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1. Introduction

Perturbative renormalization is by far the most successful technique for computing
physical quantities in quantum field theory, allowing for instance the unique achieve-
ment of being able to accurately predict the first ten decimal places of the anomalous
magnetic moment of the electron.

Renormalization has been settled as a self-consistent approach to the treatment of
short-distance singularities in the perturbative expansion of quantum field theories
thanks to the work of Bogoliubov, Parasuik, Hepp, Zimmermann, and followers.
Nevertheless, its intricate combinatorics went unrecognized for a long time. In this
short review we want to describe the results in a recent series of papers devoted
to the Hopf algebra structure of quantum field theory (QFT).

These results [1-5, 8, 13] culminate in a few remarkable facts which give math-
ematical structure to perturbative renormalization.

— For each perturbative QFT, with its Green functions expanded in terms of Feynman
diagrams, one finds a Lie algebra of Feynman graphs obtained from anti-
symmetrizing the pre-Lie algebra operation of plugging graphs into each other
in all possible ways.

— The corresponding Lie group is a group of characters of a Hopf algebra of Feynman
graphs.

— The dual of the universal enveloping algebra of this Lie algebra gives rise to this
commutative Hopf algebra of Feynman graphs whose structure maps (counit,
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coproduct, and coinverse) determine the forest formulas underlying the Bogoliubov
recursion.

— Resolving Feynman graphs into their divergent sectors shows that the universal
Hopf algebra providing the role model for all such Lie algebras is a Hopf algebra
of rooted trees, as it should not surprise the practitioner of QFT: the short-distance
singularities are located along diagonals of configuration spaces known to be
stratified by such trees.

— The most successful approach in practice, minimally subtracted dimensional
regularization, corresponds to a Riemann—Hilbert decomposition of the character
given by the Feynman rules in this regularization.

— Locality allows to use this decomposition to construct a homomorphism from the
above Lie group to the group of difftfomorphisms of physical parameters,
culminating in a geometrical understanding of the pf-function and the
renormalization group.

It is the last two points on which we will focus here, but let us start gently by
reviewing the spirit of renormalization.

The physical motivation behind the renormalization technique is quite clear and
goes back to the concept of effective mass in nineteen century hydrodynamics.
To appreciate it, one should dive under water with a ping-pong ball and start
applying Newton’s law

F=ma (1)

to compute the initial acceleration of the ball B when we let it loose (at zero speed
relative to the water). If one naively applies (1), one finds (see the QFT course
by Sidney Coleman) an unrealistic initial acceleration of about 20g! In fact as
explained in loc. cit. due to the interaction of B with the surrounding field of water,
the inertial mass m involved in 1 is not the bare mass my of B but is modified to

m=my+iM, 2

where M is the mass of the water occupied by B.
It follows, for instance, that the initial acceleration a of B is given, using the
Archimedean law, by

—(M —mo)g = (mo +1M)a (3)

and is always of magnitude less than 2g.

The additional inertial mass é m = m — my is due to the interaction of B with the
surounding field of water and if this interaction could not be turned off (which
is the case if we deal with an electron instead of a ping-pong ball) there would
be no way to measure the bare mass m.

The analogy between hydrodynamics and electromagnetism led (through the work
of Thomson, Lorentz, Kramers’ etc. [10]) to the crucial distinction between the bare
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parameters, such as m, which enter the field theoretic equations, and the observed
parameters, such as the inertial mass m.

A quantum field theory in D = 4 dimensions, is given by a classical action func-
tional

S(A4) = /ﬁ(A)d“x 4)
where A is a classical field and the Lagrangian is of the form
2 m
L(A)=Q@A)/2 —— A"+ Lin(A), )

and where L;,(A) is usually a polynomial in 4 and possibly its derivatives.
One way to describe the quantum fields ¢(x), is by means of the time-ordered
Green’s functions

Gy(x1, ..., xn) =(0]T P(x1) ... P(xn)0) (6)

where the time-ordering symbol 7" means that the ¢(x;)’s are written in order of
increasing time from right to left.
The probability amplitude of a classical field configuration A4 is given by

- S(4)

e’ (7)

and if one could ignore the renormalization problem, the Green’s functions would be
computed as

Gy(X1, ..., Xy) = /\//e"¥ A(x1). .. A(xy) [dA], (8)

where N is a normalization factor required to ensure the normalization of the vac-
uum state

(010)=1. 9)

If one could ignore renormalization, the functional integral (8) would be easy to
compute in perturbation theory, i.e. by treating the term Li, in (5) as a perturbation
of

Lo(A) = (34)*/2 — ’"72 A% (10)

With obvious notations, the action functional splits as

S(A) = So(A) + Sini(A4), (11)

where the free action Sy generates a Gaussian measure exp (i So(A4)) [d4] = du.
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The series expansion of the Green’s functions is then given in terms of Gaussian
integrals of polynomials as

GN(x1, .o XN) = (Z i"/n!/A(X1)~ - A(xn) (Sine(A4))" dﬂ) X
n=0
o -1
x <Z i"/n! / Sint(A4)" du> .
n=0

The various terms of this expansion are computed using integration by parts under
the Gaussian measure u. This generates a large number of terms U(I'), each being
labelled by a Feynman graph I', and having a numerical value U(I") obtained as
a multiple integral in a finite number of space-time variables. As a rule the
unrenormalized values U(I') are given by nonsensical divergent integrals.

The conceptually really nasty divergences are called ultraviolet and are associated
to the presence of arbitrarily large frequencies or equivalently to the unboundedness
of momentum space on which integration has to be carried out. Equivalently, when
one attempts to integrate in coordinate space, one confronts divergences along
diagonals, reflecting the fact that products of field operators are defined only on
the configuration space of distinct spacetime points.

The physics resolution of this problem is obtained by first introducing a cut-off in
momentum space (or any suitable regularization procedure) and then by cleverly
making use of the unobservability of the bare parameters, such as the bare mass
my. By adjusting, term by term of the perturbative expansion, the dependence of
the bare parameters on the cut-off parameter, it is possible for a large class of
theories, called renormalizable, to eliminate the unwanted ultraviolet divergences.

The main calculational complication of this subtraction procedure occurs for dia-
grams which possess nontrivial subdivergences, i.e. subdiagrams which are already
divergent. In that situation the procedure becomes very involved since it is no longer
a simple subtraction, and this for two obvious reasons: (i) the divergences are no
longer given by local terms, and (ii) the previous corrections (those for the
subdivergences) have to be taken into account.

To have an example for the combinatorial burden imposed by these difficulties
consider the problem below of the renormalization of a two-loop four-point function
in massless scalar ¢* theory in four dimensions, given by the following Feynman
graph:

ro—
It contains a divergent subgraph:

M —
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We work in the Euclidean framework and introduce a cut-off 2 which we assume to
be always much bigger than the square of any external momentum p;. Analytic
expressions for these Feynman graphs are obtained by utilizing a map I'; which
assigns integrals to them according to the Feynman rules and employs the cut-off
/. to the momentum integrations. Then I';[T1] and I';[T™?] are given by

O —k?) 1

1 4

;e /dk ER— 5,
(k+p1 +p2)

and

U -1
rrPe) = [ a2 =D, 1. 1)
P(I +p1 +p2)
It is easy to see that I';[TJ] decomposes into the form blog/ (where b is a real
number) plus terms which remain finite for A — oo, and hence will produce a diver-
gence in I'?! which is a nonlocal function of external momenta

e’ - 2

~log /d4 ~logZ log(p + p2)”.
P+ pi +p2)

Fortunately, the counterterm L ~ log/ generated to subtract the divergence in

;[T will precisely cancel this nonlocal divergence in T'?, so that the remaining

divergence is local.

2 The Hopf Algebra of Graphs and the Riemann—Hilbert Problem

That this type of cancellation occurs at any order of perturbation theory, i.e. that the
two diseases above actually cure each other in general is a very nontrivial fact that
took decades to prove [9].

The detailed combinatorics is governed by the R operation of Bogoliubov and
Parasiuk (for a 1PI graph I')

R =U@)+ Y CHUT/y) (12)

v
=

which prepares a given graph with unrenormalized value U(I') by adding the
counterterms C(y), eliminating the subdivergences as in the above example. These
counterterms are constructed by induction using

C(IM)=-T|UM)+ > C;UT/) (13)
vl

where, for example using dimensional regularization and minimal subtraction, T is
just the extraction of the pole part in D =4 — ¢. The renormalized graph is then
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given by

R(I) =UD)+CID)+ Y CHIUT/). (14)

ycl
#

For a mathematician the intricacies of the detailed combinatorics and the lack of any
obvious mathematical structure underlying it make it totally inaccessible, in spite of
the existence of a satisfactory formal approach to the problem [11].

This situation was drastically changed by the discovery of one of us ([1]) that the
formula for the R operation in fact dictates a Hopf algebra coproduct on the free
commutative algebra H generated by the 1PI graphs I’

AT=T®1+1®T+» y®I/p, (15)
“/il"
This Hopf algebra is commutative as an algebra and we showed in [3, 5] that it is the
dual Hopf algebra of the enveloping algebra of a Lie algebra G whose basis is labelled
by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs
is computed from insertions of one graph in the other and vice versa. The corre-
sponding Lie group G is the group of characters of H.

The next breakthrough came from our joint discovery [5] that identical formulas to
equations (14-16) occur in the solution of the Riemann Hilbert problem for an arbi-
trary pronilpotent Lie group G, as demonstrated below!

This really unveils the true nature of this seemingly complicated combinatorics
and shows that it is a special case of a general extraction of finite values based
on the Riemann-Hilbert problem.

The Riemann-Hilbert problem comes from Hilbert’s 21st problem which he for-
mulated as follows: ‘Prove that there always exists a Fuchsian linear differential
equation with given singularities and given monodromy’. In this form it admits
a positive answer due to Plemelj and Birkhoff (cf. [6] for a careful exposition). When
formulated in terms of linear systems of the form

YO = A0E). A0 =Y (16)

oeS o

(where S is the given finite set of singularities, oo ¢ S, the 4, are complex matrices
such that

> 4,=0 (19)

to avoid singularities at co), the answer is not always positive [7], but the solution
exists when the monodromy matrices M, are sufficiently close to 1. It can then
be explicitly written as a series of polylogarithms [6].

Another formulation of the Riemann—Hilbert problem, intimately tied up to the
classification of holomorphic vector bundles on the Riemann sphere P;(C), is in
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terms of the Birkhoff decomposition

7@ =7-)"y.(), zeC, (18)
where we let C C P1(C) be a smooth simple curve, C_ the component of the comp-

lement of C containing co ¢ C and C, the other component. Both y and y, are
loops with values in GL,(C)

v(z) € G = GL,(C), VzeC, (19)
and y, are boundary values of holomorphic maps (still denoted by the same symbol)
7st Co = GL(C). (20)
The normalization condition y_(o0) = 1 ensures that, if it exists, the decomposition

(18) is unique (under suitable regularity conditions).
The existence of the Birkhoff decomposition (18) is equivalent to the vanishing

e (L) =0 20

of the Chern numbers n; =c;(L;) of the holomorphic line bundles of the
Birkhoff-Grothendieck decomposition

7

where E is the holomorphic vector bundle on P;(C) associated to 7y, i.e. with total
space:

(Cy x C"YU, (C_ x C"). (23)

The above discussion for G = GL,(C) extends to arbitrary complex Lie groups.

When G is a simply connected nilpotent complex Lie group the existence (and
uniqueness) of the Birkhoff decomposition (18) is valid for any y. When the loop
y: C — G extends to a holomorphic loop: C; — G, the Birkhoff decomposition
is given by y, =7, y_ = 1. In general, for zy € C, the evaluation

? > 74(20) €G 24)
is a natural principle to extract a finite value from the singular expression y(zg). This

extraction of finite values is a multiplicative removal of the pole part for a
meromorphic loop y when we let C be an infinitesimal circle centered at zj.
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Let G be a pronilpotent Lie group, H its graded Hopf algebra of coordinates. Let
us recall the dictionary between the geometric and algebraic viewpoints.

Homomorphisms from H—TR Loops from C to G

|
|

¢(H)C R- | 7 extends to a holomorphic map from C\{zo} > G
| with y(c0) = 1.
|

¢(H)C Ry | 7y extends to a holomorphic map defined at z = z.
|

p=¢1xpy | @) =1, VzeC.
|

¢poS | z— y(z)fl.

(25)
For elements X € H we shall use the short-hand notation
AX)=X®1+19X+)Y X'®X

for the coproduct. The Birkhoff decomposition of a loop can the be captured by an
inductive procedure given by the following theorem.

THEOREM 1. For ¢: H — R, the Birkhoff decomposition is given by

$_(X) = =T ($(N) + > ¢_(X)p(X"),
¢ (X) = d(X) + d_(X) + D ¢_(X)p(X").

We are now ready to apply this procedure in quantum field theory. First, using
dimensional regularization, the bare (unrenormalized) theory gives rise to a
meromorphic loop

1(2)e G, zeC. (26)

Our main result [4, 5] is that the renormalized theory is just the evaluation at the
integer dimension zy = D of spacetime of the holomorphic part y_ of the Birkhoff
decomposition of 7y, a strikingly simple result.

3. The p-function and the Renormalization Group

In fact, the original loop d — y(d) not only depends upon the parameters of the
theory but also on the additional ‘unit of mass’ u required by dimensional analysis.
We showed in [8] that the mathematical concepts developed in our earlier papers
provide very powerful tools to lift the usual concepts of the p-function and
renormalization group from the space of coupling constants of the theory to the
complex Lie group G.
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We first observed that even though the loop y(d) does depend on the additional
parameter pu,

p— 7,(d), (27)
the negative part, y,-, in the Birkhoff decomposition of y,,
Puld) = 7, (@) 9, (d) (28)

is actually independent of p,
2 =0 29)
ou Purtd) =1

This is a restatement of a well known fact and follows immediately from dimensional
analysis. Moreover, by construction, the Lie group G turns out to be graded, with
grading

0, e AutG, teR, (30)

inherited from the grading of the Hopf algebra H of Feynman graphs given by the
loop number

L(I') = loop number of T (3D

for any 1PI graph T
The straightforward equality

Ve d) =007, (d)  VieR, e=D-d (32)

shows that the loops 7, associated to the unrenormalized theory satisfy the striking
property that the negative part of their Birkhoff decomposition is unaltered by
the operation

7€) = 0u(y(e)) - (33)

In other words, if we replace y(¢) by 6,.(y(¢)) we don’t change the negative part of its
Birkhoff decomposition. We settled now for the variable

e=D—d e C\{0}. (34)

We give in [8] a complete characterization of the loops y(¢) € G fulfilling the above
striking invariance. This characterization only involves the negative part y_(e) of
their Birkhoff decomposition which by hypothesis fulfills

v_(£) 0,(7_(e)™") is convergent for ¢ — 0. (39
It is easy to see that the limit of (33) for ¢ — 0 defines a one parameter subgroup
F,eG, teR (36)

and that the generator § = (9/0t F;),_, of this one parameter group is related to the
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residue of vy

1
i),

by the simple equation
B=YResy, (38)

where Y = (8/9¢0,),_, is the grading.

This is straightforward but our result is the following formula (40) which gives
y_(¢) in closed form as a function of . We shall for convenience introduce an
additional generator in the Lie algebra of G (i.e. primitive elements of H*) such that,

[Zo, X]= Y(X), VXelicG. (39)
The scattering formula for y_(¢) is then

7-(e) = lim e~ (e+Z0) o120 (40)
Both factors in the right hand side belong to the semi-direct product

G=GxR (41)

of the group G by the grading, but of course the ratio (39) belongs to the group G.
This shows ([8]) that the higher pole structure of the divergences is uniquely deter-
mined by the residue and gives a strong form of the ’t Hooft relations, which will
come as an immediate corollary.
The main new result of [§8], specializing to the massless case and taking (pg as an
illustrative example to fix ideas and notations, is that the formula for the bare
coupling constant

g0 =82 Z3_3/2, (42)

where both gZ; = g+ dg and the field strength renormalization constant Z3 are
thought of as power series (in g) of elements of the Hopf algebra H, does define
a Hopf algebra homomorphism

Hew —> He (43)

from the Hopf algebra H ¢y, of coordinates on the group of formal diffeomorphisms
of C such that

@(0)=0, ¢'(0)=id (44)

to the Hopf algebra Hg of the massless theory. We had already constructed in [5] a
Hopf algebra homomorphism from Hcy to the Hopf algebra of rooted trees,
but the physical significance of this construction was unclear.
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The homomorphism (42) is quite different in that for instance the transposed
group homomorphism

G -2 Diff(C) (45)
lands, for ¢’ theory, in the subgroup of odd diffeomorphisms

p(=2) = —0p(z), Vz, (46)

due to the fact that each loop order in a radiative correction to go = g(1+---)
increases the degree by g. Moreover, its physical significance is transparent. In par-
ticular, the image by p of f = Y Res 7y is the usual -function of the coupling constant
g.

We discovered the homomorphism (44) by lengthy concrete computations which
were an excellent test for the explicit ways of handling the coproduct,
co-associativity, symmetry factors... that underly the theory.

As a corollary of the construction of p we get an action by (formal)
diffeomorphisms of the group G on the space X of (dimensionless) coupling con-
stants of the theory. We can then in particular formulate the Birkhoff decomposition
directly in the group,

Diff (X) (47)
of formal diffeomorphisms of the space of coupling constants.
THEOREM 2 ([8]). Let the unrenormalized effective coupling constant ger(e) be
viewed as a formal power series in g and let geir(e) = gerr, (€) (gerr ())~" be its
(opposite) Birkhoff decomposition in the group of formal diffeomorphisms. Then

the loop gerr_(¢) is the bare coupling constant and gy, (0) is the renormalized effective
coupling.

This result is now, in its statement, no longer depending upon our group G or the
Hopf algebra H. But of course the proof makes heavy use of the above ingredients.
It is a challenge to physicists to find a direct proof of this result.

Finally the Birkhoff decomposition of a loop

() € Diff (X), (48)

admits a beautiful geometric interpretation. If we let X be a complex manifold and
pass from formal diffeomorphisms to actual ones, the data (47) is the initial data
to perform, by the clutching operation, the construction of a complex bundle

P=(STxX)Us(S™ x X) (49)
over the sphere S = P1(C) = ST U S™, and with fiber X

x—pr-Ls. (50)
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The meaning of the Birkhoff decomposition

3(e) = 9-(e)" 94.e) (51)
is then exactly captured by an isomorphism of the bundle P with the trivial bundle
SxX. (52)

This shows the existence of a two-dimensional complex fiber bundle whose geometry
encodes the renormalization by local counterterms.

4. Conclusions

While these results were explicitly worked out for the case of ¢’-theory in six
dimensions, as an example of a renormalizable theory, the restriction to this case
was essentially pedagogical. The Hopf and Lie algebra structures can in fact be deter-
mined for any perturbative expansion [13]. Nevertheless, it will not merely be a
notational exercise. Obviously, in theories with several coupling constants, one con-
fronts homomorphisms between the group of characters of the Hopf algebra to
diffeomorphisms of a higher-dimensional space, with all the intricacies of such
higher dimensional diffeomorphisms coming into account. Also, the switch to other
renormalization schemes, elegantly provided by the group structure of characters,
will add to these intricacies. It is a straightforward but interesting task to bring
the powerful techniques described above to fruition in such circumstances, with first
results emerging [14].

Equally striking is the connection between algebraic structures on Feynman
graphs as revealed by these Lie and Hopf algebras and their transcendence. It is
a well-established fact that the residues of Feynman graphs, providing the building
blocks for the counterterm by the scattering type formula, evaluate in Euler-Zagier
sums up to the six loop level. Afterwards, one might expect a more general class
of numbers to appear. But these numbers themselves are in many ways related
to configuration space integrals, and are themselves governed by Hopf and Lie
algebra structures which are simpler, but still similar to the Hopf and Lie algebras
obtained from Feynman graphs [12, 13].

With the proper understanding of the algebraic structure which locality imposes
on the perturbative expansion being achieved with the discovery of these Hopf
and Lie algebra structures, and with the principle of multiplicative subtraction
so eclegantly realized in the Birkhoff decomposition as described above, one can
now dispense with any concern that the short-distance singularities render the
perturbative expansion useless. Perturbative quantum field theory was always
the workhorse for the practitioner of high-energy physics providing predictions
in striking agreement with observed phenomena. One now has reason to hope that
the firm conceptual ground on which this workhorse stands can finally be unraveled.
A tempting challenge in this respect is the transition from formal to actual
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diffeomorphisms in the Birkhoff decomposition, translating to a transition from the
perturbative to the non-perturbative regime in a quantum field theory.
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