

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 1022-1031

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

A q-analog of the exponential formula $\stackrel{\ensuremath{\sim}}{\sim}$

Ira M. Gessel

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

A *q*-analog of functional composition for Eulerian generating functions is introduced and applied to the enumeration of permutations by inversions and distribution of left-right maxima. © 1982 Published by Elsevier B.V.

1. Introduction

If $f(x) = \sum_{n=1}^{\infty} f_n(x^n/n!)$ is the exponential generating function for a class of 'labeled objects', then

$$g(x) = e^{f(x)}$$

will be (under appropriate conditions) the exponential generating function for sets of these objects. For example, if $f(x) = \sum_{n=1}^{\infty} (n-1)! x^n / n!$ is the exponential generating function for cyclic permutations, then $g(x) = \sum_{n=0}^{\infty} n! x^n / n!$ is the exponential generating function for all permutations; if f(x) is the exponential generating function for connected labeled graphs, then

$$g(x) = \sum_{n=0}^{\infty} 2^{\binom{n}{2}} \frac{x^n}{n!}$$

is the exponential generating function for all labeled graphs. For various approaches to the exponential formula, see [3,4,10,11].

It is well known that many properties of exponential generating functions have analogs for *Eulerian generating functions* of the form

$$\sum_{n=0}^{\infty} f_n \frac{x^n}{n!_q}$$

where $n!_q = 1 \cdot (1+q) \cdots (1+q+\cdots+q^{n-1})$, and f_n is a polynomial in q. Note that $n!_q$ reduces to n! for q = 1. Eulerian generating functions arise in several combinatorial applications, such as finite vector spaces [6] and partitions [1], but here we shall be concerned primarily with their use in counting permutations by inversions. (See [5,9].)

[☆] Research partially supported by ONR Contract #N00014-76-C-0366 DOI of original article: 10.1016/0012-365X(82)90189-3

The original article was published in Discrete Mathematics 40 (1982) 69-80

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 1982 Published by Elsevier B.V. doi:10.1016/j.disc.2006.03.021

We introduce a *q*-analog of functional composition and show that *q*-exponentiation can be used to count permutations by inversions and 'basic components', which are related to left-right maxima. Combinatorial interpretations are obtained for Gould's *q*-Stirling numbers of the first kind [7] and the 'continuous *q*-Hermite polynomials' study by Askey and Ismail [2] and others. Finally, we count involutions by inversions, using a new property of a correspondence of Foata [4].

2. Notation

We define $(a; q)_n$ to be $\prod_{i=0}^{n-1} (1 - aq^i)$, with $(a; q)_0 = 1$. We often write $(a)_n$ for $(a; q)_n$. Thus

$$(q)_n = (1-q)(1-q^2)\cdots(1-q^n) = (1-q)^n n!_q$$
 and $(a)_{\infty} = \prod_{i=0}^{\infty} (1-aq^i).$

The q-binomial coefficient, which is a polynomial in q, is defined by:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{n!_q}{k!_q(n-k)!_q} = \frac{(q)_n}{(q)_k(q)_{n-k}}$$

We write n_q for $\begin{bmatrix}n\\1\end{bmatrix} = 1 + q + \cdots + q^{n-1}$ and **n** for the set $\{1, 2, \ldots, n\}$. All power series may be considered as formal, so that questions of convergence do not arise.

3. A q-analog of functional composition

The *q*-analog \mathcal{D} of the derivative is defined by

$$\mathscr{D}f(x) = \frac{f(x) - f(qx)}{(1 - q)x}$$

Thus $\mathcal{D}1 = 0$ and for n > 0,

$$\mathscr{D}\frac{x^n}{n!_q} = \frac{x^{n-1}}{(n-1)!_q}.$$

(Note that for $q = 1, \mathcal{D}$ reduces to the ordinary derivative.) We shall often write f' for $\mathcal{D}f$.

We now define a q-analog of the map $f \mapsto f^k/k!$ for exponential generating functions.

Definition 3.1. Suppose that f(0) = 0. Then for $k \ge 0$, $f^{[k]}$ is defined by $f^{[0]} = 1$ and for k > 0,

$$\mathscr{D}f^{[k]} = f' \cdot f^{[k-1]}, \quad \text{with } f^{[k]}(0) = 0.$$
 (3.1)

Formula (3.1) is equivalent to the following recursion: let

$$f^{[k]}(x) = \sum_{n=0}^{\infty} f_{n,k} \frac{x^n}{n!_q}.$$

Then

$$f_{n+1,k} = \sum_{j=0}^{\infty} \begin{bmatrix} n \\ j \end{bmatrix} f_{n-j+1,1} f_{j,k-1}.$$

It is clear that $f_{n,k} = 0$ for n < k.

As an example, take $f(x) = x^m / m!_q$. Then

$$\binom{x^m}{m!_q}^{[k]} = \begin{bmatrix} mk-1\\m-1 \end{bmatrix} \begin{bmatrix} m(k-1)-1\\m-1 \end{bmatrix} \cdots \begin{bmatrix} m-1\\m-1 \end{bmatrix} \frac{x^{mk}}{(mk)!_q}$$
$$= \frac{(mk)!_q}{(m!_q)^k \cdot 1 \cdot (1+q^m) \cdots (1+q^m+q^{2m}+\dots+q^{(k-1)m})} \frac{x^{mk}}{(mk)!_q}$$

Note that for m = 1 we have $x^{[k]} = x^k / k!_q$, and for q = 1, $(x^m / m!_q)^{[k]}$ reduces to

$$\frac{(mk)!}{m!^k k!} \frac{x^{mk}}{(mk)!}$$

Definition 3.2. Suppose that $g(x) = \sum_{n=0}^{\infty} g_n(x^n/n!_q)$ and f(0) = 0. Then the *q* – composition g[f] is defined to be

$$\sum_{n=0}^{\infty} g_n f^{[n]}.$$

Note that g[x] = g(x). The following is straightforward.

Proposition 3.3 (*The chain rule*). $\mathscr{D}g[f] = g'[f]f'$.

Unfortunately q-composition is neither associative nor distributive over multiplication, i.e., in general $(fg)[h] \neq f[h] \cdot g[h]$.

Now let $e(x) = \sum_{n=0}^{\infty} x^n / n!_q$ be the *q*-analog of the exponential function. Since e'(x) = e(x), we have $\mathcal{D}e[f] = e[f]f'$. Equating coefficients gives a recurrence for the coefficients of e[f] in terms of the coefficients of *f*:

Proposition 3.4. Let $f(x) = \sum_{n=1}^{\infty} f_n(x^n/n!_q)$ and let $g(x) = \sum_{n=0}^{\infty} g_n(x^n/n!_q) = e[f]$. Then $g_0 = 1$ and for $n \ge 0$,

$$g_{n+1} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} g_{n-k} f_{k+1}.$$

We can also express e[f] as an infinite product:

Proposition 3.5. Suppose f(0) = 0. Then

$$e[f] = \prod_{k=0}^{\infty} [1 - (1 - q)q^k x f'(q^k x)]^{-1}.$$
(3.2)

Proof. Let g = e[f]. Then g'(x) = f'(x)g(x), so

$$\frac{g(x) - g(qx)}{(1 - q)x} = f'(x)g(x)$$

and thus

$$g(x) = [1 - (1 - q)xf'(x)]^{-1}g(qx).$$
(3.3)

Iterating (3.3) yields (3.2). \Box

For f(x) = x, Proposition 3.5 yields the well-known infinite product

$$e(x) = e[x] = \prod_{k=0}^{\infty} [1 - (1 - q)q^k x]^{-1}.$$

Since $e[tf(x)] = \sum_{n=0}^{\infty} t^n f^{[n]}$, we have an alternative characterization of $f^{[n]}$ as the coefficient of t^n in

$$\prod_{k=0}^{\infty} [1 - (1 - q)q^k x f'(q^k x)t]^{-1}.$$

4. Permutations

By a *permutation* of a set *A* of positive integers we mean a linear arrangement $a_1a_2 \cdots a_n$ of the elements of *A*. The *length* of $a_1a_2 \cdots a_n$ is *n*. A permutation is *basic* if it begins with its greatest element. (By convention the 'empty permutation' of length zero is not basic.) We denote by S_n and B_n the sets of all permutations and of basic permutations of **n**. (Thus $|S_n| = n!$ for all *n* and $|B_n| = (n - 1)!$ for $n \ge 1$, with $|B_0| = 0$.) A *left-right maximum* of a permutation $a_1a_2 \cdots a_n$ is an a_j such that i < j implies $a_i < a_j$. For any nonempty permutation σ we write $L(\sigma)$ for the first element of σ . The following is straightforward.

Lemma 4.1. Suppose the permutation $\pi = a_1 a_2 \cdots a_n$ has the factorization $\pi = \beta_1 \beta_2 \cdots \beta_k$, where the β_i are nonempty permutations. Then the following are equivalent:

- (i) Each β_s is basic and $L(\beta_1) < L(\beta_2) < \cdots < L(\beta_k)$.
- (ii) $a_i = L(\beta_s)$ for some s if and only if a_i is a left-right maximum.

It follows from the lemma that every permutation π has a unique factorization $\beta_2\beta_2\cdots\beta_k$ satisfying (i) which we call the *basic decomposition* of π , and we call the β_i the *basic components* of π . We note that any set $\{\beta_1, \ldots, \beta_k\}$ of basic permutations with no elements in common can be ordered in exactly one way to form the basic decomposition of some permutation. Thus we have a bijection between permutations and sets of disjoint basic permutations.

We call a permutation *reduced* if it is in S_n for some $n \ge 0$. To any permutation $\pi = a_1 a_2 \cdots a_n$ we may associate a reduced permutation, $red(\pi)$, by replacing in π , for each i = 1, 2, ..., n, the *i*th smallest element of $\{a_1, a_2, ..., a_n\}$ by *i*. Thus red(7926) = 3412. The *content* of the permutation $\pi = a_1 a_2 \cdots a_n$ is $con(\pi) = \{a_1, a_2, ..., a_n\}$. We note that a permutation is determined by its reduction and its content.

A function ω defined on permutations (with values in some commutative algebra over the rationals) is *multiplicative* if for all permutations π :

(i) $\omega(\pi) = \omega(\operatorname{red}(\pi))$.

(ii) If $\beta_1 \beta_2 \cdots \beta_k$ is the basic decomposition of π , then

$$\omega(\pi) = \omega(\beta_1)\omega(\beta_2)\cdots\omega(\beta_k).$$

Thus a multiplicative function is determined by its values on reduced basic permutations, and these may be chosen arbitrarily. (We note that (ii) implies $\omega(\emptyset) = 1$.)

5. Inversions of permutations

If V is a subset of **n** we denote by $I_n(V)$ the number of pairs (v, w) with $v \in V$, $w \in \mathbf{n} - V$, and v > w.

Lemma 5.1. Let

$$Q(n,k) = \sum_{V} q^{I_n(V)}$$

where the sum is over all $V \subseteq \mathbf{n}$ with |V| = n - k. Then $Q(n, k) = \begin{bmatrix} n \\ k \end{bmatrix}$.

Proof. It is clear that Q(n, n) = Q(n, 0) = 1 for all $n \ge 0$. Then by considering the two cases $n \in V$ and $n \notin V$ we find the recurrence

$$Q(n,k) = q^{k}Q(n-1,k) + Q(n-1,k-1),$$

for 0 < k < n. Since $\begin{bmatrix} n \\ k \end{bmatrix}$ satisfies the same recurrence and boundary conditions, $Q(n, k) = \begin{bmatrix} n \\ k \end{bmatrix}$.

An *inversion* of the permutation $\pi = a_1 a_2 \cdots a_n$ is a pair (i, j) with i < j and $a_i > a_j$. We write $I(\pi)$ for the number of inversions of π . Note that $I(\pi) = I(\text{red}(\pi))$.

Theorem 5.2. Let ω be a multiplicative function on permutations. Let $g_n = \sum_{\pi \in S_n} \omega(\pi) q^{I(\pi)}$ and let $f_n = \sum_{\beta \in B_n} \omega(\beta) q^{I(\beta)}$. Then

$$\sum_{n=0}^{\infty} g_n \frac{x^n}{n!_q} = e \left[\sum_{n=1}^{\infty} f_n \frac{x^n}{n!_q} \right].$$

Proof. In view of Proposition 3.4, we need only prove

$$g_{n+1} = \sum_{k=0}^{n} {n \brack k} g_{n-k} f_{k+1}.$$
(5.1)

We shall prove (5.1) by showing that $\begin{bmatrix} n \\ k \end{bmatrix} g_{n-k} f_{k+1}$ counts those permutations counted by g_{n+1} whose last basic component has length k+1. Such a permutation may be factored as $\pi = \sigma\beta$ where σ is of length n-k, β is of length k+1, and the disjoint union of con (σ) and con(β) is $\mathbf{n} + \mathbf{1}$. The condition that β is the last basic component of π is equivalent to the condition that β is basic and con(β) contains n + 1. Thus to determine π we choose $V = \operatorname{con}(\sigma)$ as an arbitrary (n - k)-subset of \mathbf{n} and choose $\operatorname{red}(\sigma) \in S_{n-k}$ and $\operatorname{red}(\beta) \in B_{k+1}$. It is easily seen that $I(\pi) = I(\sigma) + I(\beta) + I_n(V)$. Thus the contribution to g_{n+1} of these π is

$$\sum_{V} \sum_{\sigma \in S_{n-k}} \sum_{\beta \in B_{k+1}} \omega(\sigma) \omega(\beta) q^{I(\sigma) + I(\beta) + I_n(V)}$$

= $\left[\sum_{V} q^{I_n(V)}\right] \left[\sum_{\sigma \in S_{n-k}} \omega(\sigma) q^{I(\sigma)}\right] \left[\sum_{\beta \in B_{k+1}} \omega(\beta) q^{I(\beta)}\right]$
= $\begin{bmatrix}n\\k\end{bmatrix} g_{n-k} f_{k+1}$, by Lemma 5.1. \Box

Corollary 5.3. Let t_1, t_2, \ldots be arbitrary, and set $T(x) = \sum_{n=0}^{\infty} t_{n+1} x^n$. Define the multiplicative function ω by

$$\omega(\pi) = t_1^{b_1} t_2^{b_2} \cdots$$

where π has b_i basic components of length *i*. Let

$$g_n = \sum_{\pi \in S_n} \omega(\pi) q^{I(\pi)}$$

and let

$$g(x) = \sum_{n=0}^{\infty} g_n \frac{x^n}{n!_q}$$

Then

$$g(x) = \prod_{k=0}^{\infty} [1 - (1 - q)q^k x T(q^{k+1}x)]^{-1}.$$
(5.2)

Proof. Let $f_n = \sum_{\beta \in B_n} \omega(\beta) q^{I(\beta)} = t_n \sum_{\beta \in B_n} q^{I(\beta)}$. Every β in B_n is obtained by inserting *n* at the beginning of an element of S_{n-1} ; thus,

$$\sum_{\beta \in B_n} q^{I(\beta)} = q^{n-1} \sum_{\pi \in S_{n-1}} q^{I(\pi)} = q^{n-1} (n-1)!_q,$$

by a well-known result of Rodrigues [8], easily proved by induction. Thus,

$$f(x) = \sum_{n=1}^{\infty} f_n \frac{x^n}{n!_q} = \sum_{n=1}^{\infty} t_n q^{n-1} (n-1)!_q \frac{x^n}{n!_q},$$

so

$$f'(x) = \sum_{n=0}^{\infty} t_{n+1} q^n x^x = T(qx).$$

Then (5.2) follows from Theorem 5.2 and Proposition 3.5. \Box

6. Examples

We first look at two trivial cases of Theorem 5.2. If we take $t_i = 1$ for all *i*, then $T(x) = (1 - x)^{-1}$ and

$$g(x) = \prod_{k=0}^{\infty} [1 - (1 - q)q^k x (1 - q^{k+1}x)^{-1}]^{-1}$$
$$= \prod_{k=0}^{\infty} \frac{1 - q^{k+1}x}{1 - q^k x}$$
$$= \frac{1}{1 - x} = \sum_{n=0}^{\infty} n! q \frac{x^n}{n! q}.$$

If we take $t_1 = 1$ and $t_i = 0$ for i > 1, then T(x) = 1 and

$$g(x) = \prod_{k=0}^{\infty} [1 - (1 - q)q^k x]^{-1} = \sum_{n=0}^{\infty} \frac{x^n}{n!_q}.$$

A more interesting example is that in which $t_i = t$ for all *i*. In the case q = 1 we have

$$g(x) = \exp\left(t\sum_{n=1}^{\infty} \frac{x^n}{n}\right) = (1-x)^{-t}$$
$$= \sum_{n,k=0}^{\infty} c(n,k)t^k \frac{x^n}{n!}$$

where c(n, k) = |s(n, k)| is the unsigned Stirling number of the first kind. For general *q*, we have $T(x) = t(1 - x)^{-1}$, and thus

$$g(x) = \prod_{k=0}^{\infty} [1 - (1 - q)q^{k}xt(1 - q^{k+1}x)^{-1}]^{-1}$$

=
$$\prod_{k=0}^{\infty} \frac{1 - q^{k+1}x}{1 - [q + (1 - q)t]q^{k}x}$$

=
$$\frac{(qx)_{\infty}}{([q + (1 - q)t]x)_{\infty}}.$$
 (6.1)

We can expand this product with the *q*-binomial theorem [1, p. 17]:

$$\frac{(ax)_{\infty}}{(x)_{\infty}} = \sum_{n=0}^{\infty} (a)_n \frac{x^n}{(q)_n},$$

which with βx for *x* and $\alpha \beta^{-1}$ for *a*, gives

$$\frac{(\alpha x)_{\infty}}{(\beta x)_{\infty}} = \sum_{n=0}^{\infty} \left[\prod_{i=0}^{n-1} (\beta - \alpha q^i) \right] \frac{x^n}{(q)_n},$$

where as usual the empty product is one. Then (6.1) becomes

$$g(x) = \sum_{n=0}^{\infty} \prod_{i=0}^{n-1} [(1-q)t + q - q^{i+1}] \frac{x^n}{(q)_n}$$

= $\sum_{n=0}^{\infty} \prod_{i=0}^{n-1} [t + q(1+q+\dots+q^{i+1})] \frac{x^n}{n!_q}$
= $1 + \sum_{n=1}^{\infty} t(t+q\cdot 1_q)(t+q\cdot 2_q)\dots(t+q(n-1)_q) \frac{x^n}{n!_q}.$ (6.2)

It should be noted that a direct combinatorial proof of (6.2) is not difficult. It follows from (6.2) that the coefficients of g(x) are essentially the same *q*-Stirling numbers as those studied by Gould [7].

With the help of the formula [1, p. 36]

$$\prod_{i=0}^{n-1} (\alpha + \beta q^i) = \sum_{j=0}^n q^{\binom{j}{2}} \begin{bmatrix} n \\ j \end{bmatrix} \alpha^{n-j} \beta^j,$$

one can obtain the explicit formula

$$c_q(n,k) = \left(\frac{q}{1-q}\right)^{n-k} \sum_{j=0}^n (-1)^j \binom{n-j}{k} q^{\binom{j}{2}} \begin{bmatrix} n\\ j \end{bmatrix}.$$
(6.3)

(See Gould [7].)

It is remarkable that there seems to be no formula for the (q = 1) Stirling numbers of the first kind as simple as (6.3). As a generalization, we may count permutations in which every basic component has length divisible by some positive integer r, according to the number of basic components. (The last example is the case r = 1.) Here we have $T(x) = tx^{r-1}/(1-x^r)$ and a straightforward computation yields

$$g(x) = \frac{(q^r x^r; q^r)_{\infty}}{([q+(1-q)t]q^{r-1}x^r; q^r)_{\infty}}$$

= $\sum_{n=0}^{\infty} q^{(r-1)n} \frac{(nr)!_q}{r_q(2r)_q \cdots (nr)_q} \prod_{i=0}^{n-1} [t+q(ri)_q] \frac{x^{nr}}{(nr)!_q}.$

Next, let us consider the case where all basic components have length one or two. Then we may set $t_1 = t$, $t_2 = 1$, and $t_i = 0$ for i > 2. (Letting t_2 be an indeterminate would give us no additional information.) Then T(x) = t + x and we have

$$g(x) = e\left[tx + q\frac{x^2}{2!_q}\right].$$

Proposition 3.4 gives the recurrence

$$g_{n+1} = tg_n + qn_qg_{n-1}$$

from which the first few values of g_n are easily computed:

$$g_0 = 1,$$

$$g_1 = t,$$

$$g_2 = t^2 + q,$$

$$g_3 = t^3 + (2q + q^2)t,$$

$$g_4 = t^4 + (3q + 2q^2 + q^3)t^2 + q^2 + q^3 + q^4.$$

The infinite product for g(x) is

$$g(x) = \prod_{k=0}^{\infty} [1 - (1 - q)q^k x(t + q^{k+1}x)]^{-1}.$$
(6.4)

To find a formula for the coefficients of g(x) we introduce the 'continuous *q*-Hermite polynomials' $H_n(u \mid q)$ defined by

$$\prod_{k=0}^{\infty} (1 - 2uzq^k + z^2q^{2k})^{-1} = \sum_{n=0}^{\infty} H_n(u \mid q) \frac{z^n}{(q)_n}$$
(6.5)

These polynomials have been studied by Askey and Ismail [2] and others. We find a formula for their coefficients by setting $u = \cos \theta$, $\alpha = e^{i\theta}$, and $\beta = e^{-i\theta}$. Then $1 - 2uzq^k + z^2q^{2k} = (1 - \alpha zq^k)(1 - \beta zq^k)$ so

$$\prod_{k=0}^{\infty} (1 - 2uzq^k + z^2q^{2k})^{-1} = (\alpha z)_{\infty}^{-1} (\beta z)_{\infty}^{-1}$$
$$= \left[\sum_{n=0}^{\infty} \alpha^n \frac{z^n}{(q)_n}\right] \left[\sum_{n=0}^{\infty} \beta^n \frac{z^n}{(q)_n}\right].$$

Equating coefficients of $z^n/(q)_n$ and using the well-known formula

$$\cos r\theta = \sum_{m=0}^{[r/2]} (-1)^m 2^{r-2m-1} \frac{r}{r-m} \binom{r-m}{m} \cos^{r-2m}\theta$$

for r > 0, we obtain

$$H_n(u|q) = \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} (2u)^{n-2j} \sum_{k=0}^j (-1)^{j-k} \frac{n-2k}{n-k-j} \binom{n-k-j}{n-2j} \binom{n}{k} + E_n$$
(6.6)

where

$$E_n = \begin{cases} \begin{bmatrix} n \\ \frac{1}{2}n \end{bmatrix}, & n \text{ even} \\ 0, & n \text{ odd.} \end{cases}$$

It will be convenient to consider the polynomials $\bar{H}_n(u \mid q) = i^n H_n(-iu \mid q)$, where $i = \sqrt{-1}$. Then (6.5) and (6.6) lead to

$$\prod_{k=0}^{\infty} (1 - 2uzq^k - z^2q^{2k})^{-1} = \sum_{n=0}^{\infty} \bar{H}_n(u \mid q) \frac{z^n}{(q)_n}$$
(6.7)

and

$$\bar{H}_n(u \mid q) = \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} (2u)^{n-2j} \sum_{k=0}^j (-1)^k \frac{n-2k}{n-k-j} \binom{n-k-j}{n-2j} \binom{n}{k} + E_n.$$
(6.8)

Now in (6.4), set $z^2 = (1 - q)qx^2$, so $x = [(1 - q)q]^{-1/2}z$. Then

$$g(x) = \sum_{n=0}^{\infty} \bar{H}_n \left(\frac{1}{2} \left(\frac{1-q}{q} \right)^{\frac{1}{2}} t \mid q \right) \frac{z^n}{(q)_n} \\ = \sum_{n=0}^{\infty} [q/(1-q)]^{n/2} \bar{H}_n \left(\frac{1}{2} \left(\frac{1-q}{q} \right)^{\frac{1}{2}} t \mid q \right) \frac{x^n}{n!_q}.$$

1029

Thus

$$g_{n} = \left[q/(1-q)\right]^{n/2} \bar{H}_{n} \left(\frac{1}{2} \left(\frac{1-q}{q}\right)^{\frac{1}{2}} t \mid q\right)$$

$$= \sum_{j=0}^{\left[(n-1)/2\right]} t^{n-2j} \left(\frac{q}{1-q}\right)^{i} \sum_{k=0}^{j} (-1)^{k} \frac{n-2k}{n-k-j} \binom{n-k-j}{n-2j} \begin{bmatrix}n\\k\end{bmatrix}$$

$$+ \left(\frac{q}{1-q}\right)^{n/2} E_{n}.$$
(6.9)

Then if $g_n = \sum_j b_{n,j} t^{n-2j}$ we have

$$b_{n,0} = 1,$$

$$b_{n,1} = \frac{q}{1-q}(n-n_q) = (n-1)q + (n-2)q^2 + \dots + q^{n-1},$$

$$b_{n,2} = \left(\frac{q}{1-q}\right)^2 \left\{\frac{n(n-3)}{2} - (n-2)n_q + \begin{bmatrix} n\\2 \end{bmatrix}\right\},$$

and so on.

7. Inversions and cycle structure

It is well known that the number of permutations in S_n with k left-right maxima is the same as the number of permutations in S_n with k cycles. (The number is the unsigned Stirling number of the first kind c(n, k).) Foata [4] has constructed a bijection $\Psi : S_n \to S_n$ which takes a permutation with α_i basic components of length *i* (for each *i*) to one with α_i cycles of length *i*: to get the cycle representation of $\Psi(\pi)$, we simply enclose each basic component of π in a pair of parentheses. Thus for $\pi = 1.4.2.3.7.5.6$, we have $\Psi(\pi) = (1)(4.2.3)(7.5.6)$ in cycle notation, which in linear notation is 1.3.4.2.6.7.5. To find $\Psi^{-1}(\pi)$, we write π in cycle notation, with the greatest element of each cycle first, and with the cycles arranged in increasing order of first element. Then we remove the parentheses.

Unfortunately, Ψ does not preserve inversions, and the problem of counting permutations by inversions and cycle structure remains open. However, if π has only basic components of lengths one and two, so that $\Psi(\pi)$ is an involution, then Ψ transforms the inversion number in a very simple way:

Theorem 7.1. Suppose π has b_i basic components of length *i* for each *i*, where $b_i = 0$ for i > 2. Then $I(\Psi(\pi)) = 2I(\pi) - b_2$.

Proof. We proceed by induction on the length of π . The theorem is trivially true for lengths zero and one. Now let π be of length $n \ge 2$ and assume the truth of the theorem for all shorter lengths. Let π' be obtained from π by removing the last basic component, and let b'_2 be the number of basic components of π' of length two. If the last basic component of π has length one, then $\Psi(\pi)$ is $\Psi(\pi')$ with n adjoined at the end, so $I(\pi) = I(\pi'), I(\Psi(\pi)) = I(\Psi(\pi'))$, and $b_2 = b'_2$. Thus $I(\Psi(\pi)) - 2I(\pi) + b_2 = I(\Psi(\pi')) - 2I(\pi') + b'_2 = 0$.

To deal with the case in which the last basic component of π has length two, we first observe that Foata's correspondence Ψ can be extended in the obvious way to permutations that are not reduced: $\Psi(\sigma)$ is defined by $\operatorname{con}(\Psi(\sigma)) = \operatorname{con}(\sigma)$ and $\operatorname{red}(\Psi(\sigma)) = \Psi(\operatorname{red}(\sigma))$.

If the last basic component of π has length two, then it must be nk for some k. Then $I(\pi) = I(\pi') + n - k$. If $\Psi(\pi') = a_1 a_2 \cdots a_{n-2}$, then $\Psi(\pi)$ is obtained from it by inserting n between a_{k-1} and a_k (or at the beginning, if k = 1), and inserting k at the end. It is then easily seen that $I(\Psi(\pi)) = I(\Psi(\pi')) + 2n - 2k - 1$. Since $b_2 = b'_2 + 1$, we have

$$I(\Psi(\pi)) - 2I(\pi) + b_2 = I(\Psi(\pi')) + 2n - 2k - 1 - 2[I(\pi') + n - k] + b_2' + 1$$

= $I(\Psi(\pi')) + 2I(\pi') + b_2' = 0.$

1030

It follows that if $g_n = g_n(t | q)$ is given by (6.9), then the number of involutions of **n** with *r* fixed points and *I* inversions is the coefficient of $t^r q^I$ in $q^{-n/2} g_n(tq^{\frac{1}{2}} | q^2)$.

References

- [1] G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2 (Addison-Wesley, Reading, MA, 1976).
- [2] R. Askey and M.E.-H. Ismail, A generalization of ultraspherical polynomials, to appear in Studies in Analysis, A collection of articles dedicated to the memory of Paul Turan, Budapest.
- [3] E.A. Bender and J.R. Goldman, Enumerative uses of generating functions, Indiana Univ. Math. J. 20 (1971) 753-765.
- [4] D. Foata, La série génératrice exponentielle dans les problèmes d'énumération (Les Presses de l'Université de Montréal, 1974).
- [5] I.M. Gessel, Generating functions and enumeration of sequences, Ph.D. Thesis, Massachusetts Institute of Technology, 1977.
- [6] J. Goldman and G.-C. Rota, On the foundations of combinatorial theory IV: Finite vector spaces and Eulerian generating functions, Studies in Appl. Math. 49 (1970) 239–258.
- [7] H.W. Gould, q-Stirling numbers. Duke Math. J. 28 (1961) 281–289.
- [8] O. Rodrigues, Note sur les inversions, ou derangements produit dans les permutations, J. Mathematiques 4 (1839) 236-240.
- [9] R.P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combin. Theory (A) 20 (1976) 336–356.
- [10] R.P. Stanley, Generating functions, in: G.-C. Rota, ed., MAA Studies in Combinatorics (Math. Assoc. of America, 1978) 100-141.
- [11] R.P. Stanley, Exponential structures, Studies in Appl. Math. 59 (1978) 73-82.