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A q-analog of the exponential formula�
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Abstract

A q-analog of functional composition for Eulerian generating functions is introduced and applied to the enumeration of permu-
tations by inversions and distribution of left-right maxima.
© 1982 Published by Elsevier B.V.

1. Introduction

If f (x) =∑∞
n=1fn(x

n/n!) is the exponential generating function for a class of ‘labeled objects’, then

g(x) = ef (x)

will be (under appropriate conditions) the exponential generating function for sets of these objects. For example, if
f (x)=∑∞

n=1(n− 1)!xn/n! is the exponential generating function for cyclic permutations, then g(x)=∑∞
n=0 n!xn/n!

is the exponential generating function for all permutations; if f (x) is the exponential generating function for connected
labeled graphs, then

g(x) =
∞∑

n=0

2(
n
2 ) x

n

n!
is the exponential generating function for all labeled graphs. For various approaches to the exponential formula, see
[3,4,10,11].

It is well known that many properties of exponential generating functions have analogs for Eulerian generating
functions of the form

∞∑
n=0

fn

xn

n!q
where n!q = 1 · (1 + q) · · · (1 + q + · · · + qn−1), and fn is a polynomial in q. Note that n!q reduces to n! for q = 1.
Eulerian generating functions arise in several combinatorial applications, such as finite vector spaces [6] and partitions
[1], but here we shall be concerned primarily with their use in counting permutations by inversions. (See [5,9].)
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We introduce a q-analog of functional composition and show that q-exponentiation can be used to count permutations
by inversions and ‘basic components’, which are related to left-right maxima. Combinatorial interpretations are obtained
for Gould’s q-Stirling numbers of the first kind [7] and the ‘continuous q-Hermite polynomials’ study by Askey and
Ismail [2] and others. Finally, we count involutions by inversions, using a new property of a correspondence of Foata
[4].

2. Notation

We define (a; q)n to be
∏n−1

i=0 (1 − aqi), with (a; q)0 = 1. We often write (a)n for (a; q)n. Thus

(q)n = (1 − q)(1 − q2) · · · (1 − qn) = (1 − q)nn!q and (a)∞ =
∞∏
i=0

(1 − aqi).

The q-binomial coefficient, which is a polynomial in q, is defined by:[
n

k

]
= n!q

k!q(n − k)!q = (q)n

(q)k(q)n−k

.

We write nq for [n1] = 1 + q + · · · + qn−1 and n for the set {1, 2, . . . , n}. All power series may be considered as
formal, so that questions of convergence do not arise.

3. A q-analog of functional composition

The q-analog D of the derivative is defined by

Df (x) = f (x) − f (qx)

(1 − q)x
.

Thus D1 = 0 and for n > 0,

D
xn

n!q = xn−1

(n − 1)!q .

(Note that for q = 1,D reduces to the ordinary derivative.) We shall often write f ′ for Df .
We now define a q-analog of the map f �→ f k/k! for exponential generating functions.

Definition 3.1. Suppose that f (0) = 0. Then for k�0, f [k] is defined by f [0] = 1 and for k > 0,

Df [k] = f ′ · f [k−1], with f [k](0) = 0. (3.1)

Formula (3.1) is equivalent to the following recursion: let

f [k](x) =
∞∑

n=0

fn,k

xn

n!q .

Then

fn+1,k =
∞∑

j=0

[
n

j

]
fn−j+1,1fj,k−1.

It is clear that fn,k = 0 for n < k.
As an example, take f (x) = xm/m!q . Then(

xm

m!q
)[k]

=
[
mk − 1
m − 1

] [
m(k − 1) − 1

m − 1

]
· · ·
[
m − 1
m − 1

]
xmk

(mk)!q
= (mk)!q

(m!q)k · 1 · (1 + qm) · · · (1 + qm + q2m + · · · + q(k−1)m)

xmk

(mk)!q .
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Note that for m = 1 we have x[k] = xk/k!q , and for q = 1, (xm/m!q)[k] reduces to

(mk)!
m!kk!

xmk

(mk)! .

Definition 3.2. Suppose that g(x) =∑∞
n=0gn(x

n/n!q) and f (0) = 0. Then the q – composition g[f ] is defined to be

∞∑
n=0

gnf
[n].

Note that g[x] = g(x). The following is straightforward.

Proposition 3.3 (The chain rule). Dg[f ] = g′[f ]f ′.

Unfortunately q-composition is neither associative nor distributive over multiplication, i.e., in general (fg)[h] �=
f [h] · g[h].

Now let e(x)=∑∞
n=0x

n/n!q be the q-analog of the exponential function. Since e′(x)=e(x), we haveDe[f ]=e[f ]f ′.
Equating coefficients gives a recurrence for the coefficients of e[f ] in terms of the coefficients of f:

Proposition 3.4. Let f (x) =∑∞
n=1fn(x

n/n!q) and let g(x) =∑∞
n=0gn(x

n/n!q) = e[f ]. Then g0 = 1 and for n�0,

gn+1 =
n∑

k=0

[
n

k

]
gn−kfk+1.

We can also express e[f ] as an infinite product:

Proposition 3.5. Suppose f (0) = 0. Then

e[f ] =
∞∏

k=0

[1 − (1 − q)qkxf ′(qkx)]−1. (3.2)

Proof. Let g = e[f ]. Then g′(x) = f ′(x)g(x), so

g(x) − g(qx)

(1 − q)x
= f ′(x)g(x)

and thus

g(x) = [1 − (1 − q)xf ′(x)]−1g(qx). (3.3)

Iterating (3.3) yields (3.2). �

For f (x) = x, Proposition 3.5 yields the well-known infinite product

e(x) = e[x] =
∞∏

k=0

[1 − (1 − q)qkx]−1.

Since e[tf (x)] =∑∞
n=0t

nf [n], we have an alternative characterization of f [n] as the coefficient of tn in

∞∏
k=0

[1 − (1 − q)qkxf ′(qkx)t]−1.



I.M. Gessel / Discrete Mathematics 306 (2006) 1022 –1031 1025

4. Permutations

By a permutation of a set A of positive integers we mean a linear arrangement a1a2 · · · an of the elements of A.
The length of a1a2 · · · an is n. A permutation is basic if it begins with its greatest element. (By convention the ‘empty
permutation’ of length zero is not basic.) We denote by Sn and Bn the sets of all permutations and of basic permutations
of n. (Thus |Sn| = n! for all n and |Bn| = (n − 1)! for n�1, with |B0| = 0.) A left-right maximum of a permutation
a1a2 · · · an is an aj such that i < j implies ai < aj . For any nonempty permutation � we write L(�) for the first element
of �. The following is straightforward.

Lemma 4.1. Suppose the permutation �=a1a2 · · · an has the factorization �=�1�2 · · · �k , where the �i are nonempty
permutations. Then the following are equivalent:

(i) Each �s is basic and L(�1) < L(�2) < · · · < L(�k).
(ii) ai = L(�s) for some s if and only if aj is a left-right maximum.

It follows from the lemma that every permutation � has a unique factorization �2�2 · · · �k satisfying (i) which we
call the basic decomposition of �, and we call the �i the basic components of �. We note that any set {�1, . . . , �k} of
basic permutations with no elements in common can be ordered in exactly one way to form the basic decomposition
of some permutation. Thus we have a bijection between permutations and sets of disjoint basic permutations.

We call a permutation reduced if it is in Sn for some n�0. To any permutation � = a1a2 · · · an we may associate a
reduced permutation, red(�), by replacing in �, for each i = 1, 2, . . . , n, the ith smallest element of {a1, a2, . . . , an} by
i. Thus red(7926) = 3412. The content of the permutation � = a1a2 · · · an is con(�) = {a1, a2, . . . , an}. We note that a
permutation is determined by its reduction and its content.

A function � defined on permutations (with values in some commutative algebra over the rationals) is multiplicative
if for all permutations �:

(i) �(�) = �(red(�)).
(ii) If �1�2 · · · �k is the basic decomposition of �, then

�(�) = �(�1)�(�2) · · · �(�k).

Thus a multiplicative function is determined by its values on reduced basic permutations, and these may be chosen
arbitrarily. (We note that (ii) implies �(∅) = 1.)

5. Inversions of permutations

If V is a subset of n we denote by In(V ) the number of pairs (v, w) with v ∈ V, w ∈ n − V , and v > w.

Lemma 5.1. Let

Q(n, k) =
∑
V

qIn(V )

where the sum is over all V ⊆ n with |V | = n − k. Then Q(n, k) = [
n
k

]
.

Proof. It is clear that Q(n, n) = Q(n, 0) = 1 for all n�0. Then by considering the two cases n ∈ V and n /∈ V we find
the recurrence

Q(n, k) = qkQ(n − 1, k) + Q(n − 1, k − 1),

for 0 < k < n. Since
[
n
k

]
satisfies the same recurrence and boundary conditions, Q(n, k) = [

n
k

]
. �

An inversion of the permutation � = a1a2 · · · an is a pair (i, j) with i < j and ai > aj . We write I (�) for the number
of inversions of �. Note that I (�) = I (red(�)).
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Theorem 5.2. Let � be a multiplicative function on permutations. Let gn = ∑
�∈Sn

�(�)qI (�) and let fn =∑
�∈Bn

�(�)qI (�). Then

∞∑
n=0

gn

xn

n!q = e

[ ∞∑
n=1

fn

xn

n!q

]
.

Proof. In view of Proposition 3.4, we need only prove

gn+1 =
n∑

k=0

[
n

k

]
gn−kfk+1. (5.1)

We shall prove (5.1) by showing that
[

n
k

]
gn−kfk+1 counts those permutations counted by gn+1 whose last basic

component has length k+1. Such a permutation may be factored as �=�� where � is of length n−k, � is of length k+1,
and the disjoint union of con (�) and con(�) is n +1. The condition that � is the last basic component of � is equivalent
to the condition that � is basic and con(�) contains n + 1. Thus to determine � we choose V = con(�) as an arbitrary
(n − k)-subset of n and choose red(�) ∈ Sn−k and red(�) ∈ Bk+1. It is easily seen that I (�) = I (�) + I (�) + In(V ).
Thus the contribution to gn+1 of these � is∑

V

∑
�∈Sn−k

∑
�∈Bk+1

�(�)�(�)qI (�)+I (�)+In(V )

=
[∑

V

qIn(V )

]⎡⎣ ∑
�∈Sn−k

�(�)qI (�)

⎤
⎦
⎡
⎣ ∑

�∈Bk+1

�(�)qI (�)

⎤
⎦

=
[
n

k

]
gn−kfk+1, by Lemma 5.1. �

Corollary 5.3. Let t1, t2, . . . be arbitrary, and set T (x) =∑∞
n=0 tn+1x

n. Define the multiplicative function � by

�(�) = t
b1
1 t

b2
2 · · ·

where � has bi basic components of length i. Let

gn =
∑
�∈Sn

�(�)qI (�)

and let

g(x) =
∞∑

n=0

gn

xn

n!q .

Then

g(x) =
∞∏

k=0

[1 − (1 − q)qkxT (qk+1x)]−1. (5.2)

Proof. Let fn =∑
�∈Bn

�(�)qI (�) = tn
∑

�∈Bn
qI (�). Every � in Bn is obtained by inserting n at the beginning of an

element of Sn−1; thus,∑
�∈Bn

qI (�) = qn−1
∑

�∈Sn−1

qI (�) = qn−1(n − 1)!q ,

by a well-known result of Rodrigues [8], easily proved by induction. Thus,

f (x) =
∞∑

n−1

fn

xn

n!q =
∞∑

n=1

tnq
n−1(n − 1)!q xn

n!q ,
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so

f ′(x) =
∞∑

n=0

tn+1q
nxx = T (qx).

Then (5.2) follows from Theorem 5.2 and Proposition 3.5. �

6. Examples

We first look at two trivial cases of Theorem 5.2. If we take ti = 1 for all i, then T (x) = (1 − x)−1 and

g(x) =
∞∏

k=0

[1 − (1 − q)qkx(1 − qk+1x)−1]−1

=
∞∏

k=0

1 − qk+1x

1 − qkx

= 1

1 − x
=

∞∑
n=0

n!q xn

n!q .

If we take t1 = 1 and ti = 0 for i > 1, then T (x) = 1 and

g(x) =
∞∏

k=0

[1 − (1 − q)qkx]−1 =
∞∑

n=0

xn

n!q .

A more interesting example is that in which ti = t for all i. In the case q = 1 we have

g(x) = exp

(
t

∞∑
n=1

xn

n

)
= (1 − x)−t

=
∞∑

n,k=0

c(n, k)tk
xn

n!

where c(n, k) = |s(n, k)| is the unsigned Stirling number of the first kind.
For general q, we have T (x) = t (1 − x)−1, and thus

g(x) =
∞∏

k=0

[1 − (1 − q)qkxt(1 − qk+1x)−1]−1

=
∞∏

k=0

1 − qk+1x

1 − [q + (1 − q)t]qkx

= (qx)∞
([q + (1 − q)t]x)∞

. (6.1)

We can expand this product with the q-binomial theorem [1, p. 17]:

(ax)∞
(x)∞

=
∞∑

n=0

(a)n
xn

(q)n
,

which with �x for x and ��−1 for a, gives

(�x)∞
(�x)∞

=
∞∑

n=0

[
n−1∏
i=0

(� − �qi)

]
xn

(q)n
,
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where as usual the empty product is one. Then (6.1) becomes

g(x) =
∞∑

n=0

n−1∏
i=0

[(1 − q)t + q − qi+1] xn

(q)n

=
∞∑

n=0

n−1∏
i=0

[t + q(1 + q + · · · + qi+1)] xn

n!q

= 1 +
∞∑

n=1

t (t + q · 1q)(t + q · 2q) · · · (t + q(n − 1)q)
xn

n!q . (6.2)

It should be noted that a direct combinatorial proof of (6.2) is not difficult. It follows from (6.2) that the coefficients of
g(x) are essentially the same q-Stirling numbers as those studied by Gould [7].

With the help of the formula [1, p. 36]

n−1∏
i=0

(� + �qi) =
n∑

j=0

q(
j
2)

[
n

j

]
�n−j�j ,

one can obtain the explicit formula

cq(n, k) =
(

q

1 − q

)n−k n∑
j=0

(−1)j
(

n − j

k

)
q(

j
2)

[
n

j

]
. (6.3)

(See Gould [7].)
It is remarkable that there seems to be no formula for the (q = 1) Stirling numbers of the first kind as simple as (6.3).
As a generalization, we may count permutations in which every basic component has length divisible by some

positive integer r, according to the number of basic components. (The last example is the case r = 1.) Here we have
T (x) = txr−1/(1 − xr) and a straightforward computation yields

g(x) = (qrxr ; qr)∞
([q + (1 − q)t]qr−1xr ; qr)∞

=
∞∑

n=0

q(r−1)n (nr)!q
rq(2r)q · · · (nr)q

n−1∏
i=0

[t + q(ri)q ] xnr

(nr)!q .

Next, let us consider the case where all basic components have length one or two. Then we may set t1 = t, t2 = 1,
and ti = 0 for i > 2. (Letting t2 be an indeterminate would give us no additional information.) Then T (x) = t + x and
we have

g(x) = e

[
tx + q

x2

2!q
]

.

Proposition 3.4 gives the recurrence

gn+1 = tgn + qnqgn−1

from which the first few values of gn are easily computed:

g0 = 1,

g1 = t ,

g2 = t2 + q,

g3 = t3 + (2q + q2)t ,

g4 = t4 + (3q + 2q2 + q3)t2 + q2 + q3 + q4.



I.M. Gessel / Discrete Mathematics 306 (2006) 1022 –1031 1029

The infinite product for g(x) is

g(x) =
∞∏

k=0

[1 − (1 − q)qkx(t + qk+1x)]−1. (6.4)

To find a formula for the coefficients of g(x) we introduce the ‘continuous q-Hermite polynomials’ Hn(u | q) defined
by

∞∏
k=0

(1 − 2uzqk + z2q2k)−1 =
∞∑

n=0

Hn(u | q)
zn

(q)n
(6.5)

These polynomials have been studied by Askey and Ismail [2] and others. We find a formula for their coefficients by
setting u = cos �, � = ei�, and � = e−i�. Then 1 − 2uzqk + z2q2k = (1 − �zqk)(1 − �zqk) so

∞∏
k=0

(1 − 2uzqk + z2q2k)−1 = (�z)−1∞ (�z)−1∞

=
[ ∞∑

n=0

�n zn

(q)n

][ ∞∑
n=0

�n zn

(q)n

]
.

Equating coefficients of zn/(q)n and using the well-known formula

cos r� =
[r/2]∑
m=0

(−1)m2r−2m−1)
r

r − m

(
r − m

m

)
cosr−2m�

for r > 0, we obtain

Hn(u|q) =
[(n−1)/2]∑

j=0

(2u)n−2j

j∑
k=0

(−1)j−k n − 2k

n − k − j

(
n − k − j

n − 2j

)[
n

k

]
+ En (6.6)

where

En =
{[

n
1
2n

]
, n even

0, n odd.

It will be convenient to consider the polynomials H̄n(u | q) = inHn(−iu | q), where i = √−1. Then (6.5) and (6.6)
lead to

∞∏
k=0

(1 − 2uzqk − z2q2k)−1 =
∞∑

n=0

H̄n(u | q)
zn

(q)n
(6.7)

and

H̄n(u | q) =
[(n−1)/2]∑

j=0

(2u)n−2j

j∑
k=0

(−1)k
n − 2k

n − k − j

(
n − k − j

n − 2j

)[
n

k

]
+ En. (6.8)

Now in (6.4), set z2 = (1 − q)qx2, so x = [(1 − q)q]−1/2z. Then

g(x) =
∞∑

n=0

H̄n

(
1

2

(
1 − q

q

) 1
2

t | q

)
zn

(q)n

=
∞∑

n=0

[q/(1 − q)]n/2H̄n

(
1

2

(
1 − q

q

) 1
2

t | q

)
xn

n!q .
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Thus

gn = [q/(1 − q)]n/2H̄n

(
1

2

(
1 − q

q

) 1
2

t | q

)

=
[(n−1)/2]∑

j=0

tn−2j

(
q

1 − q

)i j∑
k=0

(−1)k
n − 2k

n − k − j

(
n − k − j

n − 2j

)[
n

k

]

+
(

q

1 − q

)n/2

En. (6.9)

Then if gn =∑
j bn,j t

n−2j we have

bn,0 = 1,

bn,1 = q

1 − q
(n − nq) = (n − 1)q + (n − 2)q2 + · · · + qn−1,

bn,2 =
(

q

1 − q

)2 {
n(n − 3)

2
− (n − 2)nq +

[
n

2

]}
,

and so on.

7. Inversions and cycle structure

It is well known that the number of permutations in Sn with k left-right maxima is the same as the number of
permutations in Sn with k cycles. (The number is the unsigned Stirling number of the first kind c(n, k).) Foata [4] has
constructed a bijection � : Sn → Sn which takes a permutation with �i basic components of length i (for each i) to
one with �i cycles of length i: to get the cycle representation of �(�), we simply enclose each basic component of � in
a pair of parentheses. Thus for � = 1 4 2 3 7 5 6, we have �(�) = (1)(4 2 3)(7 5 6) in cycle notation, which in linear
notation is 1 3 4 2 6 7 5. To find �−1(�), we write � in cycle notation, with the greatest element of each cycle first, and
with the cycles arranged in increasing order of first element. Then we remove the parentheses.

Unfortunately, � does not preserve inversions, and the problem of counting permutations by inversions and cycle
structure remains open. However, if � has only basic components of lengths one and two, so that �(�) is an involution,
then � transforms the inversion number in a very simple way:

Theorem 7.1. Suppose � has bi basic components of length i for each i, where bi = 0 for i > 2. Then I (�(�)) =
2I (�) − b2.

Proof. We proceed by induction on the length of �. The theorem is trivially true for lengths zero and one. Now let � be
of length n�2 and assume the truth of the theorem for all shorter lengths. Let �′ be obtained from � by removing the
last basic component, and let b′

2 be the number of basic components of �′ of length two. If the last basic component of
� has length one, then �(�) is �(�′) with n adjoined at the end, so I (�) = I (�′), I (�(�)) = I (�(�′)), and b2 = b′

2.
Thus I (�(�)) − 2I (�) + b2 = I (�(�′)) − 2I (�′) + b′

2 = 0.
To deal with the case in which the last basic component of � has length two, we first observe that Foata’s

correspondence� can be extended in the obvious way to permutations that are not reduced: �(�) is defined by
con(�(�)) = con(�) and red(�(�)) = �(red(�)).

If the last basic component of � has length two, then it must be nk for some k. Then I (�) = I (�′) + n − k. If
�(�′)= a1a2 · · · an−2, then �(�) is obtained from it by inserting n between ak−1 and ak (or at the beginning, if k = 1),
and inserting k at the end. It is then easily seen that I (�(�)) = I (�(�′)) + 2n − 2k − 1. Since b2 = b′

2 + 1, we have

I (�(�)) − 2I (�) + b2 = I (�(�′)) + 2n − 2k − 1 − 2[I (�′) + n − k] + b′
2 + 1

= I (�(�′)) + 2I (�′) + b′
2 = 0. �
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It follows that if gn=gn(t | q) is given by (6.9), then the number of involutions of n with r fixed points and I inversions

is the coefficient of t rqI in q−n/2gn(tq
1
2 | q2).
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