In the other cases, the
modeling method we present here still has an advantage, as
it allows one to construct a bilinear approximating system of
rank r using the output derivatives of orders up to2r − 1 ≤
k+⌊k/2⌋(k−⌊k/2⌋). Thus the identification can be done using
fewer input/output sets, which is quite imporatant he since



the necessary number of input/output sets grows exponentially
with the increase of the order of differentiation of the output.

In order to simplify the explications, we will only deal
with column operations. However, in practice, a more efficient
strategy is to mix the column and row operations. In other
words, our MAPLE package constructs both a row basis and
a column basis of the Hankel matrix and uses both column
and row dependencies during its “filling in”. Even though
it is possible to rely exclusively on column operations, the
algorithm is simpler for a mixed strategy.

III. I DENTIFICATION OF FORMAL POWER SERIES OF RANK
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Corollary III.1. (of theorem (II.3)) If the Hankel matrix is of
rank 2, then either{Cε, Cz0

} or {Cε, Cz1
} span the space of

column vectors.

Theorem III.2. A rational generating series of rank 2 can be
uniquely identified from the output derivative conditions (II.6)
of orders up to 3.

Proof:
Without loss of generality, we can assume that{Cε, Cz0

}
span the column space. If not, we can interchangez0 andz1.

Let λ = (gε, g0), M0 =

(

0 a
1 b

)

andM1 =

(

c d
e f

)

. Let us

consider the following system of equations, equivalent to the
conditions obtained from the output derivative conditionsof
orders up to 3:







λM(z)γ = gi(i = ε, z0, z1, z
2

0 , z0z1, z1z0, z
2

1 , z
3

0 , z
3

1),

λ(M(z2

0z1)+M(z0z1z0)+M(z1z
2

0))γ = g001+g010+g100,

λ(M(z0z
2

1)+M(z1z0z1)+M(z2

1z0))γ = g011+g101+g110,
(III.1)

Here M(zi0 · · · zik
) = Mi0 · · ·Mik

, the coefficient of the
rational series corresponding to a bilinear system of the type
(II.7).

Appending to it the conditions of vanishing of all3×3 mi-
nors of the Hankel matrix involving the coefficients of orders
up to 3, we obtain a system in the unknowns{a, b, c, d, e, f}.
Using Gröbner basis techniques, it is possible to show (it
takes a significant amount of time) that it admits a solution
for any value of the coefficientsgi on the right-hand side of
the equations (of course satisfying the minor vanishing con-
ditions). Moreover, the solution is unique under an additional
assumption that the rank of the Hankel matrix is strictly greater
than 1.

Solving complicated systems of polynomial equations is
a very useful tool from a theoretical point of view, but it
becomes practically unfeasible as the number of equations
and unknowns increases. However, we do not need to solve
the most general system in every case. Firstly, one does not
need to consider the most general case. Most of the generating
series coefficients involved in the system are found during the
identification. The system (III.1) can then be solved almost
instantaneously. Secondly, the algorithm II.5 allows one to find
the two–parameter family of rational series of rank 2 having
the given coefficients of orders up to 2. Substituting it intothe
system (III.1) eliminates even more variables and any example
of rank 2 can be easily solved this way. However, the systems

one has to solve become more difficult for higher–rank cases.
We would like thus to propose a different method that involves
solving mostly linear equations.

Algorithm III.3. The algorithm consists in a loop that in-
cludes the following three main steps.

1) Identify dependencies between the columns and use them
to fill in a part of the matrix.

2) Solve the system of linear equations obtained during the
identification, and substitute the solution into the Hankel
matrix (thus some entries will be linear expressions of
other entries).

3) (necessary only at ranks 4 and higher) Find a parameter
(or a linear combination of parameters) in such a way
that the rank of the Hankel matrix is “too high” for all
but one value of this parameter (or linear combination of
parameters). “Too high” means that is is greater then
⌊(m + 1)/2⌋ when m is the maximal order of output
differentiation used during identification.

For generating series of rank 2, there are 3 different possible
scenarios :

• {Cε, Cz0
} and{Cε, Cz1

} both form bases of the column
space and{Rε, Rz0

} and{Rε, Rz1
} both form bases of

the row space. In this case, filling in the matrix using the
column dependencies allows one to find both unknown
parameters of the two-parameter family.

• only one of {Cε, Cz0
} and {Cε, Cz1

} is a base of the
column space oronly one of{Rε, Rz0

} and{Rε, Rz1
} is

a base of the row space. In this case, filling in the matrix
allows one to find one of the unknown parameters. The
other one is found from the equations (II.6).

• only one of {Cε, Cz0
} and {Cε, Cz1

} is a base of the
column space andonly one of{Rε, Rz0

} and{Rε, Rz1
}

is a base of the row space. In this case, filling in the
matrix is not sufficient to find any unknown parameters.
But it allows one to diminish the number of unknown
coefficients of the generating series and to find the
unknown parameters one by one.

The algorithm is very easy in each case. But since complete
explanations will not be feasible in higher–rank cases, we will
illustrate in detail our techniques here, for cases 1 and 3.

Example III.4. Let us first consider the following (bilinear)
dynamical system which is an example of case 1.











q̇1 = −q2,

q̇2 = q1 + q2 + (2q1 + q2)u,

y(t) = q1(t) + 2q2(t).

q1(0) = 1,
q2(0) = 0.

(III.2)

Using the algorithm II.5, we obtain the following information
at order 3 of differentiation:

〈G |ε〉 = 1, 〈G |z0〉 = 2, 〈G |z1〉 = 4, 〈G |z2
0〉 = 1,

〈G |z0z1〉 = 2, 〈G |z1z0〉 = 2, 〈G |z2
1〉 = 4, 〈G |z3

0〉 = −1,

〈G |z2
0z1 + z0z1z0 + z1z

2
0〉 = −3,

〈G |z0z
2
1 + z1z0z1 + z2

1z0〉 = 0, 〈G |z3
1〉 = 4.

Its Hankel matrix is thus as follows (with monomials ordered
lexicographically) :



























1 2 4 1 2 2 4 · · ·
2 1 2 −1 −3−x1−x2 x1 −y1−y2

4 2 4 x2 y1 y2 4
1 −1 −3−x1−x2

2 x1 −y1−y2

2 x2 y1

4 y2 4
· · ·

























(wherex1, x2, y1, y2 are yet unknown values). The rank of
this matrix should be 2. Using the algorithm II.5, we obtain
{Cε, Cz0

} as the basis of the column space, as well as

λ = (1 2), µ(z0) =

(

0 1 − 2a
1 a

)

, µ(z1) =

(

0 2 − 2b
2 b

)

,

where a and b are unknown parameters (recall that the
algorithm does not use any coefficients of order 3 since most
of them were not identified yet). The available information on
the third–order terms allows us to conclude immediately that
we also haveCz2

0

= Cz1
− Cε and Cz2

1

= 2Cε.
Using the known values of the Hankel matrix, these two

relations between the columns together withCz1
= 2Cz0

and
their consequences, we obtain additional relations−3− x1 −
x2 = 4, −y1 − y2 = 2x1, y1 = 2x2, x2 = −2 and 8 = 2y2.
Solving these equations, we obtain all the coefficients of order
3. The Hankel matrix is now
























1 2 4 1 2 2 4 −1 −2 1 2 −2 −4 2 4
2 1 2 −1 −2 1 2
4 2 4 −2 −4 2 4
1 −1 −2
2 1 2
2 −2 −4
4 2 4
· · · · · · · · ·

























giving usa = 1 and b = 1. The rank 2 rational series is
thus completely determined. Constructing the bilinear system
corresponding to it, we obtain the system (III.2). Let us remark
that it was a different system that was found by the original
method, using the same information. The rational generating
series corresponding to (III.2) is

G = 1 + (2 − z0)
(

z0 + z1 − (z0 + 2z1)z0

)∗

(z0 + z1)

Remark. Of course, if the additional relations were contra-
dictory, we would conclude that the rank of the series was
greater than 2, and use only some additional conditions to
find the values ofa andb.

Example III.5. Let us now consider an example of case 3:






q̇1 = q1 + q2,
q̇2 = q2 + (q1 + 2q2)u,
y(t) = q1(t) + 2q2(t).

q1(0) = 1,
q2(0) = 0.

(III.3)

At order 3 of differentiation of the output, we have identified

the following:

〈G |ε〉 = 1, 〈G |z0〉 = 1, 〈G |z1〉 = 2, 〈G |z2
0〉 = 1,

〈G |z0z1〉 = 3, 〈G |z1z0〉 = 2, 〈G |z2
1〉 = 4, 〈G |z3

0〉 = 1,

〈G |z2
0z1 + z0z1z0 + z1z

2
0〉 = 9,

〈G |z0z
2
1 + z1z0z1 + z2

1z0〉 = 16, 〈G |z3
1〉 = 8.

Its Hankel matrix is thus of the following form
























1 1 2 1 3 2 4 · · ·
1 1 3 1 9−x1−x2 x1 16−y1−y2

2 2 4 x2 y1 y2 8
1 1 9−x1−x2

3 x1 16−y1−y2

2 x2 y1

4 y2 8
· · · · · · · · ·

























By the algorithm II.5 we obtain, taking the basis{Cε, Cz1
}

λ = (1 2), µ(z0) =

(

1 3 − 2a
0 a

)

, µ(z1) =

(

0 4 − 2b
1 b

)

,

where a and b are again some unknown parameters. Using
the only known relationCz0

= Cε and its consequences, we
obtain additional equationsx1 = 3, x2 = 2 and y2 = 4. This
allows us to conclude that thatCz0z1

= Cε + Cz1
and thus

a = 1. This last relation between the columns implies in its
turn thaty1 = 6 and thusb = 2. The rank 2 rational series is
now completely determined:

G =
(

1 + 2(z0 + 2z1)
∗z1

)(

z0 + z0(z0 + 2z1)
∗z1

)∗

.

IV. I DENTIFICATION OF FORMAL POWER SERIES OF RANK
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The rank 3 case would be rather similar to the rank 2 case,
except for the fact that we may not know the complete basis
of the column space at the beginning. However, the following
easy proposition guarantees that at least 2 basis vectors are
known.

Proposition IV.1. The part of the Hankel matrix of a rational
series of rank 3, constructed using the coefficients obtained
from derivatives of orders up to 5 of the output, cannot be of
rank 1.

Theorem IV.2. All the coefficients of a rational power series
of rank 3 can be uniquely determined from the information
obtained from the output derivative conditions (II.6) of orders
up to 5.

Proof:
This theorem, which is a counterpart to (III.2), cannot

be realistically proven by solving a system of polynomial
equations, since the corresponding system is quite complicated
in this case. Solving this polynomial system is still feasible
for a given series if we use the information obtained from the
algorithm II.5.

However, the general proof can rely on the new techniques
described in this paper and it can be done by considering
separately different cases arising during the identification. We
give its outline here. Further details can be easily filled in.



At fifth-order differentiation of the output, the known part
of the Hankel matrix is of the form











































y y y y y y y y y y y y y y y . . .
y y y y y y y y
y y y y y y y y
y y y y y
y y y
y y y
y y y y y
y y y
y
y
y
y
y
y
y y y











































where y denotes (different) known values. There are 3
possibilities.

1) The first three columns and the first three rows are inde-
pendent. The algorithm II.5 gives us all the coefficients
of M1 andM2. The rest of the matrix can then be then
unambiguously found.

2) The known part of the Hankel matrix is of rank 3, but
the upper-left3 × 3 determinant vanishes. Without loss
of generality, we can assume thatCε, Cz0

, Cz1
span the

column space. (If not, the same argument works by
considering the rows instead of the columns.) Since there
is a linear relationship between the first 3 rows, there is
a linear relationship between the coefficients of orders 3
and 4, of the forma〈G |z0zI〉 +b〈G |z1zI〉 +c〈G |zI〉 =
0, whereI is a multi-index of length 3. These equations
are independent, which allows us to reduce the number
of unknown coefficients of order 4 from 8 to 3.
Now, among the rowsR4 throughR7, one is part of
the basis, two are linear combinations of the other ones
(consequence of linear dependence of the first 3 rows).
The remaining one is also a linear combination of the
basis rows. This relationship gives us another 4 relations
between the coefficients of order 4, which allows us
to identify them completely. The image of the basis
columns under the left multiplication is now identified
and the rational series uniquely determined.

3) The known part of the Hankel matrix has rank 2. That
is, the third basis column vector has to be somewhere
among columnsC4 through C7 and third basis row
vector somewhere among rowsR4 throughR7.
As in the previous case, we obtain the relations of the
form a〈G |z0zI〉 + b〈G |z1zI〉 + c〈G |zI〉 = 0 for the
fourth-order terms. However, since we do not know the
whole basis, we do not have an immediate extra relation
between the rows. However, we can use the similar
relationship among the first 3 columns to find more
equations for the coefficients of order 4. This allows
us to find the third row completing the row basis as
well as the third column completing the column basis.
Doing another round of equating the coefficients of the
dependent columns and rows allows us to find all the
coefficients of orders 4 and 5, thus determining the
missing coefficients of the matricesM1 andM2.

Example IV.3. Examples of the three above-mentioned cases
can be the series obtained usingγ = (1 0 0)⊥ and the
following matrices :

λ = (1 2 3), M0 =





0 0 1
1 0 0
0 1 0



 , M1 =





0 0 2
0 1 0
1 0 0





λ = (1 1 1), M0 =





0 1 0
1 0 1
0 1 1



 , M1 =





0 1 0
0 1 1
1 0 1





λ = (1 1 2), M0 =





1 0 1
0 0 1
0 1 0



 , M1 =





0 2 −1
1 0 1
0 0 1





The corresponding generating series are:

G1 =
(

1+3z1+2z∗1z0+3z0z
∗
1z0

)(

(z0+2z1)(z1+z0z
∗
1z0)

)∗

G2 =
(

1 + (1 + z0 + z1)
(

(1 + z0z
∗
1)(z0 + z1)

)∗
z1+

+ (1 + z0)
(

z1 + (z0 + z1)
+z0

)∗
z0

)

×

×
(

(z0+z1)
(

z1 + (z0+z1)
+z0)

)∗
((z0+z1)

+z1 + z0)
)∗

G3 =
(

1 + (1 + 2z0z
∗
1)

(

(z0 + z1)z
∗
1z0

)∗
z1

)

×

×
(

z0 + 2z1

(

(z0 + z1)z
∗
1z0

)∗
z1+

+ (z0 − z1)
(

z1 + z0(z0 + z1)
)∗

z0z1

)∗

V. I DENTIFICATION OF FORMAL POWER SERIES OF RANK4

At rank 4, we meet additional difficulties. The main one is
that we want to identify a rational series of rank 4 before the
complete identification of coefficients of order 4. Thus, the
known part of the Hankel matrix can be of rank 1. However,
using the technique of minimization of the rank of the Hankel
matrix, we can still find the unique rational series of rank 4
whenever the generating series of rank≤ 4.

Theorem V.1. A rational series of rank≤ 4 can be uniquely
identified from the information obtained from the output
derivative conditions up to order 7.

Proof:
The proof is done by considering every possible case, as for

the Theorem IV.2. However, there are many more cases and it
is impossible to present a complete proof here. We will only
illustrate in detail the new technique of minimizing the rank.
This technique is applied whenever the first two techniques
are insufficient for “filling in” the whole matrix.

Its principle is based on the observation that the rank of a
parametric matrix may vary is a function of its parameters. The
goal is to find a square submatrix depending on at least one
parameterp whose rank is greater than 4 unless the parameter
p is equal to a certain valuek. Since we want to find the
rational series of minimal rank (i.e. less than or equal to 4),
we can takep = k and repeat the algorithm’s loop from the
beginning. Lemma V.2 guarantees that it is always possible to
find such a value.



Now, considering separately all the different cases (for
different possibilities of basis vectors and basis rows), we
see that at most 1 minimization is necessary in order to
complete the identification of the parameters. Indeed, the only
coefficients of order 4 that were not identified at order 7 are
those of the monomials involving 2 occurrences ofz0 and 2
of z1. There are 6 such coefficients in all, but only 5 equations
to find them. However, the minimization technique allows us
to find one of these coefficients. The remaining ones are then
immediately found from the 5 identified linear combinations.
Once this step is finished, the remaining steps are quite similar
to the rank 3 case and are executed without difficulties.

Lemma V.2. Let H be the Hankel matrix corresponding to
a rational series of rank 4, whose coefficients were identified
from the output derivative condition of orders up to 7. Then
there exists a yet unidentified coefficientgi with the property
that the rank ofH is greater or equal to 5, unlessgi is equal
to a certain valuek.

Proof:
The lemma is again proven on a case-by-case basis.
Remark. The disadvantage of the minimization part is its

nonlinearity, but it can still be efficiently implemented on
computer, since it involves only one symbolic parameter.

Example V.3. Consider the rational generating series for the
bilinear system withλ = (1 1 1 1),

γ =









1
0
0
0









, M0 =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 2









, M1 =









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









.

At the order 7 of differentiation of the output, all the known
coefficients are equal to 1. The yet unknown conditions for the
coefficients of the fourth–order terms giveg0011 = a, g0101 =
7 − 5a, g0110 = 4 − 3a, g1001 = 4 − 3a, g1010 = 6 − 5a,
g1100 = a, wherea is an unknown parameter.

Since all the known coefficients are equal to 1, no depen-
dency between the columns can be identified at this stage.
As a consequence, we cannot obtain any other coefficient yet.
Studying the rank of the Hankel matrix, we see that its rank
is r ≥ 4 for a = 1, r ≥ 8 for a 6= 1 and r ≥ 9 for
a = (9 ±

√
1105)/32 (no matter what are the values of the

coefficients of orders 5 and higher). Therefore, since we are
trying to construct a rational series of rank≤ 4, a = 1 is the
only value that could eventually allow us to obtain a matrix of
rank 4. Once we choosea = 1, four independant columns are
immediately found and the rest of the matrix is easily filled in.

VI. I DENTIFICATION OF SERIES OF RANK GREATER THAN

4

The identification algorithm works essentially in the same
way as in the rank 4 case, except that there are no direct
counterparts of the lemma V.2. However, it can be replaced
with a following strategy, applied as many times as all the
other strategies fail. It is based on the following conjecture
based on strong experimental evidence :

Conjecture VI.1. Let H be the Hankel matrix corresponding
to a rational series of rankr ≥ 5, whose coefficients were
identified from the output derivative conditions of orders up
to 2r − 1. Then there exists a combination of unidentified
coefficientss =

∑

j gIj
with the property that the rank of

H is greater thanr, unlesss is equal to a certain valuek.

The rank minimization algorithm is as follows :

1) Letn be the length of the shortest word in the generating
series (the smallest according to the lexicographical
ordering) whose coefficient is unknown.

2) Let m =
∑

i aigi be the sum of the coefficients of order
n that are not identified yet andai unknown constants.

3) We initialize the stack with({m = 0}, Cε), the basis
with Cε (since it can be always considered as a part of
the basis) and the current column with̃C = Cz0

.
4) During each iteration of the loop, one considers the

column C̃.

• If the basis contains more thanr columns, pop the
stack and obtain the last–in element(s, CK). Solve
the systems, replace the obtained values in the
Hankel matrix and exit the loop.

• If C̃ is the column corresponding to a word of length
> r, we encountered a linear combination that does
not work. Let(s, CK) be the element on top of the
stack. We pop the stack and resetC̃ to the column
that followsCK .

• We write the (truncated) columnCJ as a linear
combination (with arbitrary coefficients) of the ba-
sis columns and solve the corresponding system
of equations augmented with the systems, where
(s, CK) is the element on the top of the stack.

– If the system is incompatible, we add this column
to the basis.

– If there is one solutionm′ that involves only
linear combinations ofgi and such that not all
ai vanish, we appendm′ to s and push(s, CJ )
onto the stack.

– In all the other cases, no action needs to be done
on this stage.

Finally, we resetC̃ to the column that followsCJ .

Conjecture VI.2. A rational series of rankr (or less) can
be uniquely identified from the information obtained from the
output derivative conditions (II.6) up to order2r − 1.

Proof:
Due to a large number of different cases, it is not possible to

clearly identify all the different possible scenarios and give a
complete proof similar to the rank 2, 3 and 4 cases. Extensive
experimental evidence shows however clearly that the system
of rank k can be identified in all the cases.

VII. C ONCLUSION

In this article, we propose an improvement of the method
of Hespel–Jacob for modeling nonlinear dynamical systems in
the case of a single input. Among its main advantages are: the
use of all the information obtained during the identification,



which implies a better approximation and the possibility to
precisely identify a rational series whenever there is sufficient
data. Moreover, we have bounded by2k − 1 the order of
differentiation of the output derivatives which is necessary for
identifying a rational series of orderk. This algorithm was
successfully programmed and tested in MAPLE.

An interesting direction to pursue is to generalize this
algorithm to the case of several inputs.
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