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We develop a combinatorial theory for the operation of forming the logarithm of
generating functions associated with covariant functors on the category of finite sets
and bijective maps. This leads to a rather general and flexible exponential principle
for labeled combinatorial structures. We also introduce the concept of a topos-like
category, which turns out to be a convenient framework for the discussion of a wide
range of applications a few of which are studied in detail. � 1997 Academic Press

0. INTRODUCTION

The main purpose of the present paper is the construction of a com-
binatorial theory for a large class of enumeration problems leading to an
identity of the form

1+ :
n>0

anZn�n!=exp \ :
n>0

bnZn�n!+ (0.1)

or, more generally

1+ :
n>0

:
k>0

ankZnYk�n!=exp \Y :
n>0

bnZn�n!+ . (0.2)

It has often been noted that the identity (0.1) arises in connection with
the problem of counting labeled combinatorial structures, which are com-
posed of a finite number of indecomposable substructures, and several
combinatorial models for (0.1) or its refinement (0.2) have been proposed
on the basis of this observation, cf. for example [BG, Section 3; F,
Chap. IV; or W1, Chap. 3]. It appears, however, that no satisfactory
definition has been offered so far for the most fundamental notion of such
a theory, the concept of decomposition of a labeled combinatorial struc-
ture. In [BG], a composition of combinatorial structures is introduced
axiomatically. The strength of Bender and Goldman's prefab theory lies
largely in the fact that it can deal with completely labeled and completely
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unlabeled structures in a uniform way, an advantage, which at the same
time causes their list of axioms to be rather long and involved. Indeed,
their approach seems much too complicated and abstract if one is mainly
interested in the identities (0.1) and (0.2) and their interpretation in terms
of labeled combinatorial structures. On the other hand, both [F, W1]
introduce explicit set-theoretic constructions, thus only implicitly defining
the particular kind of decomposition underlying their respective construc-
tion and automatically ensuring decomposability, and then relate the
enumeration of the constructed objects to the enumeration of the set of
objects they started from.

Denote by Ens
t

the category of finite sets and injective maps and by Ens
the subcategory consisting of finite sets and bijective maps1. It is natural to
think of labeled combinatorial structures as covariant functors on Ens.
Given such a functor F : Ens � Ens, the basic idea of our approach is to
study natural transformations ' from the functor

F_F : Ens2 w�F 2

Ens2 w�_ Ens/�Ens
t

to the functor

F b _* : Ens2 w�_* Ens w�F Ens/�Ens
t

,

where _ and _* denote the cartesian product and disjoint union of sets.
Among such transformations ', a subclass is singled out by means of a cer-
tain rather natural reconstruction axiom, (D1), and any ' in this subclass
is called a weak decomposition of F. The functor F is termed weakly
decomposable, if F{<, i.e., if F(0){< for some finite set 0 and if a
weak decomposition ' of F exists. The class of weak decompositions of F
is further reduced by imposing a second condition (D2), thus leading to the
concept of a decomposable functor F and its decomposition(s). Our main
result associates a general exponential formula of type (0.1) or (0.2) with
each such weakly decomposable or decomposable functor F, respectively.
This result and its conceptual framework are explained in more detail in
the first section. We also comment there on Wilf 's exponential formula
associated with exponential families which arises as a special case of our
result; and we demonstrate by means of an example that a decomposition
of a functor F, if it exists, is in general not uniquely determined by F. The
next section contains the proof of our main result. In Section 3, we concen-
trate on three specific applications of somewhat algebraic flavor: (i) the
connection between group actions and finite-index subgroups; (ii) the
equation X:=X ; in symmetric semigroups; and (iii) cyclic sets. Finally, in
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Section 4, we introduce the concept of topos-like categories. These are
categories endowed with a canonical forgetful functor into the category of
sets, which generalize certain important aspects of the category of G-sets
for a given group G. Our theorem allows us to relate the problem of
counting objects in such a category, which lie over a given finite set and are
the coproduct of a given finite number of indecomposable objects, to the
enumeration of the indecomposable objects over a finite set (Proposi-
tion 4). In fact, these categories whose axioms are also discussed in the
theory of toposes (or, rather, topoi), turn out to be a convenient
framework for the discussion of a wide range of applications of our
theorem. In particular, all instances of a relation between two generating
functions of the type described in (0.1) and (0.2) which are discussed in the
present paper, turn out to be interpretable in the context of topos-like
categories, which, however, invites many further applications.

1. THE EXPONENTIAL PRINCIPLE

The crucial concept for our approach to the exponential principle is that
of a decomposition of a (combinatorial) functor F. This concept and the
exponential formulas it leads to are explained in the first subsection. In
Subsection 2 we introduce Wilf 's concept of an exponential family and
show how his exponential formula associated with such a family arises as
a special case of our result. Moreover, in Subsection 3 we demonstrate by
means of an example that the decomposition of a functor F, if it exists, is
in general not uniquely determined by F.

1. Decomposition of Functors

Denote by Ens
t

the category of finite sets and injective mappings and by
Ens the subcategory consisting of finite sets and bijective maps. For a given
(covariant) functor F : Ens � Ens we want to study natural transforma-
tions ' from the functor

F_F : Ens2 w�F
2

Ens2 w�_ Ens w�@ Ens
t

to the functor

F b _* : Ens2 w�_* Ens ww�F Ens w�@ Ens
t

.

Here _ and _* denote the natural product and coproduct in the category
of sets, i.e., the Cartesian product and disjoint union, respectively; and
@ : Ens � Ens

t
is the inclusion functor. Given F and such a transformation
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' we define a map F' : |Ens| � |Ens| on the class |Ens| of all finite sets as
follows:

F'(0) :={
F(0)& .

I{<{J
I _* J=0

'(F(I )_F(J )), 0{<
(0 # |Ens| )

<, 0=<

('(F(I )_F(J )), of course, denotes the image of the injective map
'(I, J ) : F(I )_F(J )/�F(0) for 0=I _* J ). Furthermore, using this map F'

we define a sequence of mappings F (k)
' : |Ens| � |Ens| (k=0, 1, ...) with the

property that F (k)
' (0)�F(0) by induction on k:

F (0)
' (0) :={F(<),

<,
0=<
0{<;

F (k)
' (0) := .

01�0

'(F'(01)_F (k&1)
' (0&01)), k�1.

An immediate induction on *0 shows that

F (k)
' (0)=<, k>*0. (1.1)

Denoting by Z+ the set of nonnegative integers, we associate with such
a pair (F, ') three arithmetic functions .'

F : Z+ � Z+ , �'
F : Z+ _Z+ �

Z+ , and �F : Z+ � Z+ as follows:

.'
F (n) :=*F'([1, ..., n])

�'
F (n, k) :=*F (k)

' ([1, ..., n])

�F (n) :=*F([1, ..., n]).

By (1.1) we have that

�'
F (n, k)=0, k>n.

The functions .'
F , �'

F , and �F in turn give rise to (formal) generating
functions:

8(Z)=8'
F (Z) := :

n�0

.'
F (n) Zn�n!

9(Z, Y )=9 '
F (Z, Y ) := :

n�0

:
k�0

�'
F (n, k) ZnYk�n!

9(Z)=9F (Z) := :
n�0

�F (n) Zn�n!.

Given F, we call a natural transformation ' : F_F � F b _* a weak
decomposition of F if the following condition (D1) holds.

191DECOMPOSABLE FUNCTORS
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(D1) For each finite set 0 and any two partitions 0=01_* 02=
0$1 _* 0$2 of 0 into disjoint parts we have that

'(F(01)_F(02)) & '(F(0$1)_F(0$2))

='('(F(011)_F(012))_'(F(021)_F(022))), (1.2)

where 0ij :=0i & 0$j for i, j # [1, 2].

A weak decomposition ' of F is termed a decomposition of F if it satisfies
in addition the following condition.

(D2) For each finite set 0 the sets F (0)
' (0), F (1)

' (0), F (2)
' (0), ... are

pairwise disjoint.

A functor F will be called weakly decomposable if F{<, i.e., F(0){<
for some finite set 0, and if F admits some such weak decomposition '.
Similarly, F will be called decomposable if F{< and if F admits a decom-
position '. We shall see that for a weakly decomposable functor F and a
weak decomposition ' of F in particular the following is true:

*F(<)=1. (1.3)

F (1)
' =F' . (1.4)

For each finite set 0 we have F(0)= .
k�0

F (k)
' (0). (1.5)

Hence, for such a pair (F, ')

�'
F (0, 0)=*F (0)

' (<)=*F(<)=1

and

�'
F (n, 1)=.'

F (n), n�0.

If in addition to (D1) ' also satisfies condition (D2), i.e., if F is decom-
posable and ' a decomposition of F then for each finite set 0 the set F(0)
is the disjoint union of the family [F (k)

' (0)]�
k=0 .

The main objective of the present paper is to establish the following
exponential principle.

Theorem. Let F be a covariant functor on the category Ens and
' : F_F � F b _* a natural transformation.

(a) If F is weakly decomposable and ' a weak decomposition of F, then
the generating functions 8(Z) and 9(Z) are connected by the transformation

9(Z)=exp(8(Z)). (1.6)
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(b) If F is decomposable and ' a decomposition of F, then

(i) 9(Z, Y )=exp(Y8(Z))
(1.7)

(ii) 9(Z, 1)=9(Z).

It is often convenient to view Eq. (1.7)(i) in a slightly different (but
equivalent) way. For a set T�Z+ of nonnegative integers put

�'
F (n, T ) := :

k # T

�'
F (n, k)

and

9T (Z)=9 T
(F, ')(Z) := :

n�0

�'
F (n, T ) Zn�n!.

Moreover, for a series f (Z)=�n�0 an Zn and a set S�Z+ we denote by
f (Z)S=�n # S anZn the truncation of f (Z) corresponding to S. Given
a functor F : Ens � Ens and a natural transformation ' : F_F � F b _*
Eq. (1.7)(i) is then equivalent to the following assertion:

For every set T�Z+ of nonnegative integers we have
9T (Z)=eT (8(Z)), where eT (Z) :=exp(Z)T . (1.8)

Indeed, define for fixed k�0

9k(Z) := :
n�0

�'
F (n, k) Zn�n!.

Assuming Eq. (1.7)(i) we have

9(Z, Y )= :
k�0

9k(Z) Yk= :
k�0

1
k!

Yk(8(Z))k.

Comparing coefficients we find that

9k(Z)=
1
k!

(8(Z))k, k�0, (1.9)

from which (1.8) follows by summing over the set T. Conversely, using
(1.8) with T=[k] gives (1.9) from which Eq. (1.7)(i) results upon
multiplying by Yk and summing over all k�0. We shall freely use this
equivalence whenever it is convenient.
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Remarks. 1. Condition (D1) can be rephrased in terms of pullback
diagrams. Recall that pullbacks always exist in the category Ens

t
and are

constructed in an obvious fashion. Denoting by P the right-hand side of
(1.2) it is then easy to see that Eq. (1.2) is equivalent to the statement that

(i) P�'(F(01)_F(02)) & '(F(0$1)_F(0$2)) and

(ii) the diagram

P
'&1

(01 , 02)

F(01)_F(02)

'&1
(0$1 , 0$2) '(01 , 02)

F(0$1)_F(0$2)
'(0$1 , 0$2)

F(0)

is a pullback diagram in the category Ens
t

.

2. Given a functor F : Ens � Ens with associated generating function
9F (Z)=�n�0 *F(n

�
) Zn�n! our theorem supplies a (not necessarily canoni-

cal) combinatorial interpretation of the function log 9F , i.e., a functor
F' : Ens � Ens such that

:
n�0

*F'(n
�
) Zn�n!=log(9F (Z)),

provided that F is weakly decomposable. Obviously, the functor F can be
reconstructed from F' and the defining weak decomposition ' of F. More
general, given an arbitrary functor H : Ens � Ens (rather than F'), consider
a functor G= GH : Ens � Ens with

G(0)= �
? # Eq(0)

`
X # 0�?

H(X ), 0 # |Ens|.

Then an immediate calculation shows that

:
n�0

*G(n
�
) Zn�n!=exp(9H(Z)&*H(0

�
));

i.e., one always has a (canonical) combinatorial interpretation of the image
of �n�1 *H(n

�
) Zn�n! under the exponential map.

2. Exponential Families

In his recent book [W1] on generating functions, Wilf introduces the
concept of an exponential family and associates an exponential formula
with each such family. Unfortunately, Wilf 's proof of his exponential prin-
ciple is not entirely correct; cf. [M4]. However, the result itself is valid and
is in fact a special case of our theorem. We briefly review the definition of
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an exponential family and state Wilf 's exponential formula before deducing
it from our result.

Given a set P the elements of which are called ``pictures'' Wilf defines a
card C=C(S, p) as a pair consisting of a finite set S of positive integers
(the label set) and a picture p # P. The weight of a card C(S, p) is *S and
a card of weight n is standard if its label set is [1, ..., n]. By hand H he
means a set of cards whose label sets form a partition of [1, ..., n] for some
n; i.e., these label sets are nonempty, pairwise disjoint and their union is
[1, ..., n], where n is the sum of the weights of the cards in the hand. This
n is called the weight of H. A relabeling of a card C=C(S, p) with a set
S$ is defined if *S=*S$, in which case it is the card C$=C(S$, p). If
S$=[1, ..., *S] then C$ is the standard relabeling of C. A deck D is a finite
set of standard cards whose weights are all the same. This common weight
of the cards in D is called the weight of D. Finally, an exponential family
F is a sequence of decks D1 , D2 , ..., where for each n=1, 2, . . . the deck Dn

is of weight n. Given an arbitrary exponential family F put dn :=*Dn and
define h(n, k) to be the number of hands of weight n consisting of precisely
k cards, each of these cards being a relabeling of some card in some deck
of F. Moreover, introduce the generating functions D(x)=�n�1 dnxn�n!
and H(x, y)=�n, k�0 h(n, k) xnyk�n!. Then Wilf 's exponential principle
[W1, Theorem 3.4.1] asserts that

H(x, y)=e yD(x). (1.10)

In order to reveal (1.10) as a special case of our theorem we have to
slightly generalize Wilf 's concepts so as to allow arbitrary finite sets as
label sets. Hence, a card in our sense is of the form C=C(0, p) with an
arbitrary finite set 0 (the label set). The weight w(C) of C=C(0, p) is
*0. A hand H(0) on a (finite) set 0 is a set of cards whose label sets form
a partition of 0. Note that there exists precisely one hand on the empty
set, the empty hand H(<)=<. The weight of a hand H(0) on 0 is
�C # H(0) w(C)=*0. Finally, a relabeling of a card C(0, p) is a card
C(0$, p) with *0=*0$. Call a hand admissible if each of its cards is a
relabeling of some card in �n�1 Dn . For a finite set 0 denote by F(0)=
FF (0) the set of all admissible hands on 0. Since by definition of an
exponential family each deck Dn is finite F F (0) is again a finite set. Hence,
with the obvious definition of induced maps, F=FF is a functor on the
category Ens and the disjoint union of hands defines a natural transforma-
tion '='F : F F _FF � FF b _* . The fact that FF (<)=[H(<)]{<
shows that FF is not the empty functor. Let

H(0)=[C1(21 , p1), ..., Ck(2k , pk)] # ' F (FF (01)_F F (02))

& 'F (FF (0$1)_F F (0$2))

195DECOMPOSABLE FUNCTORS
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be an element of the left-hand side of (1.2). Then we can partition the index
set [1, ..., k] in two ways, [1, ..., k]=I1_* I2=I$1_* I$2 , such that

0i= .
+ # Ii

2+ (i=1, 2), 0$j= .
+ # I $j

2+ ( j=1, 2).

For i, j # [1, 2] put Iij :=Ii & I$j . By definition we have

.
+ # Iij

2+ �0ij (i, j # [1, 2])

and since �k
+=1 2+=0 we must in fact have equality. This shows that H(0)

is contained in the right-hand side of (1.2), and since the other inclusion is
clear, we have verified condition (D1) for the pair (FF , 'F ). By definition
F'(0) is the set of all admissible hands on 0 consisting solely of one card, and
for 0{< there is an obvious bijection between F'(0) and D*0 . Moreover,
by an immediate induction on k, F (k)

' (0) is the set of all admissible hands on
0 consisting of precisely k cards; in particular, condition (D2) holds. Hence,
FF is decomposable and 'F is a decomposition of FF . Wilf 's result (1.10)
now follows from our theorem since .'

F (n)=*F'([1, ..., n])=dn (n�1) and
�'

F (n, k)=*F (k)
' ([1, ..., n])=h(n, k) (n, k�0).

3. An Example

Given a decomposable functor F : Ens � Ens, its decomposition ' will, in
general, not be uniquely determined by F. As an example consider the
functor F : Ens � Ens given by

F(0) :=2( 0
2 ), 0 # |Ens|,

which maps a finite set 0 onto the set of all subsets of ( 0
2 )=[[|, |$] : |,

|$ # 0, |{|$]. For 01 , 02 # |Ens| put

'(01 , 02)(E1 , E2) :=E1 _* E2

and

'$(01 , 02)(E1 , E2) :=E1_* E2_* \\01 _* 02

2 +&\01

2 +&\02

2 ++ ,

where Ei �( 0i
2 ). F(0) can, of course, be interpreted as the set of all un-

directed combinatorial graphs with vertex set 0. In this language
'(01 , 02)(E1 , E2) is the disjoint sum and '$(01 , 02)(E1 , E2) the bipartite com-
pletion of the disjoint sum of the graphs corresponding to E1 and E2 .
Clearly, ' is a decomposition of F with F (k)

' (0) consisting of those graphs
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on 0 which have exactly k connected components. Our theorem then tells
us that, for every set T�Z+, the exponential generating function 9T (Z)
of the number �'

F (n, T ) of all those graphs on n labeled vertices with num-
ber of connected components in T is given by

9T(Z)=eT \log \1+ :
n�1

2( n
2)Zn�n !++ .

A moment's thought will also convince you that the transformation '$
satisfies condition (D1). Essentially, one only has to observe that in the
notation of (1.2) a graph corresponding to a set E # '$(F(01)_F(02)) &
'$(F(0$1)_F(0$2)) is in fact of the form

011 012

021 022

(a straight line denotes the bipartite completion of the two disjoint graphs
it connects). By definition, a graph E on the set 0{< is indecomposable
with respect to '$ (i.e., belongs to F'$(0)) if and only if for every partition
0=01_* 02 of 0 into two nonempty disjoint parts the graph E does not
contain all *01 } *02 possible diagonal edges between 01 and 02 . But
this is equivalent to saying that the complement ( 0

2 )&E is a connected
graph on 0. By induction on k, F (k)

'$ (0) is then identified as the set of all
those graphs on 0 whose complement has exactly k connected com-
ponents, whence (D2) for the transformation '$.

How far then is the decomposition of a decomposable functor F deter-
mined? If ' and '$ are two decompositions of some functor F : Ens � Ens
then by our remark above for every set 0 # |Ens| the set F(0) is the dis-
joint union of the family F (k)

' (0) as well as of the family F (k)
'$ (0) and by

our theorem we must have that *F (k)
' (0)=*F (k)

'$ (0) for every k�0.
However, these two partitions of F(0) may still look very different from
each other. Returning to our example, if we take for instance 0=[1, 2, 3],
we find that

F (1)
'$ (0)={ v

3
v
3

v
3

v
3

=v
1

v
2

, v
1

v
2

, v
1

v
2

, v
1

v
2

F (2)
'$ (0)={ v

3
v
3

v
3

=v
1

v
2

, v
1

v
2

, v
1

v
2
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F (3)
'$ (0)={ v

3

=v
1

v
2

F (k)
'$ (0)=< if k=0 or k�4.

2. PROOF OF THE THEOREM

We are going to analyze the situation in a sequence of 12 steps. Our
general assumption will be that F is weakly decomposable and that ' is a
weak decomposition of F (although condition (D1) is not always needed
in each of these steps). Axiom (D2) will only come into play in steps (x)
and (xii).

(i) Functoriality of F' . Let 0 and 0$ be finite sets and f : 0 � 0$
a bijective map. Then

F( f )(F'(0))=F'(0$); (2.1)

i.e., putting F'( f ) :=F( f )| F'(0) we get a functor F' : Ens � Ens.

Proof. This follows straightforward from the naturality of the transfor-
mation ', the functoriality of F and the fact that the map f is bijective. K

(ii) Functoriality of F (k)
' , k�0. For each bijection f : 0 � 0$

between finite sets 0 and 0$ and every integer k�0 we have

F( f )(F (k)
' (0))=F (k)

' (0$). (2.2)

Proof. This follows by induction on k, using the functoriality of F'

already proved. K

(iii) *F(<)=1.

Proof. By the injectivity of '(<, <) : F(<)_F(<) � F(<), F(<) is
either empty or a 1-set. Suppose that F(<)=<. Choose a set 01 with
F(01){< and a set 02 such that 01 & 02=< and *01=*02 , and
consider (D1) for the partition 0 :=01 _ 02 , 0$i=0i . By the functoriality
of F we also have F(02){< and, consequently, the left-hand side of (1.2)
is nonempty, whereas the right-hand side of (1.2) would be empty in case
F(<)=<��a contradiction. K

198 DRESS AND MU� LLER



File: 607J 164812 . By:CV . Date:22:07:01 . Time:08:55 LOP8M. V8.0. Page 01:01
Codes: 2310 Signs: 1038 . Length: 45 pic 0 pts, 190 mm

(iv) Commutativity of '. Given any two disjoint finite sets 01 and
02 we have

'(F(01)_F(02))='(F(02)_F(01)). (2.3)

Proof. Applying condition (D1) to the decompositions 0 :=01 _ 02=
02 _ 01 we find that

I :='(F(01)_F(02)) & '(F(02)_F(01))

='('(F(01 & 02)_F(01))_'(F(02)_F(01 & 02)));

(1.3) ensures that the map

'(<, 01) : F(<)_F(01) � F(01)

is surjective, i.e., '(F(01 & 02)_F(01))=F(01), and, similarly, '(F(02)_
F(01 & 02))=F(02). Thus we have

I='(F(01)_F(02)).

By an analogous application of (D1) and (1.3) to the decompositions
0=02 _ 01=01 _ 02 we find that

I='(F(02)_F(01)),

and (2.3) is proved. K

(v) Associativity of '. For any three pairwise disjoint finite sets 01 ,
02 , and 03 we have

'('(F(01)_F(02))_F(03))='(F(01)_'(F(02)_F(03))). (2.4)

Proof. We show that both sides of (2.4) equal the intersection

I :='(F(01 _ 02)_F(03)) & '(F(01)_F(02 _ 03)).

By applying (D1) to the decompositions 0 :=(01 _ 02) _ 03=01 _
(02 _ 03) we obtain that

I='('(F(01)_F(02))_'(F(01 & 03)_F(03)))

and as in the proof of (iv) we find that '(F(01 & 03)_F(03))=F(03), i.e.,

I='('(F(01)_F(02))_F(03)).
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The same argument when applied to the decompositions 0=01 _
(02 _ 03)=(01 _ 02) _ 03 yields

I='(F(01)_'(F(02)_F(03))),

whence the claim (2.4). K

(vi) The functors F (1)
' and F' coincide.

Proof. It suffices to show that

F (1)
' (0)=F'(0)

holds for every finite set 0. By (1.1) this is true if 0=<, so assume that
0{<. Then, using the injectivity and associativity of ', together with the
observation (1.3), we have

F (1)
' (0)= .

01�0

'(F'(01)_F (0)
' (0&01))

='(F'(0)_F(<))

=' \\F(0)& .

I{<{J
I_* J=0

'(F(I )_F(J ))+_F(<)+
='(F(0)_F(<))& .

I{<{J
I_* J=0

'('(F(I )_F(J ))_F(<))

=F(0)& .

I{<{J
I_* J=0

'(F(I )_F(J ))=F'(0). K

(vii) For a finite set 0 and any fixed element | # 0 we have

F(0)= .
| # 01�0

'(F'(01)_F(0&01)). (2.5)

Proof. Let x # F(0) be an element and consider all sets 01 such that
| # 01 �0 and x # '(F(01)_F(0&01)). Such sets exist, for example
01=0 has these properties since the map '(0, <) : F(0)_F(<)/�F(0) is
surjective. Of these sets we whose one of minimal cardinality, say, 01(x).
Now suppose that x � '(F'(01(x))_F(0&01(x))). Then by the injectivity
of ' and the choice of 01(x) we must have that

x # '((F(01(x))&F'(01(x)))_F(0&01(x)))

= .

I{<{J
I_* J=01(x)

'('(F(I )_F(J))_F(0&01(x))).
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Consequently, there exists a decomposition I1_* J1=01(x), I1 {<{J1 ,
such that x # '('(F(I1)_F(J1))_F(0&01(x))). Using (iv) and (v) we see
that '('(F(I1)_F(J1))_F(0&01(x))) is contained in both '(F(I1)_
F(0&I1)) and '(F(J1)_F(0&J1)). The element | is contained in I1 or
J1 , to fix ideas, say, | # I1 . Hence we arrive at the assertion that

x # '(F(I1)_F(0&I1)), *I1<*01(x),

contradicting the choice of 01(x). We conclude that x is indeed contained
in '(F'(01(x))_F(0&01(x))) and (2.5) is proved. K

(viii) The right-hand side of (2.5) is a disjoint union.

Proof. In the context of (vii) let 01 and 02 be two finite sets with
| # 0i �0 and 01 {02 , say, 01 & 02 {01 . It is enough to show that

I :='(F(01)_F(0&01)) & '(F(02)_F(0&02))

has an empty intersection with '(F'(01)_F(0&01)). But, by (D1), we
have that

I�'('(F(01 & 02)_F(01&02))_F(0&01))

and, by definition of F' and the fact that | # 01 & 02 {<{01&02 , we
have

F'(01) & '(F(01 & 02)_F(01&02))=<.

So, by the injectivity of ' we must indeed have

'(F'(01)_F(0&01)) & '(F'(02)_F(0&02))=<,

as claimed. K

(ix) Given any finite set 0 we have

F(0)= .
k�0

F (k)
' (0). (2.6)

Proof. We use induction on *0. By (1.1) and the definition of F (0)
' the

statement holds if 0=<. So let 0{< and suppose that (2.6) holds for all
sets of cardinality less than *0. Then
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.
k�0

F (k)
' (0)= .

k�1

F (k)
' (0)

= .
k�1

.
01�0

'(F'(01)_F (k&1)
' (0&01))

= .
01�0

' \F'(01)_ .
k�1

F (k&1)
' (0&01)+

= .
<{01�0

' \F'(01)_ .
k�0

F (k)
' (0&01)+

= .
01�0

'(F'(01)_F(0&01))

=F(0),

where we have used (vii) for the last equality. K

For our next step we have to assume that F is decomposable and that
' is a decomposition of F.

(x) For a finite set 0, any fixed element | # 0 and an integer k�1
we have

F (k)
' (0)= .

v

| # 01�0

'(F'(01)_F (k&1)
' (0&01)). (2.7)

Proof. The fact that the terms on the right-hand side of (2.7) are
pairwise disjoint follows from (viii) since a term '(F'(01)_
F (k&1)

' (0&01)) is contained in the larger set '(F'(01)_F(0&01)).
Denote the union on the right-hand side of (2.7) by F� (k)

' (0). It remains to
show that F (k)

' (0)=F� (k)
' (0). By definition of F (k)

' we have that F� (k)
' (0)�

F (k)
' (0). Moreover, using (ix) and (vii) we see that

.
k�1

F� (k)
' (0)= .

k�1

.
| # 01�0

'(F'(01)_F (k&1)
' (0&01))

= .
| # 01�0

' \F'(01)_ .
k�0

F (k)
' (0&01)+

= .
| # 01�0

'(F'(01)_F(0&01))

=F(0).

In the presence of axiom (D2), i.e., the disjointness of the sets F (k)
' (0) for

different k, this implies F� (k)
' (0)=F (k)

' (0) for every k�1, whence (x). K
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(xi) Proof of (a). By (vii), (viii) and the injectivity of ' we have that

�F (n)=*F([1, ..., n])

= :
1 # 01�[1, ..., n]

*(F'(01)_F([1, ..., n]&01)). (2.8)

Using the functoriality of F and F' , each subset 01 with 1 # 01 �[1, ..., n]
and of cardinality *01=+ contributes .'

F (+) �F (n&+) to the right-hand
side of (2.8). Observe that this number does not depend upon 01 itself but
only on the cardinality + of 01 . Therefore the ( n&1

+&1) +-subsets of [1, ..., n]
containing the element 1 contribute ( n&1

+&1) .'
F (+) �F (n&+) to this sum and

we obtain

�F (n)= :
n

+=1
\ n&1

+&1+ .'
F (+) �F (n&+), n�1. (2.9)

Multiplying both sides of (2.9) by Zn&1�(n&1)! and summing over n�1
gives

9$(Z)=8$(Z) } 9(Z),

from which (1.6) follows in view of (1.3). K

(xii) Proof of (b). By (ix) and (D2) we have

�F (n)= :
k�0

�'
F (n, k), n�0 (2.10)

and, hence,

9(Z, 1)= :
n�0

:
k�0

�'
F (n, k) Zn�n!= :

n�0

�F (n) Zn�n!=9(Z),

whence (1.7)(ii). In order to prove (1.7)(i) we use (x) instead of (vii) and
(viii). Arguing as in the last step except that, instead of the functoriality of
F, one has to use (ii), we obtain

�'
F (n, k)= :

n

+=1
\ n&1

+&1+ .'
F (+) �'

F (n&+, k&1) (n, k�1). (2.11)

Multiplying both sides of (2.11) by Zn&1Y k�(n&1)! and summing over
n�1 and k�1 gives

:
n�1

:
k�1

�'
F (n, k) Zn&1Yk�(n&1)!

= :
n�1

:
k�1

:
n

+=1
\ n&1

+&1+ .'
F (+) �'

F (n&+, k&1) Zn&1Yk�(n&1)!. (2.12)
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In view of the definition of F (0)
' the left-hand side of (2.12) equals

(���Z) 9(Z, Y ). The right-hand side can be rewritten as

:
k�1

Yk :
n�1

Zn&1

(n&1)! �
Zn&1

(n&1)!
, 8$(Z) 9k&1(Z)�= :

k�1

Yk8$(Z) 9k&1(Z)

=Y8$(Z) :
k�0

Y k9k(Z)

=Y8$(Z) 9(Z, Y ).

The resulting relation,

�
�Z

9(Z, Y )=Y8$(Z) 9(Z, Y ),

in view of (1.3) now obviously implies Eq. (1.7)(i) and the proof of the
theorem is complete. K

3. SOME APPLICATIONS

As we saw in Section 1, Wilf 's exponential formula for exponential
families is a special case of our theorem. We therefore feel freed from the
usual obligation to demonstrate the existence of a multitude of interesting
applications for our method, since Chapter 3 of [W1] provides an
excellent such collection with respect to Wilf 's formula and, hence, mutatis
mutandis, also for our result. Instead, we concentrate here on three topics
of somewhat algebraic flavor, namely (i) the connection between group
actions and finite-index subgroups, (ii) equations in one variable in sym-
metric semigroups, and (iii) cyclic sets.

1. Group Actions and Subgroups of Finite Index

Let G be a group, 7�G a normal subset with 1 � 7, and S�N a set of
positive integers. For a set 0 we denote by HomS

7(G, S(0)) the set of all
G-actions { on 0 with the following two properties:

(i) { induces a fixed-point-free action of (the elements of ) 7 on 0.

(ii) The lengths of the orbits into which 0 decomposes under { are
contained in the set S.

The elements of HomS
7(G, S(0)) will be called (7, S )-admissible G-actions

on 0. A triple (G, 7, S ) is termed admissible if h(n)=h(G, 7, S )(n) :=
*HomS

7(G, Sn)<� for all n�0. If, for instance, the group G is finitely
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generated or of finite Pru� fer rank, then the triple (G, 7, S ) is admissible
for each normal subset 7�G"[1] and every set S of positive integers.
A subgroup 1 of index n in G induces a G-action by left multiplication
on the n-set G�1 of left coset which, after suitable renaming, becomes a
G-action on [1, ..., n] with the property that stab (1)=1. Thus we have an
injective mapping from the set of all subgroups of index n in G into
Hom(G, Sn), and if n=[G : 1] # S and 1 is such that 1 & 7=< then the
image of 1 will be contained in the subset HomS

7(G, Sn). Hence,
admissibility of (G, 7, S ) implies that the number

s7
G(n) :=*[1 : 1�G, [G : 1]=n, 1 & 7=<]

is finite for all n # S.
Let (G, 7, S ) be an admissible triple. For a finite set 0 put F(0)=

F(G, 7, S )(0) :=HomS
7 (G, S(0)). With the obvious definition of induced

maps F is a functor on Ens and the disjoint sum of G-actions defines a
natural transformation ' : F_F � F b _* . It is clear that F{< and that the
pair (F, ') satisfies (D1). By definition we have for a finite set 0 that

F'(0)={set of all transitive 7-free G-actions on 0,
<,

*0 # S,
otherwise,

and the set F (k)
' (0) consists of all those (7, S )-admissible G-actions on 0

which have exactly k orbits. This implies in particular that the pair (F, ')
also satisfies (D2); hence, F is decomposable and ' is a decomposition
of F. Suppose that n # S. The stabilizer of the letter 1 in Sn acts freely by
conjugation on F'([1, ..., n]), decomposing this set into orbits {� in 1�1
correspondence with the subgroups of index n in G avoiding 7 via
{� [ stab{(1). It follows that

.'
F (n)=*F'([1, ..., n])={(n&1)! s7

G(n),
0,

n # S,
otherwise,

and, hence,

8(Z)=8(G, 7, S )(Z)= :
n # S

s7
G(n)
n

Zn.

Denoting by h(n, T )=h(G, 7, S)(n, T) the number of those (7, S )-admissible
G-actions on an n-set whose number of orbits is in a given set T�Z+ , our
theorem yields the following.
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Proposition 1. Let (G, 7, S ) be an admissible triple and T�Z+ a set
of nonnegative integers. Then we have

:
n�0

h(n, T ) Zn�n!=eT \ :
n # S

s7
G(n)
n

Zn+ . (3.1)

The special case

:
�

n=0

*Hom7 (G, Sn) Zn�n!=exp \ :
�

n=1

s7
G(n)
n

Zn+ (3.2)

of (3.1), where S=N and T=Z+ appears to cover every result in the
literature relating subgroup numbers to the enumeration of permutation
representations or vice versa. Here Hom7 (G, Sn)=HomN

7 (G, Sn) denotes
the set of 7-free G-actions on [1, ..., n]. For example, putting in addition
7=< in (3.2) yields Wohlfahrt's result connecting the number sG(n)=
s<

G (n) of all subgroups of index n in G with the enumeration of all
G-actions on an n-set; cf. [Wo]. Wohlfahrt's formula in turn contains in
particular Hall's recursion formula [H, Theorem 5.2] for the number of
subgroups of index n in a finitely generated free group or Dey's corre-
sponding formula [D, Theorem 6.10] for a free product G. If we take G to
be a finite group of order *G=m then we find from Wohlfahrt's result
that

:
�

n=0

*Hom(G, Sn) Zn�n!=exp \ :
d | m

sG(d )
d

Zd+ . (3.3)

This formula, which exhibits the exponential generating function of the
sequence h(n)=*Hom(G, Sn) for a finite group G as a rather simple entire
function, was a starting point in [M3] for the asymptotic enumeration of
finite group actions; cf. [M3, Theorem 5]. Remarks concerning the history
of the latter problem can be found in [W2] and the introduction of [M3].
For G=Cm a cyclic group formula (3.3) was already proved in [CHS]. If
we take G to be a finitely generated virtually free group and 7=tor G"[1]
as the set of torsion elements in G apart from the identity then after sub-
stituting Z=Z� 1�mG in (3.2), taking log and differentiating we recover the
identity [M1, (3)] relating the number of free subgroups in G of given
finite index to the enumeration of torsion-free G-actions, i.e., G-actions
which are free when restricted to finite subgroups (mG denotes the least
common multiple of the orders of the finite subgroups in G). This relation
in turn was the starting point for a detailed analysis of the growth behavior
and the asymptotics of the number of free subgroups of given finite index
in a virtually free group G; cf. [M1, M2].
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We conclude our discussion of Proposition 1 with the following two
remarks:

(i) When studying the arithmetic of finite group actions it is some-
times necessary to allow restrictions on the number and size of orbits.
Applying (3.1) with 7=< and S, T arbitrary to a finite group G of order
*G=m we obtain the following refinement of (3.3):

The exponential generating function of the number h(n, T )=
h(G, S )(n, T ) of G-actions on an n-set with orbits lengths in S and
total number of orbits in T is given by

:
n�0

h(n, T ) Zn�n!=eT \ :

d # S
d | m

sG(d )
d

Zd+ , m=*G. (3.4)

(ii) An equivalent way of expressing Proposition 1 is as follows:

Let (G, 7, S ) be an admissible triple. Then the number h(n, k)
of (7, S )-admissible G-actions on an n-set with exactly k orbits
can be expressed in terms of subgroups numbers as

h(n, k)=
n!
k!

:

nj # S
n1+ } } } +nk=n

s7
G(n1) } } } s7

G(nk)
n1 } } } nk

(n, k�0). (3.5)

As an illustration let us calculate the number N of all fixed-point-free
SL2(Z)-actions on a 10-set with exactly four orbits. We have G=SL2(Z),
7=<, n=10, k=4, and we can take S=[2, 3, 4]. We need to know
the subgroup numbers sG(n) for n�4. Using the presentation G$
(A, B | A4=B6=1, A2=B3) one finds that

*Hom(G, S1)= 1

*Hom(G, S2)= 2

*Hom(G, S3)=12

*Hom(G, S4)=96

(only the last case requires a moment's thought). Plugging this information
into formula (3.2) with 7=< and taking the log gives

:
�

n=1

sG(n)
n

Zn= :
�

+=1

(&1)+&1 1
+

(Z+Z2+2Z3+4Z4+ } } } )+,
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from which we read off that sG(1)=sG(2)=1, sG(3)=4, and sG(4)=9.
Using these values in (3.5) gives

N=h(SL2( Z ), <, [2, 3, 4])(10, 4)=573300.

2. The Equation X:=X; in Symmetric Semigroups

For a set 0 denote by T(0) the symmetric semigroup on 0 and put
T([1, ..., n])=: Tn . In their paper [HS] Harris and Schoenfeld study the
number Un of idempotent elements, i.e. the solutions of the equation
X2=X in Tn . They find the exponential generating function

:
n�0

Un Zn�n!=exp(ZeZ), (3.6)

from which they derive, among other things, some divisibility properties for
the Un and an asymptotic formula. In his survey [S] on generating func-
tions Stanley after rederiving (3.6) poses the problem to find the number
s(n) of solutions in Tn of the general equation

X:=X;, 0�:<;, (3.7)

in one variable. To our knowledge, this function s(n) was first determined
by Goulden and Jackson; cf. [GJ, Section 3.3.15, Ex. 3.3.31]. Using our
functorial approach we shall derive a refined version of their result.

Given a finite set 0 and a map f : 0 � 0, 0 decomposes into nonempty,
f-invariant subsets 0j , 0=01_* } } } _* 0k , such that each 0j is indecom-
posable, i.e., 0j itself is not the union of two disjoint nonempty f-invariant
subsets. This decomposition of 0 is uniquely determined by these
requirements and is nothing but the partition of 0 given by vertex sets of
the connected components of f viewed as a directed graph on 0. The
equivalence relation inducing this decomposition of 0 is given by

|1 t|2 :� there exist integers k, l�0 such that f k(|1)= f l(|2).

We call 01 , ..., 0k the components of f, the numbers *01 , ..., *0k are the
decomposition numbers and k is the decomposition length of f. Given a set
S�N of positive integers, a map f : 0 � 0 is termed S-admissible if the
decomposition numbers of f are in S. For integers : and ;, 0�:<;, and
a set S�N introduce a functor F : Ens � Ens with

F(0)=F(:, ;, S)(0) :=set of S-admissible solutions of (3.7) in T(0)
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and obvious definition of induced maps. The disjoint sum of maps defines
a natural transformation ' : F_F � F b _* and it is immediately verified
that F{< and that the pair (F, ') satisfies (D1). By definition

F'(0)={set of connected solutions of (3.7) in T(0),
<,

*0 # S,
otherwise,

and F (k)
' (0) is the set of those S-admissible solutions of Eq. (3.7) in T(0)

which have decomposition length exactly k; in particular the pair (F, ')
satisfies (D2). Denoting by s(n, S, T )=s:, ;(n, S, T ) the number of those
solutions of Eq. (3.7) in Tn whose decomposition length is in a given set
T�Z+ and whose decomposition numbers lie in the set S, and by
c(n)=c:, ;(n) the number of connected solutions of (3.7) in Tn , our
theorem yields

:
n�0

s(n, S, T) Zn�n!=eT \ :
n # S

c(n) Zn�n!+ . (3.8)

It remains to evaluate the sum �n # S c(n) Zn�n!. To this end we first describe
the graph-theoretic structure of a connected solution f : [1, ..., n] � [1, ..., n],
n�1, of (3.7):

f consists of an oriented cycle c of length dividing ;&: with
( pairwise disjoint) trees of height at most : ( possibly 0) grow-
ing out of the vertices of c.

To see this we apply f to an arbitrary point a=a0 # [1, ..., n] until we hit
(for the first time) a point already produced

a=a0

a1 a0=a, a1= f (a0), a2= f (a1)= f 2(a0), ...,

a2 as= f s(a0), f (as)=ai (0�i�s) and aj{ak for
b

ai 0� j, k�s and j{k.
bc

as v

Since f is a solution of (3.7) the length of the cycle c must divide ;&:; for
the same reason also i�:, for otherwise we would have f :(a)=a: { f ;(a).
Hence, a reaches the cycle c after at most : (possibly 0) steps. In particular,
since n>0, there exists such a cycle c, and taking into account all points
in [1, ..., n] which eventually run into c, we obtain a graph of the form
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described above. Since f is indecomposable the complement of this graph
in f is empty; i.e., we have described the graph of f. Conversely, every map
f : [1, ..., n] � [1, ..., n] of the structure described clearly is an indecom-
posable solution of Eq. (3.7). Using this description we now determine the
function c(n).

We have

c(n)= :
+ | ;&: \

n
++ (+&1)! :

nj�0
n1+ } } } +n+=n&+ \

n&+
n1 , ..., n++ T:(n1) } } } T:(n+), n�1,

(3.9)

where T:(n) denotes the number of labeled trees on n+1 vertices and of
height at most : growing out of a given root.

Proof. Suppose we are given (i) a number + | ;&:, (ii) a +-cycle c in
Sn , (iii) a partition n&+=n1+ } } } +n+ of n&+ into summands nj�0,
and (iv) a partition of the remaining n&+ points of [1, ..., n] outside c into
parts of length n1 , n2 , ..., n+ . The nj points above the j th cycle vertex vj ,
together with vj , can be organized into a tree at height of most : growing
out of vj in exactly T:(nj) different ways; hence, there are a total of

T:(n1) T:(n2) } } } T:(n+)

possible ways to complete the given situation into a connected solution of
(3.7). This number does not depend on the actual distribution of the n&+
points outside c onto the vertices of c but only upon the partition
n&+=n1+ } } } +n+ of n&+. Hence, if we start from +, a given +-cycle c
and a number-theoretic partition n&+=n1+ } } } +n+ , there are precisely

\ n&+
n1 , ..., n++ T:(n1) } } } T:(n+)

possible ways of correctly completing the situation. Summing this number
over the (ordered) partitions of n&+ into + parts we find that there are
exactly

:

nj�0
n1+ } } } +n+=n&+ \

n&+
n1 , ..., n++ T:(n1) } } } T:(n+)

indecomposable solutions of (3.7) which contain the +-cycle c. Again, this
number does not depend on the cycle c but only upon its cardinality +.
Hence, there are precisely

\n
++ (+&1)! :

nj�0
n1+ } } } +n+=n&+ \

n&+
n1 , ..., n++ T:(n1) } } } T:(n+)
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indecomposable solutions of (3.7) containing a +-cycle and summing this
last term over the divisors + of ;&: we obtain the number c(n). K

It remains to determine the tree numbers T:(n).
We have

T:(n)= :

nj�0
n1+ } } } +n:=n \

n
n1 , ..., n:+ nn2

1 nn3
2 } } } nn:

:&1 (n�0, :�1). (3.10)

Proof. We determine the number th(n) of such trees which are precisely
of height h. Classifying the n nonroots by height and counting yields a par-
tition n=n1+ } } } +nh with nj�1. Given such a partition of n and a
corresponding set-theoretic partition of the nonroots there are precisely

nn2
1 nn3

2 } } } nnh
h&1

ways of drawing the edges from each level downward to the next lower
level. As this number does not depend on the set-theoretic partition of the
nonroots, there are exactly

\ n
n1 , ..., nh+ nn2

1 nn3
2 } } } nnh

h&1

such trees of height h realizing the same partition n=n1+ } } } +nh . Hence,

th(n)= :
n1+ } } } +nh=n \

n
n1 , ..., nh+ nn2

1 nn3
2 } } } nnh

h&1

and

T:(n)= :
:

h=0

th(n)

= :
:

h=0

:

nj�1
n1+ } } } +nh=n \

n
n1 , ..., nh+ nn2

1 nn3
2 } } } nnh

h&1

=� \ n
n1 , ..., n:+ nn2

1 nn3
2 } } } nn:

:&1 ,

where the last sum extends over those :-tuples (n1 , ..., n:) of nonnegative
integers with the property that 7nj=n and nj=0 O nj+1=0. Formula
(3.10) follows now since the extra summands correspond to tuples
(n1 , ..., n:) such that nj=0, nj+1 {0 for some j and therefore vanish. K
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Define a sequence of functions [2:(Z)]�
:=0 recursively by

20(Z)=Z
(3.11)

2:(Z)=Z exp(2:&1(Z)), :�1.

An immediate induction on s shows that for fixed :�1 and every
s=1, ..., : we have that

Z&12:(Z)= :
�

n1=0

} } } :
�

ns=0

nn2
1 nn3

2 } } } nns
s&1

n1! n2! } } } ns!
Zn1+ } } } +ns&1(2:&s(Z))ns.

Using this for fixed :�1 and s=: yields the identity

Z&12:(Z)= :
�

n1=0

} } } :
�

n:=0

nn2
1 nn3

2 } } } nn:
:&1

n1! n2! } } } n:!
Zn1+ } } } +n:, :�1, (3.12)

which in conjunction with (3.10) shows that for fixed : the exponential
generating function of T:(n) is given by

:
n�0

T:(n) Zn�n!=Z&12:(Z), :�0. (3.13)

Now, by (3.9) and (3.13)

:
n # S

c(n) Zn�n!= :
n # S

:
+ | ;&: \

n
++ (+&1)!

_ :

nj�0
n1+ } } } +n+=n&+ \

n&+
n1 , ..., n++T:(n1) } } } T:(n+) Zn�n!

= :
n # S

:
+ | ;&:

1
+

Z+ :

nj�0
n1+ } } } +n+=n&+

T:(n1) } } } T:(n+)
n1! } } } n+!

Zn&+

= :
+ | ;&:

1
+

Z+ :
n # S

(Zn&+, Z&+(2:(Z))+) Zn&+

= :
+ | ;&:

1
+

:
n # S

(Zn, (2:(Z))+) Zn

= :
+ | ;&:

1
+

((2:(Z))+)S .

Summarizing we have established the following.
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Proposition 2. Given integers :, ; with 0�:<; and sets T�Z+ and
S�N, the number s(n, S, T)=s:, ;(n, S, T ) of solutions of the equation
X:=X; in Tn with decomposition length in T and decomposition numbers in
S has the generating function

:
n�0

s(n, S, T ) Zn�n!=eT \ :
+ | ;&:

1
+

((2:(Z))+)S+ , (3.14)

where 2:(Z) is defined by (3.11).

For T=Z+ and S=N this result specializes to the formula of Goulden
and Jackson, but the right-hand side of (3.14) is readily calculated for every
choice of S and T. As an illustration let us consider the case :=1, ;=2
of idempotents in Tn somewhat closer. Putting s1, 2(n, S, T)=Un(S, T) we
find from (3.14) that

:
n�0

Un(S, T ) Zn�n!=eT (ZeS&1(Z)). (3.15)

Taking T=2Z+ and S=2N&1 the right-hand side of (3.15) becomes

cosh(Z cosh(Z))=1+
1
2!

Z2+
13
4!

Z4+
181
6!

Z6+
3865

8!
Z8+ } } } ,

while choosing T=2Z++1 and S=2N gives

sinh(Z sinh(Z))=
2
2!

Z2+
4
4!

Z4+
126
6!

Z6+
3368

8!
Z8+

95770
10!

Z10+ } } } .

As a final example let us take T=2Z+ and

S=S0=[n # N : n#1 mod 3 6 n�4].

By (3.15) the exponential generating function of the number Un(S0 , 2Z+)
of idempotent elements in Tn with an even number of components all of
whose lengths are congruent to 1 mod 3 and �4 is given by

:
n�0

Un(S0 , 2Z+) Zn�n!

=cosh \ :
�

}=1

1
(3})!

Z3}+1+
=1+

560
8!

Z8+
9240
11!

Z11+
124124

14!
Z14+

672672000
16!

Z16+ } } } .
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3. Cyclic Sets

Let A be an almost finite cyclic set, i.e., a set equipped with an action
of the infinite cyclic group 1 such that (i) each orbit is finite and (ii) each
subgroup of finite index in 1 has at most finitely many fixed points on A.
Denote by 1n the subgroup of index n in 1 and put

fn(A) :=*fixed points of 1n on A.

On the other hand, consider, for every m�0, the m th symmetric power

Sm(A)={s # ZA
+ : :

a

s(a)=m=
of A. With the induced 1-action S m(A) is, again, an almost finite cyclic set,
in particular

f1(S m(A))=*[s # S m(A) : s constant on 1-orbits]

is finite for every m.

Proposition 3. For an almost finite cyclic set A the sequences fn(A) and
f1(S m(A)) are related by

mf1(S m(A))= :
m

k=1

fk(A) f1(S m&k(A)), m�1. (3.16)

Proof. Fix a generator # of the infinite cyclic group 1. Given a
permutation _ # S(0) of the finite set 0 and a map f # A0 we call f
_-invariant, if

f (_(|))=# } f (|) for all | # 0.

Put

FA(0) :=[(_, f ) # S(0)_A0 : f _-invariant].

Clearly, FA( } ) is functorial and there is an obvious natural transformation
'A : FA_FA � FA b _* such that condition (D1) holds (the pair (FA , 'A)
also satisfies (D2) but we will not use this here). To determine the
cardinality of FA(0) consider that map : : FA(0) � S *0(A), given by
:(_, f )=sf , where sf (a) :=*f &1(a). If s # S *0(A) is not shift-invariant
then :&1(s)=<. Suppose, on the other hand, that s is constant on
1-orbits. There exist *0 !�>a s(a) ! functions f # A0 with sf=s, and, given
such a function f, a permutation _ # S(0) identifying the preimage f &1(a)
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with f &1(#a) for every a # A can be chosen in precisely >a s(a) ! many
ways. Therefore, we have in this case

*:&1(s)= :

sf =s
f # A0

*[_ # S(0) : f (_(|))=#f (|) for all | # 0]

=
*0 !

>a s(a) !
`
a

s(a) !=*0 !.

It follows that *FA(0)=*0 ! } f1(S *0(A)), in particular, FA(0) is finite
for finite 0; that is, FA is a functor on Ens. Furthermore, we have for
0{<

(FA)' (0)=[(_, f ) # FA(0) : _ a full cycle]

and for a given full cycle _ on 0 the _-invariant functions f # A0

correspond in a 1�1 fashion to the fixed points of the group 1*0 on A.
Hence, *(FA)' (0)=(*0&1)! } f*0(A) and (3.16) follows from (1.6). K

In terms of the generating functions

F(Z) := :
�

n=0

fn+1(A) Zn, S(Z)=SA(Z) := :
�

m=0

f1(S m(A)) Zm,

Eq. (3.16) can be expressed in the form

d
dZ

(log S(Z))=F(Z),

or, equivalently,

S(Z)=exp \|
Z

0
F(`) d`+ .

Now note that if A is the disjoint union of two cyclic sets A1 and A2 , then
SA(Z)=SA1

(Z) } SA2
(Z), since Sm(A)=�m

i=0 Si (A1)_Sm&i (A2). More
generally, if we decompose A into its 1-orbits, A=�4 �

m=1 M(A, m) } 1�1m ,
with M(A, m) the number of 1-orbits of type 1�1m , then we have

SA(Z)= `
�

m=1

S1�1m(Z)M(A, m).
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Obviously, S1�1m(Z)=1�(1&Zm) and �d | m dM(A, d)= fm(A); i.e.,
M(A, m)=(1�m) �d | m +(d ) fm�d (A) and, hence, we obtain

`
�

m=1
\ 1

1&Zm+
(1�m) �d | m +(d ) fm�d(A)

=exp \|
Z

0
F(`) d`+ , (3.17)

an identity, which could also have been proved by first establishing it
directly for a transitive 1-set A of type, say, 1�1m , in which case both sides
coincide with 1�(1&Zm), and then using the multiplicativity of both sides
to establish the general case of an arbitrary almost finite cyclic set.

In the special case where A=P(F ) is the set of all periodic functions
from Z into a finite set F of cardinality q with the infinite cyclic group
1 acting on A by translations, we have fn(A)=qn for all n # N, since a
map Z � F of period n is completely determined by its values on, say,
[0, 1, . . ., n&1], which in turn can be chosen freely in F. Hence,
f1(S m(A))=qm is the unique solution of (3.16); i.e., we have in this case

S(Z)= :
�

m=0

f1(Sm(A)) Zm=
1

1&qZ
,

and (3.17) yields immediately the so-called cyclotomic identity,

`
�

m=1
\ 1

1&Zm+
(1�m) �d | m +(d ) qm�d

=
1

1&qZ
. (3.18)

Of course, as is well known, this identity can also be proved quite easily
by taking logarithmic derivatives of both sides, and the ``combinatorial''
proof of this identity, suggested by our approach, coincides essentially with
the proof given in [VW] (in that both proofs give proper combinatorial
interpretations of the terms occurring in the logarithmic derivatives, only).
This is to be distinguished from the (much more demanding) combinatorial
proof by Metropolis and Rota (cf. [MR]; see also [DS 1-5]) which is
based on a combinatorial interpretation of the terms occurring in the
identity itself.

4. TOPOS-LIKE CATEGORIES

The example leading to Proposition 3 can be generalized in different
ways. A convenient framework for many such generalizations is the fol-
lowing one.

Let C denote a category and assume that��as in the case where C is the
category of cyclic sets or, more generally, the category of G-sets for a given
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group G��we have a forgetful functor V : C � Ens
tt

from C into the category
of (all) sets (and arbitrary maps between sets), such that

(T1) for any bijection : : 01 [02 between two finite sets and any
object C1 in C with V(C1)=01 , there exists a unique pair (C2 , #), consisting
of an object C2=C(C1 , :) in C with V(C2)=02 and an isomorphism
#=#(C1 , :) # Iso C (C1 , C2) with V(#)=:,

that is, C allows ``transport of structure'' relative to V and bijections
between finite sets in Ens

tt

. By uniqueness, we have C(C1 , id01
)=C1 and

C(C2 , ;)=C(C1 , ; b :) as well as #(C1 , ; b :)=#(C2 , ;) b #(C1 , :) for every
bijection ; : 02[03 , where C2=C(C1 , :). In particular we find that
C(C2 , :&1)=C1 , whence it follows that the map C1 [ C(C1 , :) defines a
bijection between the class V&1(01) of objects in C with V(C1)=01 and
the correspondingly defined class V&1(02), which we denote by V&1(:)
and which satisfies V&1(id01

)=idV&1(01) as well as V&1(; b :)=V &1(;) b
V&1(:) for any bijection ; : 02[03 as above. Hence, assuming that the
cardinal numbers cV (m)=c(C , V)(m) :=*V&1([1, ..., m]) satisfy

(T2) cV (m)<� for all m�0 and cV (m1)>0 for some m1�0,

we obtain a functor <{V&1: Ens � Ens, 0 [ V &1(0) and : [ V&1(:).
Axiom (T2) holds for the category of G-sets at least if G is finitely
generated or of finite Pru� fer rank. Furthermore, let us assume that

(T3) C contains and V commutes with coproducts C1 ? C2 of two
objects C1 and C2 .

Again, this holds for the category of G-sets for every group G. Using (T3),
together with (T1), we get a unique natural transformation
'='V='(C , V) : V&1_V&1 � V&1_* by associating, for any two finite
sets 01 and 02 , to each pair (C1 , C2) # V&1(01)_V&1(02) the coproduct
C1 ? C2 in C, or, more precisely, the unique object C(C1 ? C2 , :) in
V&1(01 _* 02) (which we will identity with C1 ? C2), defined by applying
``transport of structure'' to the coproduct C1 ? C2 relative to the canonical
isomorphism : : V(C1 ? C2)[V(C1)_* V(C2)=01_* 02 whose existence is
guaranteed by our assumption that V transforms coproducts in C into
coproducts in Ens

tt

(as ' shows yet no sign of injectivity, V&1_V&1 and
V&1 b _* have for the moment to be interpreted as functors Ens2 � Ens

tt

).
Obviously, for any three (pairwise disjoint) sets 01 , 02 , and 03 we have

' (01_* 02 , 03) b ('(01 , 02) _idV&1(03))=' (01 , 02_* 03) b (idV&1(01)_' (02 , 03)) (4.1)

and

'(02 , 01) b switchV&1(01)_V&1(02)='(01 , 02). (4.2)
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Finally, let us make the following further assumption which, again, is
satisfied for C the category of G-sets for an arbitrary group G.

(T4) C contains and V commutes with pullbacks and for every three
objects C1 , C2 , and C in C and every morphism # : C � C1 ? C2 the object
C is the coproduct of the pullbacks C$1 and C$2 of C and C1 or C2 , respec-
tively, over C1 ? C2 :

C$1 C C$2
#

C1 ww�
@1

C1 ? C2�ww
@2

C2

Note that this special property (T4) of a category is also discussed in the
theory of toposes (or, rather, topoi); cf. [G]. A category C together with

a forgetful functor V : C � Ens
tt

will be called a topos-like category, if the
pair (C, V ) satisfies the axioms (T1)�(T4).

It follows from these assumptions that for any finite set 0, any two parti-
tions 0=01 _* 02=0$1_* 0$2 of 0 into a pair of disjoint subsets 01 , 02 and
0$1 , 0$2 , and any four objects C1 , C2 , C$1 , C$2 in C with V(Ci)=0i ,
V(C$j)=0$j and C1 ? C2=C$1 ? C$2=: C we have the diagram

C11 ww� C$1 �ww C21

C1 C C2

C12 ww�C$2 �ww C22

of pullbacks and coproducts which, under V, transforms into the corre-
sponding diagram

01 & 0$1 ww� 0$1 �ww 02 & 0$1

01 0 02

01 & 0$2 ww� 0$2 �ww 02 & 0$2

and therefore guarantees in particular (i) that '(01 , 02) is injective (choose
0$1=01 and 0$2=02) and (ii) that ' is a weak decomposition of V&1 in
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the sense of Section 1 (one part of (1.2) follows from the remarks above,
for the other inclusion use Eqs. (4.1) and (4.2)). For a nonempty finite set
0 the set (V&1)' (0) consists precisely of those objects C in C with
V(C)=0 which are indecomposable; i.e., C=C1 ? C2 implies C1 $C or
C2 $C. More generally, (V&1)(k)

' (0) consists of those objects C with
V(C)=0 which are coproducts of k indecomposable objects and the above
observation also shows that such a decomposition is uniquely determined
up to order and isomorphism by C; in particular the pair (V&1, 'V) also
satisfies (D2); i.e., the functor V&1 is decomposable and 'V is a decomposi-
tion of V&1. Hence, denoting by c'

V (n)=c'
(C, V )(n) :=*(V&1)' ([1, ..., n])

the number of these ``simple'' objects over the n-set [1, ..., n] and putting
c'

V (n, k)=c'
(C, V )(n, k) :=*(V&1) (k)

' ([1, ..., n]) our theorem yields the
following.

Proposition 4. For a topos-like category C with forgetful functor V we
have

c'
V (n, k)= :

n

+=1
\n&1

+&1+ c'
V (+) c'

V (n&+, k&1) (n, k�1) (4.3)

and

cV (m)=:
k

c'
V (m, k) (m�0). (4.4)

Note that the examples leading to Propositions 1 and 2 correspond to
special choices of the category C.

In the first case C has to be chosen as the full subcategory of the
category of G-sets, consisting of those G-sets 0 on which each element in
7 acts without fixed points and whose orbit lengths are in the set S, and V,
of course, as the forgetful functor into the category of sets. Obviously,
V&1(0) is finite for each finite set 0 if and only if the triple (G, 7, S) is
admissible.

In the second case C has to be chosen as the category, whose objects are
maps f : 0 � 0 of an arbitrary set 0 into itself with the properties that
(i) f := f ; and (ii) the component lengths of f are in S and whose
morphisms # # MorC ( f1 : 01 � 01 , f2 : 02 � 02) are maps # : 01 � 02

such that # b f1= f2 b #. The functor V : C � Ens
tt

is, of course, given by
V( f )=0 and V(#)=#.

Now consider objects A in C such that for every object C in C with V(C)
finite there exist only finitely many C-morphisms from C to A. With each
such distinguished object A in C we associate a functor FA : Ens � Ens,
given by

FA(0) :=[(C, #) # |C|_Mor(C) : V(C)=0, # # MorC (C, A)].
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The bijection FA(:) induced by a morphism : : 01[02 in Ens is, of course,
defined via ``transport of structure'' as FA(:)(C1 , #1)=(C2 , #2), where
C2 :=C(C1 , :) and #2 :=#1 b #(C1 , :)&1. Then

FA(01)_FA(02) % ((C1 , #1), (C2 , #2)) [ (C1 ? C2 , #1 ? #2) # F1(01_* 02)

defines a decomposition 'A : FA _FA � FA b _* of FA ; indeed the pair
(FA , 'A) is of the form (V&1, 'V) for the category C�A of objects in C over A
and the forgetful functor VA : C�A � Ens

tt

defined by combining V: C � Ens
tt

with the canonical forgetful functor C�A � C. The example leading to
Proposition 3 fits into this setup: For C the category of cyclic sets, or, more
generally, the category of G-sets, G an admissible group (i.e., Hom(G, Sn)
finite for all n), the almost finite sets are distinguished objects in the sense
above, and for an almost finite cyclic set A the pair (FA , 'A) is naturally
isomorphic to the corresponding data constructed in Section 3. Indeed, all
instances of a relation between two generating functions of the type
described in the theorem we have seen so far appear to be interpretable in
this framework which, of course, invites many further applications.
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