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Abstract

We describe the problem of Sweedler’s duals for bialgebras as essentially char-
acterizing the domain of the transpose of the multiplication. This domain is the set
of what could be called “representative linear forms” which are the elements of the
algebraic dual which are also representative on the multiplicative semigroup of the
algebra.
When the algebra is free, this notion is indeed equivalent to that of rational func-
tions of automata theory. For the sake of applications, the range of coefficients has
been considerably broadened, i.e. extended to semirings, so that the results could
be specialized to the boolean and multiplicity cases. This requires some caution
(use of “positive formulas”, iteration replacing inversion, stable submodules replac-
ing finite-rank families for instance). For the theory and its applications has been
created a rational calculus which can, in return, be applied to harness Sweedler’s
duals. A new theorem of rational closure and application to Hopf algebras of use
in Physics and Combinatorics is provided. The concrete use of this “calculus” is
eventually illustrated on an example.0

1 Introduction

This paper is entirely devoted to questions of rationality which arose, seemingly inde-
pendently, in automata theory (Schützenberger’s calculus) and as in the dualization of
multiplication (Sweedler’s duals). As in the classical (univariate) case, rationality shows
itself twofold : on functions and on expressions.
The rationality framework exposed here can be considered as the noncommutative ana-
logue of linear recurrences. It is known, (see [10, 25]), that it is equivalent to state that
the coefficients of the Taylor expansion of a function satisfy a linear recurrence or that
the generating function itself is rational (i. e. the quotient of two polynomials). This
equivalence has a counterpart in the theory of rational expressions and this (nowadays
classical) theory can be considered as “localized at zero” (i.e. analogous to the theory of
rational functions without a pole at zero).

The paper is organized as follows.
In section 2, one sets out the theory of representative functions which were introduced
in [31] and now standard in the theory of algebraic groups [22]. Most of the material of
this section (preparatory to the subsequent ones) is not new and can be found in several
domains (but we believe that, beyond the needs of exposition, the description of the
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link itself will be of some use to these domains). The scope of proposition (2.1) can be
harmlessly extended to semigroups [1].
As representative functions on the free monoid are the core of automata theory [29, 30,
2, 15], the domain of their scalars can (and, in fact, had to) be considerably enlarged
to include structures allowing matrix (with unit) computations. This is the domain of
semirings [19, 20], the scalars of automata theory.
section 4 prepares the link between representative functions and rational expressions by
means of the notion of star (which is the “positive analogue” of the inverse) and star
closure (which is the analogue of rational closure in classical algebra1).
The framework is then ready for a correct exposition of rational expressions which is the
main concern of section 4.
In section 5, we apply what has been constructed to the dualization of bialgebras, then
recovering known results.
In section 6, we show how to apply this “rational calculus” to solve the carrier problem
in combinatorial physics.
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2 Representative functions on a semigroup

The aim of this section is to discuss the dualization of bi-algebras and Hopf algebras. This
problem, solved by Sweedler’s duals, is the following.
Let k be a field and (B, ., ∆, 1B, ε) be a k-bialgebra ; we know that, if B is finite-
dimensional (resp. graded in finite dimensions), the dual (resp. graded dual) endowed
with the transpose structure is a bialgebra and that, in case B is a Hopf algebra this
statement carries over. Now the question can be asked.
What is the good notion of retricted dual for the general (i.e. ungraded finite or infinite
dimensional) case ?
Analysing the dualization of the structural operations (., ∆, 1B, ε) of B, one sees at once
that only the dualization of the multiplication is problematic as, in the general case, the
codomain of the transpose of . is larger than B∗ ⊗ B∗.
The first result follows (and somehow extends) [1]. To state it, we need the notion of (left
and right) shifts of functions on a semigroup. Let k be a field, (S, .) a semigroup and
f ∈ kS. For each s ∈ S define fs : x 7→ f(sx) (right shift of f) and sf : x 7→ f(xs)
(left shift of f), sft : x 7→ f(txs) (bi-shift of f). Then, we have.

1and “sous-algèbres pleines” in spectral theories [4].
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Proposition 2.1 (see also [1] section 2.2) Let k be a field, (S, .) a semigroup and f ∈ kS.
The following are equivalent :
i) The family (fs)s∈S is of finite rank in kS

ii) The family (sf)s∈S is of finite rank in kS

iii) The family (sft)s,t∈S is of finite rank in kS

iv) There exists a double family (gi, hi)1≤i≤n of functions such that

(

∀x, y ∈ S
)(

f(xy) =
n

∑

i=1

gi(x)hi(y)
)

(1)

v) There exists λ ∈ k1×n, γ ∈ kn×1 and µ : (S, .) → (kn×n,×) a morphim of semigroups
such that (∀s ∈ S)(f(s) = λµ(s)γ).

Moreover, if S admits a neutral (i.e. is a monoid), its image by µ of (v) above can be
chosen to be the unity matrix.

Proof — Omitted

The elements of kS which fulfill the above conditions will be called representative functions
on S and denoted R(k, S, .) [1, 8, 14].

Remark 2.2 i) When k is only a PID, proposition (2.1) above still holds with the five
equivalent conditions, orbits and ranks being computed in k̄S (k̄ is the fraction field of k).
ii) If S is finite, R(k, S, .) = kS and if S is a group, one has

R(k, S, .) = kS ⇐⇒ S is finite

iii) If S is a semigroup, the equivalences above are false in general as shown by the
following counterexample. Let G be a finite group and endow S = N × G with the law
(n, g) ∗ (m,h) = (0, gh). It can be easily checked that (S, ∗) is a semigroup and that
R(k, S, ∗) = kS.
iv) When W is a shift-invariant subspace of kS and f ∈ W ∩ R(k, S, .), the families
(fs)s∈S, (sf)s∈S, (sft)s,t∈S are of course in W ∩ R(k, S, .) (and are of finite rank). Two
useful examples of such “relative representative functional spaces” are with W = C(S)
(continuous functions, S being a topological semigroup) and W = S∗ (linear forms, S
being an algebra with its product as semigroup law).
v) If T ⊂ S is a subsemigroup with finite set-theoretical complement (S\T is finite) then
f ∈ kS is representative iff f |T is so. In particular, if S = T (1), the monoid obtained by
adjunction of a unity to T , one has that f ∈ kS is representative iff f |T is.
vi) The proof of proposition (2.1) can also be found in [22] where it does not use the
structure of group.

3 Semirings

Throughout the text “monoid” stands for “semigroup with unit”.
Semirings are the structures adapted to matrix (with unity) computation. A semiring
(k, +,×) consists of the following data

- a set k
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- two binary laws +,× on k

such that

- (k, +) and (k,×) are monoids, the first being commutative, their neutrals will be
denoted respectively 0k and 1k

- × is left and right distributive over +

- 0k is an annihilator i. e. (∀x ∈ k)(0k.x = x.0k = 0k)

Example 3.1 i) Any ring.
ii) The boolean semiring B = {0, 1} endowed with the laws x ⊕ y = x + y − xy and
x ⊗ y = xy.
iii) The semiring ([−∞, +∞[,max, +), called in the literature “(max,plus)-semiring”.
iv) In the semiring ([0, +∞[, +,×), the laws are continuous at infinity and then can be
completed. We obtain a semiring ([0, +∞], +,×) which is suited for multiplicities arising
in repeated additions of positive values during iterations.

Example 3.2 The following example is fundamental and will be used in the definition
of CM-modules. Let (M, +) be a commutative monoid, then (End(M), +, ◦) (defined as
though M were a group) is a semiring. The units are respectively, the constant mapping
M ∋ m 7→ 0M for + and IdM : m 7→ m for ◦.

The structure of semiring defines a category larger than that of rings, the morphisms
being defined similarly. Let (ki, +i,×i), i = 1, 2 be two semirings, a mapping φ : k1 → k2

is called a morphism of semirings iff it is a morphim for the two structures of monoids
(additive and multiplicative), then compatible with the laws and units of k1 and k2.
The definition of modules (here called CM-modules as they are constructed on Commu-
tative Monoids as vector structure) follows also the classical pattern.
The structure of a (left) k-CM-module is given by the following data

- a commutative monoid (M, +)

- a morphism (the scaling morphism) of semirings s : k → End(M).

The structure of (right) k-CM-module is defined by replacing End(M) by Endop(M) the
opposite semiring (constructed with the opposite multiplicative law). Bi- and multimod-
ules are defined as in [3] and follow the general philosophy of “structures with operators”.

Example 3.3 Let X be a set, then kX , the set of all functions X → k is naturally
endowed with a structure of k − k bimodule defined as in the case when k is a ring. So is
k(X), the set of finitely supported functions of kS (actually a sub-k-k bimodule of kS).

The free monoid generated by a set X (finite of infinite) is the set of words (i.e. finite
sequences of elements of X comprising the empty one denoted by 1X∗) endowed with the
concatenation law.
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4 Shift operators and rational closure

Let (M, .) be a (commutative or not) monoid. For a function f : M → k and a ∈ M , we
define the following shift operators [2, 15, 1, 23]

• fa : x 7→ f(ax) (right shift)

• af : x 7→ f(xa) (left shift)

We also have to describe the analog, for CM-algebras, of full subalgebras and full subalge-
braic closures (see [4] Ch. 1.1.4) and this requires the notion of summability [2].

Definition 4.1 A family (fi)i∈I of functions M → k is called summable iff, for each
m ∈ M , (fi(m))i∈I is finitely supported. Then, the mapping m 7→

∑

i∈I fi(m) is denoted
∑

i∈I fi and called the sum of (fi)i∈I .

As a consequence, it is easily checked that, if M is locally finite ([15] Vol. A VII.4)
and f : M → k is without constant term (i.e. f(1M) = 0k), then the family (fn)n∈N

(convolutional powers) is summable and its sum

∑

n∈N

fn (2)

will be denoted f ∗ and called the star of f .

Note 4.2 There is a lot of literature about the star problem (see [?, ?]). For a general
discussion of star-type solutions in a semiring, see [12].

Now, we are in the position of stating the Kleene-Schützenberger theorem.

Theorem 4.3 Let M = X∗ be a free monoid, k a semiring and f ∈ kM . The following
are equivalent
i) the family (fw)w∈M belongs to a finitely generated shift-invariant left-submodule
ii) the family (wf)w∈M belongs to a finitely generated shift-invariant right-submodule
iii) there exist a row λ ∈ k1×n, a column γ ∈ kn×1 and a representation (of monoids)
µ : M → (kn×n,×) such that (∀w ∈ M)(f(w) = λµ(w)γ).
If X is finite, then (i-iii) above are also equivalent to:

iv) f lies in the rational closure of X (i.e. the smallest subalgebra of k〈〈X〉〉 closed under
the star operation and containing X).

Remark 4.4 i) Rational elements in the sense of (iii) infinitely many (linearly) inde-
pendent shifts. That is why finitely generated shift-invariant submodules are needed in the
general case. As an example one may consider

S = (a∗)2 ∈ N〈〈a〉〉 .

One can check at once that a−kS = k.(a∗)+S and then for all k, a−(k+1)S /∈ span(a−sS)k
s=0.

ii) One can remove the hypothesis of freeness of M if k is a field. Indeed, in this case, the
submodule can be taken as generated by the shifts (right or left) of f and the representation
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is automatically compatible with the relations of M .
iii) Here the star is used as the localization at one (i.e. with positive formulas) of the
inverse function. Indeed, with coefficients in a ring, if we are at the neighbourhood of 1,
the condition (1 − x)(1 + y) = 1 (resp. (1 + y)(1 − x) = 1) is equivalent to y = x + xy
(resp. y = x + yx). These self-reproducing positive conditions are taken as the definition
of “y is a star of x” in a semiring (see [12]).
iv) The condition (iv) in theorem (4.3) is known under the name of Kleene-Schützenberger
theorem as, when k is specialized to B, this is actually Kleene’s theorem. In this sense,
this theorem lies at the frontier of harmonic analysis (the set of representative functions
is dense in the Fourier space of compact groups), spectral theory (the notion of full subal-
gebra closure comes from this theory [4]) and theoretical computer science (the notion of
star was developped as a computational model of iteration and the notion of a semiring
was developped to cope with general scalars as diverse as the ones arising in stochastic
automata theory and shortest path problems).

In the general case (X not necessarily finite), Kleene-Schützenberger’s theorem has to be
modified as follows.

Theorem 4.5 Let M = X∗ be a free monoid, k a semiring and f ∈ kM . The following
are equivalent
i) the family (fw)w∈M belongs to a finitely generated shift-invariant left-submodule
ii) the family (wf)w∈M belongs to a finitely generated shift-invariant right-submodule
iii) there exist a row λ ∈ k1×n, a column γ ∈ kn×1, and a representation (of monoids)
µ : M → (kn×n,×) such that (∀w ∈ M)(f(w) = λµ(w)γ).
iv) the function f lies in the rational closure of kX = {

∑

x∈X α(x)x}α∈kX (i.e. the smallest

subalgebra of k〈〈X〉〉 closed under the star operation which contains kX).

Remark 4.6 The rational closure of X is, in fact, the intersection of the set of elements
characterized by (i-iii) (i.e. Sweedler’s dual of k〈X〉), and the algebra

⋃

F⊂X
F finite

k〈〈F 〉〉 of

the series whose support involves a finite alphabet.

5 Rational expressions

The construction of [7] was localized at zero, we extend it here to any localization i.e. for
any mapping Λ : X → k.
As the rational closure involves a unary law (the star) partially defined, the definition of
universal formulas for this closure needs some caution. Indeed, we need to build in parallel
a “character” (the constant term) const so that all proper expressions should have a star.

One first defines, as in [7] the completely free expressions (or formulas) as the terms of
the universal algebra defined on X ∪ {0E} (0E, which does not belong to X will serve
as a null or void expression and will be mapped to the zero series). This algebra will be
denoted Ecf (X, k). More precisely

- If x ∈ X ∪ {0E} then x ∈ Ecf (X, k).
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- If E,E1, E2 ∈ Ecf (X, k), and λ ∈ k then

E1 + E2 ∈ Ecf (X, k), E1 · E2 ∈ Ecf (X, k)
λE ∈ Ecf (X, k), Eλ ∈ Ecf (X, k).

- If E ∈ Ecf (X, k) then E∗ ∈ Ecf (X, k).

The partial function const : Ecf (X, k) → k (constant term) is constructed as follows:

1. If x ∈ X const(x) = Λ(x) and const(0E) = 0k.

2. If E,Ei ∈ Ecf (X, k), i = 1, 2 and λ ∈ k then

const(E1 + E2) = const(E1) + const(E2), const(E1 · E2) = const(E1) · const(E2)
const(λE) = λconst(E), const(Eλ) = const(E)λ.

3. If const(E) = 0k then const(E∗) = 1k.

The domain of const will be called rational expressions and denoted EΛ(X, k). For example
0∗E ∈ EΛ(X, k).
Let now Θ : X → k〈〈A〉〉 be a mapping such that, for every x ∈ X, the con-
stant term of Θ(x), i.e. the coefficient of 1A∗ in Θ(x), is equal to Λ(x) (in symbols,
∀x ∈ X), [1A∗ ]Θ(x) = Λ(x)). Following recursively (1-2-3) above, we can construct a
polymorphism φΘ : EΛ(X, k) → k〈〈A〉〉 which is a morphism for the laws (2 internal and
2 external) and the star. Moreover δ1A∗ ◦ φΘ = const (i.e. const can be considered as a
“constant term function” for the expressions). The image of φΘ is exactly the rational
closure of the set {Θ(x)}x∈X .

6 Dual laws and bialgebras

Let ∆ : A → A⊗A be any comultiplication (i.e. A is a k-coalgebra). It is known that
its dual (A∗,t ∆) is an algebra and if A is coassociative (resp. cocomutative, counital), A
is associative (resp. commutative, unital) [1].
We would like here to enlarge the framework of [13].
If A is an algebra, let us call dual law on A∗ a law of the form t∆ for some (not necessarily
coassociative) comultiplication on A.
In [13] were considered the dual laws on k〈〈X〉〉 ≃ k〈X〉∗ in order to prove that the
Hadamard and Infiltration products, which were known to preserve rationality, were es-
sentially the only (along with an interpolation between the two) alphabetic (associative
and unital) dual laws between series. The notion of dual law provides an implementation
scheme for the automata so that the rationality preservation is naturally effective.

Theorem 6.1 Let A be a k-algebra and ∆ : A → A⊗A be a comultiplication which is
a morphism of algebras. Then
i) If k is a field, Sweedler’s dual A◦ of A is closed under the dual law t∆.
ii) If k is a semiring and A = k〈X〉, A◦ is closed under the dual law t∆.
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Note 6.2 i) The theorem is no longer true if ∆ : A → A ⊗ A is arbitrary (i.e. not
necessarily a morphism) as shows the following counterexample. With ∆ : Q[x] →
Q[x] ⊗ Q[x] such that ∆(x) = 1

n!
(xn ⊗ xn), one has

t∆(
1

1 − x
,

1

1 − x
) = exp(x).

ii) In (i) above, the restriction on scalars (to be a field) can be extended to inductive limits
of PIDs.
iii) Comultiplications different from morphisms can preserve rationality. For example, let
∆ : k〈X〉 → k〈X〉 ⊗ k〈X〉 be a morphism and ∆1 : k〈X〉 → k〈X〉 ⊗ k〈X〉 be a linear
mapping which coincides with ∆ except for a finite number of words of X⋆. It can be
checked that ∆1, although not a morphism, preserves rationality.

Let us now return to the case of a bialgebra (B, ., ∆, 1B, ε). The following proposition
says that, if a linear form on B is transformed by tm (m : B ⊗ B → B is just the multi-
plication mapping) into an element of B∗ ⊗ B∗, it must be of the form exhibited in (iv)
of Proposition 2.1. Let us state that precisely.

Proposition 6.3 Let (B,m, ∆, 1B, ε) be a bialgebra and f ∈ B∗.
1) The following are equivalent
i) tm(f) ∈ B∗ ⊗ B∗ (for the canonical embedding B∗ ⊗ B∗ →֒ (B ⊗ B)∗)
ii) f ∈ R(k,B, .)
iii) ker(f) contains a finite-codimension one-sided ideal
iv) ker(f) contains a finite-codimension two-sided ideal
v) There exist λ ∈ k1×n, γ ∈ kn×1 and µ : (B, +, .) → (kn×n, +,×) a morphim of k-
algebras (associative with units) such that (∀x ∈ B)(f(x) = λµ(x)γ).
2) Moreover, let B0 be the set of linear forms which are decomposable as 1 − (i) above.
Then (B0,t ∆,t m,t ε,t 1B) is a bialgebra, and if B admits an antipode σ (i.e. is a Hopf
algebra), one has tσ(B0) ⊂ B0 and (B0,t ∆,t m,t ε,t 1B,t σ) is a Hopf algebra.

7 An application of rational expressions to Combi-

natorial Physics

In a joint work with J. Katriel, one of us gave the solution of the problem of matrix
coefficients in the Fock space of carriers between two levels. We give here a brief review
of these continued fractions-type formulas and provide a sketch of their proof.
In [24] was considered, as a Fock space, a general vector space V over a field k with basis
|en〉 n = 0, 1, · · ·, equipped with its natural grading

V = ⊕n∈ZVn with Vn := ken; V−n−1 := {0} for n ≥ 0 (3)

and scalar product defined by 〈en|em〉 = δn,m. Let f, g be two linear operators on V of
degrees −1, +1, respectively. Generically, they read

for n ≥ 0; f |e0〉 := 0; f |ek+1〉 = αk+1|ek〉; g|ek〉 := βk+1|ek+1〉 (4)
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We consider the words in f, g:

w(f, g) := fp1gq1fp2gq2 · · · fpngqn (5)

the degree (excess) πe(w) of which is
∑n

k=1(qk − pk) (this is, for algebraists, the degree of
the graded operator fp1gq1fp2gq2 · · · fpngqn). This provides a representation µ of a two-
letter free monoid {b−, b+}

∗ on V by µ(b−) = f ; µ(b+) = g, which is graded for the weight
on {b−, b+}

∗. In order to keep the reading of a word from left to right, one performs the
action on the right. Thus V becomes a {b−, b+}

∗ right module by

e0.b− = 0 ; en+1.b− = αn+1en ; en.b+ = βn+1en+1, n ≥ 0 (6)

one is interested by the matrix elements2.

〈en.{b−, b+}
i|em〉 = ω(i)

n→m . (7)

Define W
(i)
n→m as follows

W (i)
n→m = {w ∈ {b−, b+}

i | (πe(w) = m − n) and (w = uv =⇒ πe(u) ≥ −n)} . (8)

The following proposition characterizes W
(i)
n→m as an universal transporter between level

n and level m.

Proposition 7.1 i) If all the weights αn; n ≥ 1, βn, n ≥ 0 are nonzero, W
(i)
n→m is exactly

the set of words of length i such that 〈en.w|em〉 6= 0.

ii) In all cases the latter is a subset of W
(i)
n→m i. e.

{w ∈ {b−, b+}
i | 〈en.w|em〉 6= 0} ⊂ W (i)

n→m (9)

Indeed, W
(i)
n→m admits factorizations as “noncommutative continued fractions”. In order

to do this, we recall for the reader the definition of Dyck, positive Dyck and negative
restricted (by depth) Dyck codes, respectively:

D = {w ∈ π−1
e (0)|w = uv and ε /∈ {u, v} =⇒ πe(u) 6= 0}

D+ = {w ∈ D|w = uv and ε /∈ {u, v} =⇒ πe(u) > 0}

D
(n)
− = {w ∈ D− | min

uv=w
(πe(u)) = −n} . (10)

Now, identifying the subsets defined previously with their characteristic series in N〈〈b−, b+〉〉,
one has the following factorizations (here, equalities between rational expressions of

b±, D+ and D
(n)
− ).

2An interpretation of a similar coefficient in terms of paths, namely for the computation of

∫ +∞

−∞

xipnpmw(x)dx

where (pn)n∈N is a family of orthogonal polynomials for the weight w(x) can be found in [32].
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Proposition 7.2 Set Wn→m =
∑

i≥0 W
(i)
n→m.

1) One has the following factorizations for Wn→n+k

(D+ + D
(n)
− )∗(b+D∗

+)k =
[

→
∏

(k−1)

i=0
((D

(n+i)
− )∗b+)

]

(D+ + D
(n+k)
− )∗ if k ≥ 0

(D+b−)k(D+ + D
(n+k)
− )∗ = (D+ + D

(n)
− )∗

[

→
∏

(−k)

i=1
((b−(D

(n−i)
− )∗)

]

otherwise (11)

2) One has the following self-reproducing equations for the Dyck codes

D+ = b+(D+)∗b− ; D
(n)
− = b−(D

(n−1)
− )∗b+ ; D

(0)
− = ∅ (12)

The statements of this proposition can be considered as a “noncommutative continued
fraction” expansion of Wn→m.
As a result [24], with

µ(W (i)
m→n)|n〉 = ω(i)

n→m|m〉 and Tn→n+k :=
∑

i≥0

tiω
(i)
n→n+k , (13)

using proposition (7.2) and the representations µt(b±) = tb± (observe that µ1 = µ), one
can expand Tn→n+k as a product of continued fractions. Let

F+
n =

1

1 −
t2αn+1βn+1

1 −
t2αn+2βn+2

1 −
t2αn+3βn+3

1 − · · ·

=
1

1 − E+
n

F−
n =

1

1 −
t2αnβn

1 −
t2αn−1βn−1

1 −
t2αn−2βn−2

1 − · · ·

=
1

1 − E−
n

(14)

and

Fn =
1

1 − E+
n − E−

n

. (15)

Then, if k ≥ 0, we obtain

Tn→n+k = tkFn+k

k−1
∏

i=0

F−
n+i = tkFn

k
∏

i=1

F+
n+i (16)

and, if k ≤ 0

Tn→n+k = t−kFn+k

−k−1
∏

i=0

F+
n−i = t−kFn

−k
∏

i=1

F−
n−i (17)
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8 Conclusion

The dualization problem solved by Sweedler’s duals has striking relations with language
theory (for this last point, see [2]). A true “engineer-like” calculus was developped in
order to handle the rational closure mentionned above. This set of formulas is mainly
based on a recursion to compute the “star of a matrix” (the formulas and a complete
discussion can be found in [12] and are reminiscent of general formulas giving the inverse
of a matrix decomposed in blocks). This calculus is powerful enough to be the main
ingredient in investigating rationality properties within various domains (see [10, 11] for
noncommutative geometry and [2, 15] for automata theory) and sufficiently expressive to
give exact developments of some transfer coefficients in Combinatorial Physics [24]. These
rational expressions are generic in the sense that any Sweedler’s dual can be described by
them. In this way, as for Dirac’s notation, we can hope to inherit the computational skill
developped through fourty years of practice.
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