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Abstract—In his article we propose an improvement of the interesting to better profit from all the information availa to
method of identification and modeling of dynamical systems fo ys and identify more generating series coefficients. Maggov
Hespel-Jacob in the case of a single input. Our new method ;. general, there may be more than one rational series of

allows one to construct, whenever possible, the unique hilear inimal K that coincid ith . i i
system of minimal rank satisfying all conditions obtained diring ~MiNiMai rank that coinciaes with a given nonlinear geneg

the process of identification of the coefficients of the genating Series up to ordek.
series of the dynamical system. Most importantly, we can un-  In this article, we thus propose to reduce as much as possible

ambiguously recognize a rational power series of rank- from  the problem of choosing one of those rational series, for the
the information obtained from the first 2r — 1 derivatives of the case of systems with a single input. The main idea is to use the
output of the dynamical system. partial information about the coefficients of orders gretiten
ica'l”g@;tgﬁ?m'?g“;i'a?os"i"seroiegerfén';'igl‘e; rgtaetrr;cses, 3%2%’;' k that was obtained during the identification. Indeed, during
series),/identif’ication of dy?l/amical sS//stems, moél/eling df u?y.amical the modeling step, one uses only the yalues of th? cqeffx:lent
systems. of orders up tok. However, some of linear combinations of
the coefficients of higher order were also identified at the
identification step. We propose thus an algorithm that uses
|. INTRODUCTION this additional information in order to give the rationatiss
The causal input/output functionals can be described byt fits best to the known data. In the cases when the series
certain noncommutative formal power series: the genegatifg rational of rank- such that the output derivatives of orders
(or Fliess) series. The generating series is a canonicat+efup to 2 — 1 were used during the identification, we show that
sentation of the causal functional, in the sense that @iffer this rational series can be uniquely determined.
functionals have different generating series. The fumetio
corresponding to a generating series is obtained as a groduc
with another noncommutative power series depending on the Il. PRELIMINARIES

input: the Chen series. . . ) . By a dynamical system we will mean an affine system of
If the system of equations defining a causal functional Stdinary differential equations of the form
not known, we may consider it as a black box [12], [14]

and identify the coefficients of the generating series from t . i

input/output behavior. It was shown by Hespel and Jacob that ) a(t) =vo(a) + Y vj(a)u;(t), (1)
it is possible to identify the coefficients of the generating J=1 '
seriesG using a sufficient number of appropriate correlated y(t) =h(q(?)),

input/output sets and their derivatives, up to an arbitcager h
k [10], [11]. The proof is of a combinatorial nature, the'"Nere
coefficient of the generating series being binomial coeffits. 1) u(t) = (u1(?),...,um(t)) is the input vector,
Once a generating series is identified up to orélerit ~ 2) a(t) € M is the current state, wherd1 is a real
is possible to construct a rational series of minimal rank differential manifold,
that coincides with it up to ordek [7], [8], [9]. A rational ~ 3) {Vo.---,Vn} is a family of smooth vector fields am,
series corresponds to a bilinear dynamical system that ean b4) h : M — R is a smooth function called the observation
constructed using the dependencies between the columns of Mmap,
its Hankel matrix. As a result, the method of Hespel-Jacob5) ¥(?) € R is the output function.
allows one to construct a bilinear system that approximates We will be working with the causal functional that

unknown system with an error @(t*). associates to the set af: input functions (commands)
Since the combinatorial explosion makes it difficult tai(z) the corresponding output functiop(t). To the com-
identify the coefficients of high order, it would be quittmandsu;(t),us(t),...,u(t) we associate aalphabetZ =
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pus Universitaire de Beaulieu, 35042 Rennes Cedex, Fraeemail : ”t(_W ich we will represent as an additional constantuhp
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The behavior of causal functionals is uniquely described Gjheorem 11.3. If all the rows (columns) corresponding to
two noncommutative power series: the generating series andnomials of a certain fixed length are linear combinatiofis o
the Chen series. previous rows (columns), then all the following rows (cohsin

The generating seriesG = > _..(G|zr)z; [4] is the are also linear combinations thereof.
geometric contribution and it is independent of the inptd. |
coefficients(G|z;) are obtained by iteratively applying Lie
derivatives corresponding to the vector fields to the olzem
map and evaluating the resulting expression at the init&#es
do: Algorithm 11.5.  The method of Hespel-Jacob consists in two
steps: identification of the coefficients of the generatienies
and construction of a bilinear model. A short description
The generating series completely describes the causat fufadlows. For a complete description, see [7], [8], [9], [10]
tional. More precisely, two formal power series define thaesa [11].
functional if and only if they are equal [5], [16].

Corollary 1.4. If a rational series in two variables is of
rank n, then the upper left block of the Hankel matrix of size
(2" —1) x (2™ — 1) is of rankn.

(Glzr) = (Glziy ziy + * 2if) = Vi, OV, O+ 0V, © h|q0.

« ldentification.

TheChen serie€, (t) = 3, c z- (Cu(t)|2r) 21 measures the
input contribution [1], [2], and is independent of the syste

The coefficients of the Chen series are calculated reclysive

by integration using the following two relations:
o (Culdle) =1,
el = [

0
The causal functionaj(t) is then obtained locally as the
product of the generating series and the Chen series [6]:

y(t) = (GlICu(t)) = D (Glw)(Cult)w) (I1.2)
weZ*

This formula is known as th€eano-Baker formulaas well
as theFliess’ fundamental formulaDifferentiating (11.2), we

obtain
dy(t) d"
- —wEEZ:*<G|w><%Cu(t)’w>. (11.3)

(Cu(T)|v)u;(T)dr for a wordw = vz;.

Note that only the time derivatives of the Chen series appear

in this expression. Their exact or at least recursive foamsl|
needed. It can be shown in a straightforward way that [15]
d’n.
dtm
where the noncommutative polynomials, (¢) are recursively
defined by the following relations

Cu(t) = Cu(t) An(t), (1.4)

A =1, Aun(t) = L(DALD) + S A0, (15)

whereL,(t) =, .z ui(t)z;. Thus we finally obtain that

= Y (Glw){Aa (0)|w) (11.6)

t=0 weZ*

The Hankel matrixof a formal power serie& is an infinite

The derivatives of the output are linear in the generat-
ing series coefficients and polynomial in the inputs
and their derivatives (cf. (11.6)). Choosing appropriate
input/output sets, certain linear combinations of the gen-
erating series coefficients can be identified (those are
exactly the coefficients of the monomials in the inputs
and their derivatives).

On the second stage of identification, the identified lin-
ear combinations are used to find the generating series
coefficients themselves. Identification of coefficients of
orders up tok can be done using the output derivatives
of orders up tom = k + |k/2](k — |k/2]), in the case

of a series in two letters. However, not all the linear
combinations are used during this step, but only those
involving the coefficients of orders. k. The remaining
linear combinations give only partial information about
the individual coefficients.

Modeling.

During the identification, the coefficients of the generat-
ing series were identified up to order These values are
inserted into the Hankel matrix whose column basis is
then calculated. The bilinear model is of the form

x(t) = (Mo + u(t)M1)x(¢),
x(0) = xo,

where M, and M; are matrices that are computed by ex-
pressing, in terms of the basis vectors, the left—-muligplic
tive action of the letters of on the basis vectors. As the
Hankel matrix is not completely determined, one obtains
multi-parameter families of linear combinations of the
basis vectors. The algorithm proposes to choose the linear
combination that depends on the leftmost basis vectors.

matrix with columns and rows indexed by the monomials We note that some partial information obtained during the
from Z* ordered lexicographically, such that the entry on thidentification is not used in the modeling. The main goal
intersection of the row: and the column is (G|uv). of this article is to fill this gap and to try to construct the

Theorem I1.1. A (real-valued) formal power series is reCOg_unlque model that fits best to all the available information.

nizable if and only if its Hankel matrix has finite rank [3]. Howeyer, the unique modgl exists only if the generatingeseri
is rational of an appropriate rank. In the other cases, the

Theorem I1.2. A (real-valued) formal power series is rationalmodeling method we present here still has an advantage, as
if and only if it is recognizable [13]. it allows one to construct a bilinear approximating systém o
rank r using the output derivatives of orders up2o— 1 <

Pt |k/2](k—|k/2]). Thus the identification can be done using
fewer input/output sets, which is quite imporatant he since

The following result due to Fliess is also important in thi
article.



the necessary number of input/output sets grows expoliigntimne has to solve become more difficult for higher-rank cases.
with the increase of the order of differentiation of the autp We would like thus to propose a different method that invelve

In order to simplify the explications, we will only dealsolving mostly linear equations.
with column operations. However, in practice, a more efficie
strategy is to mix the column and row operations. In othévgorithm 111.3. The algorithm consists in a loop that in-
words, our MAPLE package constructs both a row basis aneludes the following three main steps.
a column basis of the Hankel matrix and uses both columnl) Identify dependencies between the columns and use them
and row dependencies during its “filling in”. Even though to fill in a part of the matrix.
it is possible to rely exclusively on column operations, the 2) Solve the system of linear equations obtained during the

algorithm is simpler for a mixed strategy. identification, and substitute the solution into the Hankel
matrix (thus some entries will be linear expressions of

Il1. I DENTIFICATION OF FORMAL POWER SERIES OF RANK other entries).
2 3) (necessary only at ranks 4 and higher) Find a parameter

Corollary 1l.1. (of theorem (11.3)) If the Hankel matrix is of (or a linear combination of parameters) in such a way

rank 2, then eithefC-, C.,} or {C.,C..,} span the space of that the rank of the Hankel matrix is “too high” for all
column vectors. but one value of this parameter (or linear combination of

parameters). “Too high” means that is is greater then

Theorem 111.2. A rational generating series of rank 2 can be |(m + 1)/2] whenm is the maximal order of output
uniquely identified from the output derivative conditioHs6] differentiation used during identification.

of orders up to 3. : . . .
For generating series of rank 2, there are 3 different plessib

W'l?hrooz:l . it 6L, ..} scenarios :

ithout loss of generality, we can assume ,C.,

span the column space. If not, we can interchangeand zol. » 1C, Cx} and{C, Cs, } both form bases of the column
0 a c d space and R., R,,} and{R., R., } both form bases of

Let A = (ge, 90), Mo = <1 p ) and My = (e 7)) Let us the row space. In this case, filling in the matrix using the

consider the following system of equations, equivalenti® t ~ column dependencies allows one to find both unknown

conditions obtained from the output derivative conditiaris parameters of the two-parameter family.

orders up to 3: « only one of{C.,C,,} and {C.,C.,} is a base of the

AM(2)y = gi(i = &, 20, 21, 22, 2071, 2120, 22, 28, 23), column space oonly one of{ ., R, } and{ k., k., } is
a base of the row space. In this case, filling in the matrix
allows one to find one of the unknown parameters. The
1) other one is found from the equations (I1.6).

Here M(z;, ---2i,) = M, --- M,,, the coefficient of the ° only one of {C;, Cx, } and {C:, s, } is a base of the

rational series corresponding to a bilinear system of tipe ty polumn space andnly one of{R., R?o} and {RE_’ RZ{}
(1.7). is a base of the row space. In this case, filling in the

matrix is not sufficient to find any unknown parameters.
But it allows one to diminish the number of unknown

)\(M(zgm)—l—M(zozlz'o)+M(le§))’y = goo1+9go10+9gio0,
MM (z027)+M (212021)+M (27 20))7 = go11+9g101 +gl(ﬁ)|7

Appending to it the conditions of vanishing of &lix 3 mi-
nors of the Hankel matrix involving the coefficients of orsler o : . '
up to 3, we obtain a system in the unknowasb, ¢, d, ¢, f}. coefficients of the generating series and to find the
Using Grobner basis techniques, it is possible to show (it unknown parameters on(_a by one. )
takes a significant amount of time) that it admits a solution The algorithm is very easy in each case. But since complete
for any value of the coefficientg; on the right-hand side of gxplanatlpns WI||. not be fea§|ble in higher-rank cases, e w
the equations (of course satisfying the minor vanishing colfustrate in detail our techniques here, for cases 1 and 3.

ditions). Moreover, the solution is unique under an adddlo Example 111.4. Let us first consider the following (bilinear)
assumption that the rank of the Hankel matrix is strictlyagee dynamical system which is an example of case 1.

than 1. [ | .
Solving complicated systems of polynomial equations is @ = 0(0) =1
a very useful tool from a theoretical point of view, but it G2=q +q+ 2q + ¢)u, 42(0) 0? (1.2)

becomes practically unfeasible as the number of equations | y(t) = qi(¢) + 2¢2(t).
and unknowns mcreases._However, we dq not need to Solyging the algorithm 11.5, we obtain the following informeari
the most general system in every case. Firstly, one does n{)% : o

. rder 3 of differentiation:
need to consider the most general case. Most of the gergeratin )
series coefficients involved in the system are found duffieg t ~ (Gle) =1.(G|z0) =2,(G|z1) =4,(G[z5) =1,
identification. The system (lll.1) can then be solved almostG|zyz,) = 2,(G|z120) = 2,(G|z}) =4,(G|zd) = -1,
instantaneously. Secondly, the algorithm I1.5 allows anfirtd
the two—parameter family of rational series of rank 2 having 5 9 3
the given coefficients of orders up to 2. Substituting it itite (Gla02i + 212021 +2120) =0, (Gl27) =4.
system (l1l.1) eliminates even more variables and any examits Hankel matrix is thus as follows (with monomials ordered
of rank 2 can be easily solved this way. However, the systemesicographically) :

<G|z§zl + 202120 + zlzg) = -3,



the following:

1 2 4 1 2 2 4 . (Gle) =1,(Glz0) =1,(G|z1) =2,(G|z5) =1,
2 1 2 -1 B—z1—72 T1 Y1—Y2 (Glzoz1) =3,(G|z120) =2,(G|2}) =4,(G|z}) =1,
42 4 x2 (2 Y2 4 (G|z3z1 + 202120 + 2128) =9,
1 -1 —3—$1—$2 9 9 3
2 21 —y—vs (Glzo27 + 212021 + 2720) = 16,(G|z7) =8.
2 x4 Y1 Its Hankel matrix is thus of the following form
by 4 11 2 1 3 2 4
1 1 3 1 9—1‘1—$2 T 16—y1—y2
(where 1, 2,11, y» are yet unknown values). The rank off 2 2 4 T2 h Y2 8
this matrix should be 2. Using the algorithm 1.5, we obtaiq + 1 9-%1—22
{C.,C.,} as the basis of the column space, as well as 3z 16-y1-4
2 i) yl
0 1-2a 0 2—-2b 4y 8
A= (1 2)7#(20) = (1 a ) ,,U,(Zl) = (2 b ) I N, .

where ¢ and b are unknown parameters (recall that the By the algorithm II.5 we obtain, taking the bagie., C, }

algorithm does not use any coefficients of order 3 since mo;ti (1 2), u(z) = (1 3 — 2a> (21) = <0 4 — Qb)

of them were not identified yet). The available information 0™ 0 a 1 b

the third—order terms allows us to conclude immediatelt thhare » and b are again some unknown parameters. Using
we also havelz = €, — C: and U,z = 2C.. the only known relatiorC.,, = C. and its consequences, we
Using the known values of the Hankel matrix, these tWghiain additional equations; = 3, z» = 2 and y, = 4. This
relations between the columns together with = 2C%., and  gjlows us to conclude that that.,., = C. + C., and thus
their consequences, we obtain additional relatiers—z1 — ; — 1. This last relation between the columns implies in its

Tg = 4 =y —y2 = 221, Y1 = 2@2, T3 = =2 and%? = 2y2.  turn thaty, = 6 and thusb = 2. The rank 2 rational series is
Solving these equations, we obtain all the coefficientsaéor oy completely determined:

3. The Hankel matrix is now .
G = (1 + 2(2’0 + 221)*2’1) (20 + 20(20 + 22’1)*2’1) .

1 2 4 1 2 24 -1-212-2-4214
2 1 2 -1 -212

V. | DENTIFICATION OF FORMAL POWER SERIES OF RANK
4 2 4 -2 —-424
1 -1 -2 3
2 1 9 The rank 3 case would be rather similar to the rank 2 case,
9 _9 _4 except for the fact that we may not know the complete basis
4 2 4 of the column space at the beginning. However, the following
,,,,,, easy proposition guarantees that at least 2 basis vecters ar

known.

giving usa = 1 and b = 1. The rank 2 rational series is
thus completely determined. Constructing the bilineatesys
corresponding to it, we obtain the system (l11.2). Let usagm

that it was a different system that was found by the origin

method, using the same information. The rational genegatin

Proposition 1V.1. The part of the Hankel matrix of a rational
series of rank 3, constructed using the coefficients obtaine
from derivatives of orders up to 5 of the output, cannot be of

series corresponding to (111.2) is Theorem IV.2. All the coefficients of a rational power series
i} of rank 3 can be uniquely determined from the information
G=1+(2- Zo)(z() + 21— (20 + QZI)ZO) (20 + 21) obtained from the output derivative conditions (l1.6) oflers
up to 5.

Remark. Of course, if the additional relations were contra-  prgof:
dictory, we would conclude that the rank of the series was This theorem, which is a counterpart to (I1.2), cannot

greater than 2, and use only some additional conditions §@ realistically proven by solving a system of polynomial
find the values ot: andb. equations, since the corresponding system is quite coatptic
Example 111.5. Let us now consider an example of case 3:in this_case. S_olvi_ng this polynpmial system iS.Sti” fedsib
for a given series if we use the information obtained from the
i1 =q + . algorithm I1.5.
G2 = @2 + (@1 + 22)u, ) J (11.3) However, the general proof can rely on the new techniques
y(t) = q1(t) + 2¢a(t). ‘ described in this paper and it can be done by considering
separately different cases arising during the identificatiVe
At order 3 of differentiation of the output, we have idendfiegive its outline here. Further details can be easily filled in

=1
=0

(™)
N =
—~
o O
=



At fifth-order differentiation of the output, the known part ]
of the Hankel matrix is of the form

Example 1V.3. Examples of the three above-mentioned cases

Z g Z g Z Z Z Z vy ey can be the series obtained using = (1 0 0)% and the
Y Y YYYyYvyy Yy following matrices :

zgzy Y 0 0 1 0 0 2
vy oy A=(123), My=[1 0 o], mM=[0 1 0
Yy oy Y Y 010 100
, Y 01 0 01 0
Yy A=(111), My=(1 0 1], My=[0 1 1
Y 0 1 1 1 0 1
Yy 1 01 0 2 -1
; A=(112), My=|0 0 1|, M=[1 0 1
Y Y Y 010 0 0 1

where y denotes (different) known values. There are 3he corresponding generating series are:
possibilities.

1)

2)

3)

The first three columns and the first three rows are indét1 = (1+321+22T20+3202f20) ((Zo+221)(21+202f20))

endent. The algorithm 1.5 gives us all the coefficient N *

gf M; and Ms. Tghe rest of thge matrix can then be then”2 — (1 (120 + 20) (1 + 2027) (20 +21)) 21+
unambiguously found. +(1+20) (21 + (20 —|—z1)+z0)*z0)x
The known part of the Hankel matrix is of rank 3, but .
the upper-left3 x 3 determinant vanishes. Without loss  x ((zo—l—zl)(zl + (20+zl)+zo))*((20+zl)+zl + zo))
of generality, we can assume th@t, C.,,, C,, span the .

column space. (If not, the same argument works b$s = (1 + (1 +22027) (20 + 21)21 20 Zl)x

considering the rows instead of the columns.) Since there . K

is a linear relationship between the first 3 rows, there is x (ZO +221((20 + 21)2120) 21+

a linear relationship between the coefficients of orders 3
and 4, of the formu(G| zozr) +b(G|z121) +¢(G|z1) =

0, where! is a multi-index of length 3. These equations
are independent, which allows us to reduce the numb¥r
of unknown coefficients of order 4 from 8 to 3. At rank 4, we meet additional difficulties. The main one is
Now, among the rowsk, through R7, one is part of that we want to identify a rational series of rank 4 before the
the basis, two are linear combinations of the other oneemplete identification of coefficients of order 4. Thus, the
(consequence of linear dependence of the first 3 rowkpown part of the Hankel matrix can be of rank 1. However,
The remaining one is also a linear combination of thesing the technique of minimization of the rank of the Hankel
basis rows. This relationship gives us another 4 relationgatrix, we can still find the unique rational series of rank 4
between the coefficients of order 4, which allows ushenever the generating series of raqkd.

to identify them completely. '!'he_ 'mage of _the b‘?‘s'ﬁ'heorem V.1. A rational series of rank< 4 can be uniquely
columns under the left multiplication is now identified

X X . . identified from the information obtained from the output
and the rational series uniquely determined.

The known part of the Hankel matrix has rank 2. Thac{envatwe conditions up to order 7.

is, the third basis column vector has to be somewhere Proof:

among columnsCy through C7 and third basis row  The proof is done by considering every possible case, as for
vector somewhere among rows, throughR-. the Theorem 1V.2. However, there are many more cases and it
As in the previous case, we obtain the relations of the impossible to present a complete proof here. We will only
form a(G|zozr) + b{(G|z12z1) + ¢(G|z;) = 0 for the illustrate in detail the new technique of minimizing the kan
fourth-order terms. However, since we do not know th€his technique is applied whenever the first two techniques
whole basis, we do not have an immediate extra relatiane insufficient for “filling in” the whole matrix.

between the rows. However, we can use the similarlts principle is based on the observation that the rank of a
relationship among the first 3 columns to find morparametric matrix may vary is a function of its parameterse T
equations for the coefficients of order 4. This allowgoal is to find a square submatrix depending on at least one
us to find the third row completing the row basis aparametep whose rank is greater than 4 unless the parameter
well as the third column completing the column basis is equal to a certain valug. Since we want to find the
Doing another round of equating the coefficients of theational series of minimal rank (i.e. less than or equal to 4)
dependent columns and rows allows us to find all thee can takep = k and repeat the algorithm’s loop from the
coefficients of orders 4 and 5, thus determining thigeginning. Lemma V.2 guarantees that it is always possible t
missing coefficients of the matriced; and M. find such a value.

+ (20 — 21)(21 + z0(20 + 21))*2021)

IDENTIFICATION OF FORMAL POWER SERIES OF RANK



Now, considering separately all the different cases (f@onjecture VI.1. Let H be the Hankel matrix corresponding
different possibilities of basis vectors and basis rowsg wo a rational series of rank:- > 5, whose coefficients were
see that at most 1 minimization is necessary in order igentified from the output derivative conditions of ordegs u
complete the identification of the parameters. Indeed, tig oto 2r — 1. Then there exists a combination of unidentified
coefficients of order 4 that were not identified at order 7 amefficientss = Zj gr; with the property that the rank of
those of the monomials involving 2 occurrenceszpfand 2 H is greater thanr, unlesss is equal to a certain valué.

of z;. There are 6 such coefficients in all, but only 5 equations
to find them. However, the minimization technique allows us

The rank minimization algorithm is as follows :

to find one of these coefficients. The remaining ones are thenk) Letn be the length of the shortest word in the generating

immediately found from the 5 identified linear combinations
Once this step is finished, the remaining steps are quitdasimi
to the rank 3 case and are executed without difficultiesm

series (the smallest according to the lexicographical
ordering) whose coefficient is unknown.

2) Letm =), a,g; be the sum of the coefficients of order
n that are not identified yet ang, unknown constants.

Lemma V.2. Let I be the Hankel matrix corresponding to  3) e initialize the stack with({m = 0}, C.), the basis

a rational series of rank 4, whose coefficients were identifie
from the output derivative condition of orders up to 7. Then
there exists a yet unidentified coefficigptwith the property
that the rank ofH is greater or equal to 5, unlesg is equal

to a certain valuek.

Proof:
The lemma is again proven on a case-by-case basisa
Remark. The disadvantage of the minimization part is its
nonlinearity, but it can still be efficiently implemented on
computer, since it involves only one symbolic parameter.

Example V.3. Consider the rational generating series for the
bilinear system withh = (1 1 1 1),

1 100 0 010 0
0 0010 100 0
Y=ol M=|o 10 o] M=|00 01
0 000 2 001 0

At the order 7 of differentiation of the output, all the known
coefficients are equal to 1. The yet unknown conditions fer th
coefficients of the fourth—order terms giyg11 = a, go101 =
7 —5a, gorro = 4 — 3a, gioo1 = 4 — 3a, gio10 = 6 — 5a,
g1100 = a, Wherea is an unknown parameter.

Since all the known coefficients are equal to 1, no depen-

dency between the columns can be identified at this stage.
As a consequence, we cannot obtain any other coefficient yet.

Studying the rank of the Hankel matrix, we see that its rank
isr >4fora=1,r > 8fora # 1 andr > 9 for

with C. (since it can be always considered as a part of
the basis) and the current column with= Cp-

4) During each iteration of the loop, one considers the
columnC.

« If the basis contains more thancolumns, pop the

stack and obtain the last—in eleménrtCxk ). Solve
the systems, replace the obtained values in the
Hankel matrix and exit the loop.

If C'is the column corresponding to a word of length
> r, we encountered a linear combination that does
not work. Let(s, C'x) be the element on top of the
stack. We pop the stack and regétio the column
that follows C'k .

We write the (truncated) colum@’; as a linear
combination (with arbitrary coefficients) of the ba-
sis columns and solve the corresponding system
of equations augmented with the systemwhere
(s,Ck) is the element on the top of the stack.

— If the system is incompatible, we add this column
to the basis.

— If there is one solutionm’ that involves only
linear combinations of); and such that not all
a; vanish, we append’ to s and push(s, C)
onto the stack.

— In all the other cases, no action needs to be done
on this stage.

Finally, we reseC to the column that follows” ;.

a = (9 £ V1105)/32 (no matter what are the values of theConjecture VI.2. A rational series of rank- (or less) can
coefficients of orders 5 and higher). Therefore, since we age uniquely identified from the information obtained frora th
trying to construct a rational series of rank 4, a = 1 is the  output derivative conditions (11.6) up to ord@r — 1.

only value that could eventually allow us to obtain a matrix o
rank 4. Once we choose= 1, four independant columns are
immediately found and the rest of the matrix is easily filled i

Proof:
Due to a large number of different cases, it is not possible to

clearly identify all the different possible scenarios andeca
complete proof similar to the rank 2, 3 and 4 cases. Extensive

VI. I DENTIFICATION OF SERIES OF RANK GREATER THAN
4

The identification algorithm works essentially in the same

way as in the rank 4 case, except that there are no direct

counterparts of the lemma V.2. However, it can be replaced
with a following strategy, applied as many times as all the
other strategies fail. It is based on the following conjeetu
based on strong experimental evidence :

experimental evidence shows however clearly that the syste
of rank k£ can be identified in all the cases. ]

VII. CONCLUSION

In this article, we propose an improvement of the method
of Hespel-Jacob for modeling nonlinear dynamical systems i
the case of a single input. Among its main advantages are: the

use of all the information obtained during the identificatio



which implies a better approximation and the possibility to
precisely identify a rational series whenever there is cefiit
data. Moreover, we have bounded By — 1 the order of
differentiation of the output derivatives which is necegdar
identifying a rational series of order. This algorithm was
successfully programmed and tested imME.

An interesting direction to pursue is to generalize this
algorithm to the case of several inputs.
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