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I. INTRODUCTION

Positive linear maps of C∗-algebras has been a subject of the mathematical literature for several years. In short,

such a map sends the cone of positive operators acting from a given Hilbert space into itself. Note that we use the

term “operators” when we refer to linear mappings of a general Hilbert space, but we only speak of “maps” when the

elements of the underlying Hilbert space are already interpreted as operators.

A map Φ is called k-positive for some k ∈ N if the tensor product Φ⊗ 1k is positive. When Φ is k-positive for any

k ∈ N, we call it completely positive (CP). The structure of the set of completely positive maps, which forms a proper

subset of the set of positive maps, is already well understood. Due to the theorem of Stinespring [1], any CP map can

be represented as a sum of congruence maps: Adai : x 7→ a∗i xai, where ∗ denotes the Hermitian conjugation, and the

operators ai are arbitrary. In physics literature the operators ai are called Kraus operators [2], and it is possible to

find such representation for which the number of them does not exceed d2, where d is the dimension of the underlying

Hilbert space Hd. In general the operators ai are of rank 6 d. In this paper we consider, among other classes, linear

maps for which there exists a representation into Kraus operators of rank not greater than k, where k = 1, . . . , d− 1.

These will be called k-superpositive, since in the case k = 1, the set of maps (denoted by S (H) in [3]) for which all

Kraus operators can be chosen to be of rank 1, coincides with the set of superpositive maps, introduced by Ando

[4] (see also [5]). In the case when an additional trace-preserving condition is imposed, superpositive maps are often

called entanglement breaking channels after the work by Horodecki, Shor and Ruskai [6].

Any linear map acting on the set B (Hd) of linear operators on Hd corresponds to an operator acting on the tensor

product of Hilbert spaces Hd ⊗Hd. This fact, known as the JamioÃlkowski isomorphism due to his early contribution

[7], implies an intrinsic relation between the sets of quantum maps and quantum states [8, 9]. In particular, k-

positive maps correspond to k-block positive operators [10, 11], which are positive on vectors of Schmidt rank 6 k.

Accordingly, completely positive maps of B (Hd) correspond to positive operators on Hd⊗Hd [12]. A positive matrix

representing a completely positive map in this isomorphism is called a Choi matrix or dynamical matrix [13]. It also

turns out that k-superpositive maps are dual to k-entangled operators, which are convex combinations of projections

onto vectors with Schmidt number not greater than k. Note that using this terminology, we could call separable

operators 1-entangled, but we prefer to use the common name.

As we explain later, the sets of maps which are k-positive, completely positive and k-superpositive (k = 1, . . . , d−1)

form a nested chain of proper subsets, see Table I and Fig. 1. Moreover, there exists a geometrical duality relation

that links k-positive maps to k-superpositive maps for any k = 1, . . . , d− 1. By the JamioÃlkowki-Choi isomorphism,
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the same inclusion and duality relations hold for the corresponding sets of k-block positive, positive and k-entangled

operators. We discuss this subject in more detail in Sections II and III. Table I summarizes on the mentioned dualities

and on the notation we are going to use in what follows.

Linear maps of B (Hd) Operators acting on Hd ⊗Hd

L (Hd) B (Hd ⊗Hd)

k a) cone b) dual cone a’) cone b’) dual cone

1 positive superpositive block positive separable

P (Hd) SP (Hd) BP (Hd ⊗Hd) Sep (Hd ⊗Hd)

2 2-positive 2-superpositive 2-block positive 2-entangled

P2 (Hd) SP2 (Hd) 2-BP (Hd ⊗Hd) 2-Ent (Hd ⊗Hd)

... ... ... ... ...

d−1 (d−1)-positive (d−1)-superpositive (d−1)-block positive (d−1)-entangled

Pd−1 (Hd) SPd−1 (Hd) (d− 1)-BP (Hd ⊗Hd) (d− 1)-Ent (Hd ⊗Hd)

d completely positive positive

CP (Hd) B+ (Hd ⊗Hd)

TABLE I: The cones of linear maps acting on the set of operators on Hd and the isomorphic cones of operators. Strict inclusion

relations hold upwards (∪) for the cones in columns a), a’) and downwards (∩) for the corresponding dual cones in columns b)

and b’). Note that for k = d the cones of d-positive and d-superpositive maps are both equal to the cone of completely positive

maps. The same holds for the corresponding families of d-block positive, d-entangled and positive operators on Hd ⊗Hd. The

cone of completely positive maps is selfdual and so is the corresponding cone of positive operators.

In spite of a considerable effort several years ago [3, 7, 10, 27–37] and more recently [38–47] the structure of the set

of positive maps acting on operators defined on a d-dimensional Hilbert space Hd is well understood only for d = 2.

In this case every positive map is decomposable, as it can be represented as a sum of a completely positive map and a

completely co-positive map. This mathematical fact, following from the results of Størmer [27] and Woronowicz [32],

has profound consequences for the entire theory of quantum entanglement. It implies that the commonly used PPT

criterion for quantum separability [14] works in both directions for 2× 2 quantum systems [15]. In other words, any

state of a two qubit system is separable if and only if it has the property of positive partial transpose (PPT). Hence

in this simplest case the sets of separable states and PPT states coincide, and any state characterized by a negative

partial transpose is entangled.
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This is not the case for higher dimensions. For instance, the existence of non-decomposable positive maps shown

for d = 3 by Choi [31], implies that for a 3 × 3 quantum system there exist PPT entangled states. Such quantum

states are called bound entangled [16], as they cannot be distilled into maximally entangled states, and their subtle

properties became recently a subject of a vivid scientific interest [17, 18]. In general, the question of characterizing

the set of entangled states for an arbitrary quantum system composed of two subsystems of size d, remains as one

of the key unsolved problems in the theory of quantum information. However, from a mathematical perspective this

problem is related to the characterization of the set of all positive maps in d dimensions, which is known to be difficult.

Since the set of block positive operators and separable operators are geometrically dual, any positive map (which

is not completely positive) can be used to detect quantum entanglement. In particular, the Choi matrix representing

such a map is given by a block positive operator and it may play the role of an entanglement witness [15, 19]. Such a

Hermitian operator W is characterized by the property that Tr (Wσ) > 0 for any separable state σ, while negativity

of Tr (Wρ) confirms that the analyzed state ρ is entangled. The key advantage of this notion is due to the fact that

the Hermitian operator W can be considered as an observable, and the expectation value Tr (Wρ) can be decomposed

into a sum of quantities which may be directly measured in a laboratory. In such a way one may experimentally

confirm that an analyzed quantum state ρ is indeed entangled [20, 21]. Similar methods work for witnessing states of

a given Schmidt number k [22, 23]. Then, k-block positive operators play the role of witnesses.

The set of entanglement witnesses thus corresponds to the set of block positive operators, the structure of which for

d > 3 is still being investigated [24–26, 45]. It is worth to emphasize that there is no universal witness, which could

detect entanglement of any state, but for any entangled state a suitable witness can be found. The most valuable

are extreme entanglement witnesses, which form extreme points of the set of block positive operators, since they can

also detect entanglement of some weakly entangled states. In this way the theory of quantum information provides a

direct motivation to study the structure of the set of block positive operators (i.e. the set of entanglement witnesses)

and its various subsets.

The aim of this work is to contribute to understanding of the non-trivial structure of the set of positive maps and

the corresponding set of block positive operators. We provide a constructive characterization of various subsets of the

set of positive maps. In particular we study relations based on duality between convex cones. Another class of results

concerns composition of quantum maps.

This paper is organized as follows. In section 2 we review necessary definitions of k-positive and k-superpositive

maps and formulate a kind of generalized JamioÃlkowski-Choi theorem, which relates them to k-block positive and
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k-entangled operators. Several other characterizations of these sets are proved. In section 3 we discuss the duality

between the cones of k-positive and k-superpositive maps and analyze its consequences.

In section IV we study the relations of the results obtained in the previous sections to K-positive maps, where K is

a so-called mapping cone, introduced in [3].

II. CONES OF POSITIVE MAPS AND THE CORRESPONDING SETS OF OPERATORS

A. Maps of B+ (H)

In this section we give the definitions to which we refer in later parts of the paper and provide some concrete

examples of objects that match these definitions. We review certain results already known in the literature and for

convenience of the reader we prove some of them.

In the entire paper, we shall consider only finite dimensional linear spaces. Let H = Hd be a Hilbert space of finite

dimension d. We denote by B (H) (E (H), B+ (H)) the set of linear (resp. Hermitian, positive) operators on H. We

choose an orthonormal basis {ei}d
i=1 of H and the corresponding complete set of matrix units {eij}d

i,j=1 in B (H).

Let us consider the set L (H) of linear maps sending B (H) into itself. An element Φ of L (H) is called Hermiticity

preserving iff Φ (E (H)) ⊂ E (H). Positive maps are the elements Φ which fulfill Φ (B+ (H)) ⊂ B+ (H). The set of

Hermiticity preserving maps will be denoted by E (H) and the set of positive maps by P (H). It is easy to show (cf.

[50]) that positivity of Φ ∈ L (H) implies the Hermiticity preserving property, so we have the inclusion P (H) ⊂ E (H).

Let k be a positive integer. The family of k-positive maps, Pk (H), is defined by the condition 1k ⊗Φ ∈ P (
Ck ⊗H)

.

That is, Φ ∈ L (H) is k-positive iff the tensor product of Φ by the k-dimensional identity map 1k remains positive. A

different characterization of k-positivity is given in the following lemma,

Lemma II.1. Let Φ be an element of L (H). The map Φ is k-positive iff the map

B (H⊗H) 3 x 7−→ (1d ⊗ Φ) (q ⊗ 1d)x (q ⊗ 1d) ∈ B (H⊗H) (1)

is positive for an arbitrary k-dimensional orthogonal projection q in H.

Proof. Let q =
∑k

i=1 |fi〉 〈fi|, where {fi}d
i=1 is an orthonormal basis of H. We choose {fi ⊗ ej}d

i,j=1 as the orthonormal

basis of H⊗H. The map (1) is positive iff it is positive on all one dimensional projections on H⊗H,

(1d ⊗ Φ) (q ⊗ 1d) |ψ〉 〈ψ| (q ⊗ 1d) > 0∀ψ∈H⊗H. (2)
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This is the same as

〈φ| (1d ⊗ Φ) (q ⊗ 1d) |ψ〉 〈ψ| (q ⊗ 1d)φ〉 > 0∀ψ,φ∈H⊗H. (3)

Let ψ =
∑d

i,j=1 ψijfi⊗ej and φ =
∑d

i,j=1 φijfi⊗ej . Because of the assumed form of q, in index notation the condition

(3) reads

d∑
r,s=1

d∑

j,m=1

k∑

i,l=1

(
φir

)∗
Φrs,jmψij

(
ψlm

)∗
φls > 0 (4)

for all
{
ψij

}i=k,j=d

i,j=1
,
{
φlm

}l=k,m=d

l,m=1
⊂ C. Here Φrs,jm denote the matrix elements of Φ with respect to the standard

basis of B (H), Φ (ejm) =
∑d

r,s=1 Φrs,jmers. But eq. (4) is the same as

〈φ| ((1k ⊗ Φ) |ψ〉 〈ψ|) φ〉 > 0∀ψ,φ∈Ck⊗H. (5)

This condition means that (1k ⊗ Φ) |ψ〉 〈ψ| > 0 for any one-dimensional projector |ψ〉 〈ψ| onCk⊗H, which is equivalent

to k-positivity of Φ.

If Φ is k-positive for every k ∈ N, we call it completely positive. We shall denote the family of completely positive

maps with CP (H). Obviously, CP (H) =
⋂

k∈N Pk (H), but it is also a well known fact [12] that for k > d, we get

Pk (H) = CP (H). A natural question arises whether the sets Pk (H) with k 6 d are all distinct one from another.

An affirmative answer can be found in [48]. For k = 1, . . . , d, the map

φλ : B (H) 3 a 7→ Tr a1d − λ

d
a (6)

turns out to be k-positive iff λ > 1
k . This is a generalization of the famous example by Choi [30] of a map that is

(d− 1)-positive, but not completely positive,

φChoi : B (H) 3 a 7→ Tr a1d − d

d− 1
a. (7)

Consider an operator a ∈ B (H). It defines a congruence map (also called conjugation by a): Ada : B (H) 3 x 7→

a∗xa ∈ B (H). For any operator a such a map is completely positive. As observed by Kraus [2], any completely

positive map can be written in the form
∑n

i=1 Adai for some {ai}n
i=1 ⊂ B (H) (n ∈ N). The converse holds trivially,

so we get CP (H) = convhull {Ada|a ∈ B (H)}. If we impose additional conditions on the operators ai, we get even

stronger properties of Φ =
∑n

i=1 Adai than complete positivity.

For k ∈ N, we say that Φ is k-superpositive iff there exists a Kraus representation of Φ such that all the operators ai

are of rank not greater than k. We denote the set of k-superpositive maps by SPk (H). Obviously, SPk (H) = CP (H)
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for k > d. It is natural to ask whether the classes SPk (H) with k 6 d are all distinct one from another. It turns

out that they are, as follows from the Proposition II.6 at the end of this section. Maps which are 1-superpositive are

simply called superpositive [4] and we abbreviate the notation SP1 (H) to SP (H).

All the sets of operators that we introduced above have their corresponding left transposed partners. For any

A ⊂ L (H), we define

Aτ := {t ◦ Φ|Φ ∈ A} , (8)

where t is the transpose map. It is customary that the name of Aτ differs from the name of A by a “co” suffix. For

example, CP (H)τ is called the set of completely copositive maps. One can easily check that P (H) = P (H)τ and

SP (H) = SP (H)τ .

As a conclusion of the above discussion, we get the following chain of inclusions

SP(H) ⊂ SP2 (H) ⊂ . . .⊂ SPd−1 (H) ⊂ CP (H) ⊂ Pd−1 (H) ⊂ . . .⊂ P2 (H) ⊂ P(H) , (9)

where all the inclusions are strict, see Proposition II.6 (cf. also columns b) and a) in Table I).

Finally, we define the following three families of maps (k, m ∈ N),

Dk,m (H) := Pk (H) ∨ (Pm (H))τ
, (10)

Pk,m (H) := Pk (H) ∩ (Pm (H))τ
, (11)

Sk,m (H) := SPk (H) ∩ (SPm (H))τ
. (12)

We call them (k,m)-decomposable, (k,m)-positive and (k,m)-superpositive maps, respectively. Obviously, Pk,0 (H) =

Pk (H), Sk,0 (H) = SPk (H), P0,m (H) = (Pm (H))τ and S0,m (H) = (SPm (H))τ , so all the previously discussed

classes of maps are included in the definitions (11) and (12). It is also easy to see that Dk,m (H)τ = Dm,k (H),

Pk,m (H)τ = Pm,k (H) and Sk,m (H)τ = Sm,k (H) in general. Note that similar families of maps and inclusion

relations between them were analyzed by Chruściński and Kossakowski [45], who called k-superpositive maps partially

entanglement breaking channels. In [49] the author defines a family of maps which he calls “2-decomposable”, but

they correspond to S0,2 (H) in our notation. That is, we call them “2-supercopositive maps”. On the other hand, the

families D2,2

(
C3

)
and D2,2

(
C4

)
, which we would call 2-decomposable, appeared many times in the context of atomic

maps [38, 56, 57]. An element of L (H) is called atomic iff it does not belong to D2,2 (H). In particular, in [38] it was

proved that all the known generalized indecomposable Choi maps of B
(
C3

)
are atomic. This falsifies the possible

conjecture that the Størmer-Woronowicz theorem ([27], [32]) has a generalization of the form P (Cn) = Dn−1,n−1 (Cn).
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B. Operators on H⊗H

Linear operators on B (H) (“maps”) can be identified with corresponding elements of B (H⊗H) (“operators”). In

the following, we shall introduce the B (H⊗H) counterparts of the families of maps that we defined above.

Let Φ be an element of L (H). Following JamioÃlkowski [7] and Choi [12], we define

CΦ :=
d∑

i,j=1

eij ⊗ Φ(eij) = (1⊗ Φ) |Ψ+〉 〈Ψ+| , (13)

where Ψ+ =
∑

i ei ⊗ ei is a maximally entangled state on H⊗H. We shall denote the map Φ 7→ CΦ by J ,

J : L (H) 3 Φ 7−→ (1⊗ Φ) |Ψ+〉 〈Ψ+| ∈ B (H⊗H) . (14)

It is well known [7, 28] that J |E(H) is an isomorphism between E (H) and the set of Hermitian operators on H ⊗H,

E (H⊗H). Since P (H) ⊂ E (H), we shall concentrate on Φ|E(H) in most of what follows and we omit the subscript

|E(H). Thus J can be regarded as a R-linear isomorphism between the R-linear spaces E (H) and E (H⊗H).

Let us introduce the so-called set of k-block positive operators (k ∈ N),

k-BP (H⊗H) :=

{
a

〈
k∑

i=1

φi ⊗ ψi

∣∣∣∣∣ a

k∑

l=1

φl ⊗ ψl

〉
> 0∀{ψi}k

i=1,{φi}k
l=1⊂H

}
, (15)

where the a’s are elements of B (H⊗H). We write BP (H⊗H) instead of 1-BP (H⊗H) and simply call 1-block

positive operators block positive. One can easily prove that k-BP (H⊗H) ⊂ E (H⊗H) for arbitrary k > 1 (cf. [50]).

Moreover, we have the following

Proposition II.2. (Generalized JamioÃlkowski-Choi theorem) Let k be a positive integer. The sets Pk (H) and

k-BP (H⊗H) are isomorphic. We have

J (Pk (H)) = k-BP (H⊗H) , (16)

where the isomorphism J was defined in (14).

Proof. Let Φ be an element of E (H). We shall prove that Φ ∈ Pk (H) is equivalent to CΦ ∈ k-BP (H⊗H) and thus

we will have proved (16). We start from the following lemma,

Lemma II.3. Let Φ ∈ E (H) and denote by Φij,kl the matrix elements of Φ with respect to the standard basis of B (H),

Φ (ekl) =
∑d

i,j=1 Φij,kleij. Let CΦ = (CΦ)rs,tu ert⊗ esu, so that (CΦ)rs,tu are the coefficients of CΦ with respect to the

basis {ert ⊗ esu}d
r,t,s,u=1. Then we have

(CΦ)ij,kl = Φjl,ik. (17)



9

Proof. By definition (see (13)), CΦ =
∑d

r,s=1 ers ⊗ Φ(ers). In index notation,

(CΦ)ij,kl =
d∑

r,s=1

(ers ⊗ Φ(ers))ij,kl =
d∑

r,s=1

(ers)ik (Φ (ers))jl . (18)

From (18) we readily get

(CΦ)ij,kl =
d∑

r,s=1

δriδsk (Φ (ers))jl =
d∑

r,s=1

δriδskΦjl,rs = Φjl,ik, (19)

which is the expected formula. Such a reordering of elements of the superoperator Φ, first used by Sudarshan et al.

[13] to obtain the matrix CΦ, was later called reshuffling [51].

Now we can prove Proposition II.2. When applied to CΦ, the k-block positivity condition that appears in (15) may

be rewritten in index notation as

d∑
r,s=1

d∑

j,m=1

k∑

i,l=1

(ψr
i )∗ φj

i (CΦ)rj,sm (φm
l )∗ ψs

l > 0 (20)

for all
{

ψj
i

}i=k,j=d

i,j=1
, {φm

l }l=k,m=d
l,m=1 ⊂ C. Since this should hold for arbitrary sets of complex numbers ψj

i , φm
l , we can

complex conjugate all of them in (20). We also change the names of indices like j ↔ r and m ↔ s. After all these

changes we get as equivalent to (20),

d∑
r,s=1

d∑

j,m=1

k∑

i,l=1

ψj
i (φr

i )
∗ (CΦ)jr,ms φs

l (ψm
l )∗ > 0, (21)

which should hold for all
{

ψj
i

}i=k,j=d

i,j=1
, {φm

l }l=k,m=d
l,m=1 ⊂ C.

Using Lemma II.3, we may rewrite (21) as

d∑
r,s=1

d∑

j,m=1

k∑

i,l=1

(ψr
i )∗ φj

iΦrs,jm (φm
l )∗ ψs

l > 0. (22)

After small rearrangements, this is precisely condition (4). The only difference is that the position of the first index in

φij and in ψlm was changed, which is not significant. As we mentioned in the proof of Lemma II.1, (4) is equivalent

to k-positivity of Φ and so is (22).

Proposition II.2 appears in the early work by Takasaki and Tomiyama, [10] (it was also proved in [11] using different

methods). Thus we have found the B (H⊗H) counterparts of the sets Pk (H). In particular, the case k = 1 gives

the relation between positive maps and block positive operators, analyzed by JamioÃlkowski [7]. On the other hand,

for any k > d one has that k-BP (H⊗H) = B+ (H⊗H). A similar equality holds between Pk (H) and CP (H) for

k > d. Using Proposition II.2, we recover the Choi’s well known result [12],
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Proposition II.4 (Choi). The set of completely positive maps of B (H) is isomorphic to the set of positive operators

on composed Hilbert space,

J (CP (H)) = B+ (H⊗H) . (23)

Thus for intermediate integer values, k = 2, . . . , d− 1, we get a kind of discrete interpolation between the theorems

of JamioÃlkowski and Choi.

To find the sets of operators corresponding to k-superpositive maps, we shall need the following lemma,

Lemma II.5. Let a ∈ B (H). Then

CAda
= |α〉 〈α| , (24)

where α ∈ H ⊗H, r := rk a (rk denotes the rank of a) and

α =
r∑

l=1

φl ⊗ ψl (25)

for some orthogonal vectors {φi}r
i=1 , {ψj}r

j=1 ⊂ H. Any operator |α〉 〈α| with α of the form (25) can be obtained as

CAda for some a ∈ B (H).

Proof. From the polar decomposition of a, we have a =
∑r

l=1

√
λlU |ψl〉 〈ψl|, where the λl’s are the eigenvalues of

|a| := √
a∗a, U is a unitary operator on H and the vectors ψl ∈ H are orthonormal. By the definition (13),

CAda =
r∑

l,m=1

d∑

i,j=1

eij ⊗
√

λlλm 〈ψl| U∗eijUψm〉 |ψl〉 〈ψm| (26)

Define ψ̃l =
√

λl

∑d
i=1

∑d
j=1 U i

jψ
j
l ei and φl =

√
λl

∑d
i=1

(∑d
j=1 U i

jψ
j
l

)∗
ei, where ψl =

∑d
j=1 ψj

l ej and U i
j are matrix

elements of U . The vectors φi are mutually orthogonal. We get

CAda =
r∑

l,m=1

d∑

i,j=1

〈
ψ̃l

∣∣∣ eijψ̃m

〉
eij ⊗ |ψl〉 〈ψm| (27)

It is easy to show that
∑d

i,j=1

〈
ψ̃l

∣∣∣ eijψ̃m

〉
eij = |φl〉 〈φm|. Hence (27) can be rewritten as

CAda =
r∑

l,m=1

|φl〉 〈φm| ⊗ |ψl〉 〈ψm| , (28)

which equals |α〉 〈α| for α =
∑r

l=1 φl ⊗ ψl. This proves the main part of the lemma. The fact that any projector

|α〉 〈α| can be obtained in this way follows from the calculation of CAda for a =
∑k

i=1 |φ̃i〉〈ψi|.
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Using Lemma II.5, we can prove the promised result that all the sets Pk (H) for k = 1, . . . ,H are distinct. We have

the following

Proposition II.6. Let k 6 d be a positive integer. Let a ∈ B (H) and rk a = k. The congruence map Ada is an

element of SPk (H), but not of SPk−1 (H).

Proof. Let a be as in the assumptions of the proposition. Obviously, Ada is an element of SPk (H). Let us assume

Ada =
∑

i Adai for some nonzero operators {ai}m
i=1 ⊂ B (H). By calculating the Choi matrices of both sides of this

equality, we get from Lemma II.5

|α〉 〈α| =
m∑

l=1

|αl〉 〈αl| (29)

for some m ∈ N and nonzero vectors α ∈ H, {αl}m
l=1 ⊂ H such that Ca = |α〉 〈α| and Cal

= |αl〉 〈αl|. But (29) can

only hold if all the vectors αl are scalar multiples of α. According to Lemma II.5, α is of the form
∑k

l=1 φl ⊗ ψl, so

all the vectors αl have to be of the same form as well. Using Lemma II.5 again, we conclude that rk al = k. Since

we made no assumptions about the al’s, the equality rk al = k implies that Ada cannot be an element of SPk−1 (H).

This proves our assertion [60].

In short, Proposition II.6 implies that the inclusion SPk−1 (H) ⊂ SPk (H) is strict for k 6 d, as we already

mentioned above.

Lemma II.5 can as well be used to find the families of operators in B (H⊗H) corresponding to k-superpositive

maps. By the very definition of SPk (H), an element Φ ∈ L (H) is k-superpositive iff it is of the form
∑m

l=1 Adal
for

some m ∈ N and {al}m
l=1 ⊂ B (H) such that rk al 6 k for all l = 1, . . . , m. According to Lemma II.5, this is the same

as

CΦ =
k∑

i,j=1

m∑

l=1

∣∣∣φ(l)
i ⊗ ψ

(l)
i

〉〈
φ

(l)
j ⊗ ψ

(l)
j

∣∣∣ (30)

for some m ∈ N and sets of vectors
{

φ
(l)
i

}k

i=1
,
{

ψ
(l)
j

}k

j=1
∈ H, where l = 1, . . . , m. We do not assume the vectors to

be nonzero. Obviously, operators on the right hand side of (30) make up the convex cone spanned by the positive

rank 1 operators
∑k

i,j=1 |φi ⊗ ψi〉 〈φj ⊗ ψj |. This is nothing else as the definition of an operator with the Schmidt

number equal to k - see [11, 53, 55].

Thus we get the following
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Proposition II.7. Let k be a positive integer. Let us define the set of k-entangled operators on H⊗H (equivalent to

the set of operators with Schmidt number less than or equal to k),

k-Ent (H⊗H) := convhull





k∑

i,j=1

|φi ⊗ ψi〉 〈φj ⊗ ψj | {φi}k
i=1 , {ψj}k

j=1 ⊂ H


 . (31)

Thus the set of k-superpositive maps is isomorphic to k-Ent (H⊗H),

J (SPk (H)) = k-Ent (H⊗H) . (32)

We can now write a chain of inclusions corresponding to (9),

Sep ⊂ . . . ⊂ (d− 1) -Ent ⊂ B+ ⊂ (d− 1) -BP ⊂ . . . ⊂ BP, (33)

where all the the inclusions are strict (we omit the brackets (H⊗H) to fit the formula into the page and write Sep

instead of 1-Ent to simplify notation. The elements of Sep (H⊗H) are called separable operators). This chain of

inclusions, studied earlier in [45], corresponds to columns b’) and a’) in Table I on page 3.

To find the sets of operators corresponding to completely copositive (CP (H)τ ), k-copositive (Pk (H)τ ) and k-

supercopositive maps (SPk (H)τ ), we use the following lemma

Lemma II.8. Let A be a subset of L (H) and J (A) ⊂ B (H⊗H). We have

J (Aτ ) = (1⊗ t)J (A) := {(1⊗ t) a a ∈ J (A)} , (34)

Proof. From the definition (13), we have

Ct◦Φ = (1⊗ (t ◦ Φ)) |Ψ+〉 〈Ψ+| = (1⊗ t) (1⊗ Φ) |Ψ+〉 〈Ψ+| = (1⊗ t)CΦ. (35)

This gives us J (t ◦ Φ) = (1⊗ t)J (Φ), which proves the lemma.

The map 1⊗ t that appears in Lemma II.8 is called partial transposition. Using the lemma, we trivially get

Proposition II.9. Let k be a positive integer. We have the correspondences

J (CP (H)τ ) = (1⊗ t)B+ (H⊗H) , (36)

J (Pk (H)τ ) = (1⊗ t) k-BP (H⊗H) , (37)

J (SPk (H)τ ) = (1⊗ t) k-Ent (H⊗H) . (38)
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The sets Dk,m (H), Pk,m (H) and Sk,m (H) also have their B (H⊗H) counterparts,

Proposition II.10. Let k, m be positive integers. We have

J (Dk,m (H)) = k-BP (H⊗H) ∨ (1⊗ t) m-BP (H⊗H) , (39)

J (Pk,m (H)) = k-BP (H⊗H) ∩ (1⊗ t) m-BP (H⊗H) , (40)

J (Sk,m (H)) = k-Ent (H⊗H) ∩ (1⊗ t) m-Ent (H⊗H) . (41)

III. RELATIONS BETWEEN k-POSITIVE AND k-SUPERPOSITIVE MAPS. OTHER RELATIONS

It is a well known fact that E (H⊗H) is a d4-dimensional vector space over R and it is equipped with the symmetric

Hilbert-Schmidt product,

a · b := Tr (a∗b) = Tr (ab), (42)

where a, b ∈ E (H⊗H), and the last equality holds due to the Hermiticity of a.

Let A be a cone in E (H⊗H). We define the dual cone of A,

A◦ := {b ∈ E (H⊗H) a · b > 0∀a∈A} . (43)

By comparing the definitions (15) and (31), we easily get

Proposition III.1. k-BP (H⊗H) = (k-Ent (H⊗H))◦

Proof. Follows directly from the definition of k-BP (H⊗H) if we observe that
〈

k∑

i=1

φi ⊗ ψi

∣∣∣∣∣ a
k∑

j=1

φj ⊗ ψj

〉
= Tr


a

∑

i,j=1

|φj ⊗ ψj〉 〈φi ⊗ ψi|

. (44)

By substituting k = d, we get (B+ (H⊗H))◦ = B+ (H⊗H), which was discussed in [8, 45], and may easily be proved

directly. Remember that we have d-Ent (H⊗H) = d-BP (H⊗H) = B+ (H⊗H).

From the existence of separating hyperplanes in Rn (cf. Theorem 14.1 in [54]) it follows that (A◦)◦ = Ā for any

cone A ∈ E (H⊗H). In particular,

(A◦)◦ = A (45)

for a closed convex cone A ⊂ E (H⊗H). We call this fact the bidual theorem. As a consequence, we have
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Proposition III.2. k-Ent (H⊗H) = (k-BP (H⊗H))◦

Proof. In is easy to show that the set k-Ent (H⊗H) is closed (cf. e.g. [50]). Thus we can use the bidual theorem

together with Proposition III.1 to prove our assertion.

Using the natural duality in E (H⊗H), we can introduce an analogous operation in E (H). Let X ⊂ E (H) be a

convex cone. We define the dual cone of X as

X ◦ := {Φ ∈ E (H) Tr (CΦCΨ) > 0∀Ψ∈X } . (46)

It is easy to notice that (46) can as well be written as

(X )◦ = J−1
(
(J (X ))◦

)
, (47)

which makes the definition (46) transparent. As a direct consequence of (47) and Propositions II.2 and III.1, we

obtain

Proposition III.3. Pk (H) = SPk (H)◦

In a similar way, using Propositions II.7 and III.2, we obtain

Proposition III.4. SPk (H) = Pk (H)◦

This result was given in a slightly less explicit way in [39].

Remembering that SPd (H) = Pd (H) = CP (H), we easily obtain from Proposition III.3 or III.4 the relation

CP (H)◦ = CP (H). The set of completely positive maps is self-dual.

Using the results presented above, it is straightforward to show the following

Corollary III.5. Let k,m be positive integers. We have Dk,m (H)◦ = Sk,m (H) and Sk,m (H)◦ = Dk,m (H)

The next result, related to composition properties of maps [45, 50, 51], will be crucial for our later discussion

Theorem III.6. SPk (H) ◦ Pk (H) = Pk (H) ◦ SPk (H) = SPk (H)

Proof. Being more explicit, we want to prove that Φ ◦ Ψ ∈ SPk (H) and Ψ ◦ Φ ∈ SPk (H) for arbitrary k ∈ N,

whenever Φ ∈ SPk (H) and Ψ ∈ Pk (H). It is sufficient to show this for Φ = Ada with an arbitrary a ∈ B (H) of rank

6 k. We prove first that Ψ ◦Ada is an element of SPk (H). For this we shall need the following lemma
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Lemma III.7. Let Ψ ∈ L (H) be k-positive. For any k-element set of vectors {ψi}k
i=1, there exists m ∈ N and vectors

{
ξ
(n)
l

}l=k,n=m

l,n=1
such that

Ψ(|ψi〉 〈ψj |) =
m∑

n=1

∣∣∣ξ(n)
i

〉〈
ξ
(n)
j

∣∣∣ (48)

for all i, j ∈ {1, . . . , k}.

Proof. The operator [Ψ (|ψi〉 〈ψj |)]ki,j=1 belongs to B
(
Ck ⊗H)

. Since ψ is positive, [Ψ (|ψi〉 〈ψj |)] ∈ B+ (C⊗H),

hence is a sum of positive rank 1 operators, which are necessarily of the form
[∣∣∣ξ(n)

i

〉〈
ξ
(n)
j

∣∣∣
]k

i,j=1
with

{
ξ
(n)
l

}l=k,n=m

l,n=1

as in the statement of the theorem.

Now we can prove that Ψ ◦Ada ∈ SPk (H). Let us take an arbitrary element x ∈ B (H). The fact that rk a 6 k is

equivalent to a =
∑k

i=1 |φi〉 〈ψi| for some vectors {φi}k
i=1 , {ψj}k

j=1 ⊂ H. Thus we get

Ada (x) =
k∑

i,j=1

〈φi| xφj〉 |ψi〉 〈ψj | . (49)

Now we calculate the action of Ψ ◦Ada on x,

(Ψ ◦Ada) x =
k∑

i,j=1

〈φi| xφj〉Ψ(|ψi〉 〈ψj |) =
m∑

l=1

k∑

i,j=1

〈φi| xφj〉
∣∣∣ξ(l)

i

〉〈
ξ
(l)
j

∣∣∣ . (50)

This is a sum of terms of the form (49) and we get Ψ ◦ Ada =
∑m

l=1 Adal
, where the operators al :=

∑k
j=1 |φj〉〈ξ(l)

j |

all have rank lower or equal k. Thus we have proved Ψ ◦ Ada ∈ SPk (H), which implies that Ψ ◦ Φ ∈ SPk (H) for

arbitrary Φ ∈ SPk (H). We still need to show that Φ ◦Ψ ∈ SPk (H). This can be easily deduced from the following

lemma,

Lemma III.8. Let Φ be an element of SPk (H) and Ψ an element of Pk (H). Let Φ∗, Ψ∗ be the adjoint operators of

Φ, Ψ (resp.) with respect to the Hilbert-Schmidt product on B (H), given by the formula (42) with a, b ∈ B (H). We

have Φ∗ ∈ SPk (H) and Ψ∗ ∈ Pk (H).

Proof. Just as B+ (H⊗H), the set B+
(
Ck ⊗H)

is self-dual. Thus we have that x ∈ B+
(
Ck ⊗H) ⇔ Tr (x∗y) >

0∀y∈B+(Ck⊗H). The definition of k-positivity of Ψ can be restated as

Tr
(
((1k ⊗Ψ) x)∗ y

)
> 0∀x,y∈B+(Ck⊗H). (51)

Equivalently,

Tr
(
((1k ⊗Ψ∗) y)∗ x

)
> 0∀x,y∈B+(Ck⊗H). (52)
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But this is just the condition (51) for Ψ∗. Hence Ψ ∈ Pk (H) ⇔ Ψ∗ ∈ Pk (H). To prove an analogous equivalence for

Φ, it is enough to consider the specific case Φ = Ada with rk a 6 k. We have

Tr
(
(Ada (x))∗ y

)
= Tr

(
(a∗xa)∗ y

)
= Tr

(
x∗ (aya∗)∗

)
= Tr

(
x (Ada∗ (y))∗

)
(53)

This gives us (Ada)∗ = Ada∗ . The ranks of a and a∗ are equal, so Ada ∈ SPk (H) ⇔ (Ada)∗ ∈ SPk (H), which

implies Φ ∈ SPk (H) ⇔ Φ∗ ∈ SPk (H) and finishes the proof of the lemma.

Now we can finish the proof of Theorem III.6. By Lemma III.8, Φ ◦ Ψ ∈ SPk (H) is equivalent to (Φ ◦Ψ)∗ =

Ψ∗ ◦ Φ∗ ∈ SPk (H). The last equality holds according to Lemma III.8 and to the first part of the theorem.

In short, we proved that for any Φ k-superpositive and Ψ k-positive, the products Φ◦Ψ and Ψ◦Φ are k-superpositive.

It is good to notice that Theorem III.6 justifies the name entanglement breaking channels, which is often used for

superpositive, trace preserving maps of B (H). To make this precise, we show the following

Corollary III.9. Let Φ be superpositive. For any ρ ∈ B+ (H⊗H), we have

(1⊗ Φ) ρ ∈ Sep (H⊗H) (54)

Proof. Since J (CP (H)) = B+ (H⊗H), where J is the isomorphism defined in (14), we have

ρ = (1⊗Ψ) |ψ+〉 〈ψ+| (55)

for a suitably chosen Ψ ∈ CP (H). We have

(1⊗ Φ) ρ = (1⊗ Φ) (1⊗Ψ) |ψ+〉 〈ψ+| = (1⊗ Φ ◦Ψ) |ψ+〉 〈ψ+| . (56)

Because CP (H) is a subset of P (H), Ψ is an element of P (H) an we get from Theorem III.6 the inclusion Φ ◦

Ψ ∈ SP (H). By Proposition II.7, the operator (1⊗ Φ ◦Ψ) |ψ+〉 〈ψ+| is separable. Comparing this with (56), we

immediately see that (54) is true.

Obviously, it is possible to repeat the argument given above in the case when we assume k-superpositivity of Φ and

demand k-separability of (1⊗ Φ) ρ. Therefore one could think of calling k-superpositive and trace preserving maps

k-separability inducing channels.

We shall finish this section with a number of characterizations of the sets SPk (H) and Pk (H). Together with

Theorem III.6, the following four theorems should be regarded as some of the most important material included in

the paper and be studied with care.
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Theorem III.10. Let Φ ∈ E (H) and k ∈ N. The following conditions are equivalent:

1) Φ ∈ SPk (H),

2) Ψ ◦ Φ ∈ SPk (H) ∀Ψ∈Pk(H),

3) Ψ ◦ Φ ∈ CP (H) ∀Ψ∈Pk(H),

4) Tr (|ψ+〉 〈ψ+| (1⊗ (Ψ ◦ Φ)) (|ψ+〉 〈ψ+|)) > 0 ∀Ψ∈Pk(H).

Proof. 1) ⇒ 2) As we know from Theorem III.6, Ψ ◦ Φ ∈ SPk (H) for Ψ ∈ Pk (H) and Φ ∈ SPk (H). This proves 2)

2) ⇒ 3) This implication is obvious because SPk (H) ⊂ Pk (H)

3) ⇒ 4) We know from 3) that Ψ ◦ Φ is completely positive. As a consequence of Choi’s theorem (Proposition II.4),

CΨ◦Φ = (1⊗ (Ψ ◦ Φ)) (|ψ+〉 〈ψ+|) is positive. Thus we have Tr (|ψ+〉 〈ψ+|CΨ◦Φ) > 0, which is precisely the statement

in 4).

4) ⇒ 1) Let ΘΨ,Φ denote Tr (|ψ+〉 〈ψ+| (1⊗ (Ψ ◦ Φ)) (|ψ+〉 〈ψ+|)). We calculate

ΘΨ,Φ = Tr (|ψ+〉 〈ψ+| (1⊗Ψ) ◦ (1⊗ Φ) (|ψ+〉 〈ψ+|)) = (57)

= Tr
(
(1⊗Ψ)∗ (|ψ+〉 〈ψ+|) (1⊗ Φ) (|ψ+〉 〈ψ+|)

)
=

= Tr ((1⊗Ψ∗) (|ψ+〉 〈ψ+|) (1⊗ Φ) (|ψ+〉 〈ψ+|)) = Tr (CΨ∗CΦ).

Thus the condition ΘΨ,Φ > 0∀Ψ∈PH , which we have in 4), is the same as

Tr (CΨ∗CΦ) > 0∀Ψ∈Pk(H) (58)

Using Lemma III.8 again, we see that (58) is equivalent to

Tr (CΨCΦ) > 0∀Ψ∈Pk(H). (59)

Comparing this with the definition (46) of the dual cone of Pk (H) and using Proposition III.4, we obtain

Φ ∈ (Pk (H))◦ = SPk (H) , (60)

which is 1).

The following three characterization theorems can be proved in practically the same way as Theorem III.10.

Theorem III.11. Let Φ ∈ E (H) and k ∈ N. The following conditions are equivalent:

1) Φ ∈ SPk (H),
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2) Φ ◦Ψ ∈ SPk (H) ∀Ψ∈Pk(H),

3) Φ ◦Ψ ∈ CP (H) ∀Ψ∈Pk(H),

4) Tr (|ψ+〉 〈ψ+| (1⊗ (Φ ◦Ψ)) (|ψ+〉 〈ψ+|)) > 0 ∀Ψ∈Pk(H).

Theorem III.12. Let Φ ∈ E (H) and k ∈ N. The following conditions are equivalent:

1) Φ ∈ Pk (H),

2) Ψ ◦ Φ ∈ SPk (H) ∀Ψ∈SPk(H),

3) Ψ ◦ Φ ∈ CP (H) ∀Ψ∈SPk(H),

4) Tr (|ψ+〉 〈ψ+| (1⊗ (Ψ ◦ Φ)) (|ψ+〉 〈ψ+|)) > 0 ∀Ψ∈SPk(H).

Theorem III.13. Let Φ ∈ E (H) and k ∈ N. The following conditions are equivalent:

1) Φ ∈ Pk (H),

2) Φ ◦Ψ ∈ SPk (H) ∀Ψ∈SPk(H),

3) Φ ◦Ψ ∈ CP (H) ∀Ψ∈SPk(H),

4) Tr (|ψ+〉 〈ψ+| (1⊗ (Φ ◦Ψ)) (|ψ+〉 〈ψ+|)) > 0 ∀Ψ∈SPk(H).

Theorem III.11 is much the same as Theorem III.10, but the order of the operators Ψ, Φ is different in these

theorems. Theorems III.12 and III.13 are in complete analogy with III.10 and III.11 (resp.), but the roles of k-positive

and k-superpositive maps have been exchanged. In section 4 we shall add two more to the list of equivalent conditions

in the the above theorems, see Corollaries IV.3 and IV.4.

We should remark that the four theorems given above make up a broad generalization of a number of relatively

well known facts about the sets P (H), CP (H) and SP (H),

Φ ∈ SP (H) ⇐⇒ Ψ ◦ Φ ∈ CP (H) ∀Ψ∈P(H) (61)

Φ ∈ CP (H) ⇐⇒ Ψ ◦ Φ ∈ CP (H) ∀Ψ∈CP(H) (62)

Φ ∈ P (H) ⇐⇒ Ψ ◦ Φ ∈ CP (H) ∀Ψ∈SP(H) (63)
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Figure 1: Cones of positive maps: a) d = 2, self-dual cone CP (H) = (CP (H))◦ and a pair of dual cones P (H) = SP (H)◦;

b) case d = 3 with yet another pair of dual cones P2 (H) = (SP2 (H))◦. The plot above shows unbounded cones and the

normalization hyperplane Tr x = 1, while the convex sets below represent their cross-sections. The same sketch is applicable

to the corresponding cones of block positive, positive semidefinite and separable operators.

Figure 2: A schematic picture of the chain of inclusions SP (H) ( SP2 (H) ( CP (H) ( P2 (H) ( P (H) (d > 3), which

takes into account the duality relations expressed in Propositions III.3 and III.4. The same sketch represents also the inclu-

sion relations among the sets of normalized operators, which correspond to sets of maps with respect to the JamioÃlkowski

isomorphism J .

(these can be found on page 345 of [51]). We should emphasize that the results like (61)-(63) and our four theorems

do not simply follow from the closedness relations of the type Φ, Ψ ∈ CP (H) ⇒ Φ ◦ Ψ ∈ CP (H) (and similarly for

P (H), Pk (H), SPk (H) and SP (H)).

A. A geometry detour

We find it useful to explain the duality between the cones of maps using simple examples taken from three-

dimensional Euclidean geometry. The relations expressed in Propositions III.3 and III.4 can be depicted as in Figure 1,
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which shows the cones of block-positive, positive and separable operators for d = 2 and d = 3. Note that the self-

dual cone for positive operators is represented by the right-angled triangle. The same sketch represents also the

corresponding cones of maps. In physical application one is often interested in a set of normalized operators. For

instance, the trace normalization Trx = 1 corresponds to a hyperplane, represented by a horizontal line.

The cross-section of such a normalization hyperplane with each cone gives bounded convex sets of a finite volume

estimated in [59]. Their structure for d = 3 is sketched in Fig. 2. The picture is exact in the sense that there exist

convex cones in R3 such that their section by an appropriately chosen plane gives the above sets which fulfill the

duality relations in accordance with Propositions III.3 and III.4. For example, the circle in Figure 2 is a section of

a cone of aperture π/2 by a plane perpendicular to its axis. The cone is self-dual, just as the set CP (H) which it

represents.

Figure 3: A sketch of the set of block positive operators (entanglement witnesses) for d = 2. It includes the set of positive

operators (quantum states) and the set of separable states. Three optimal witnesses (W1, W2, W3) are the extreme points of

BP and the corresponding dual lines (ω1, ω2, ω3) determine completely the shape of the set of separable states in this plot.

No other element W of the border of BP (H) is optimal (ω denotes the line dual to W ).

By modifying Figure 2 a little, we get a sketch that illustrates the important notion of an optimal entanglement

witness [24] (cf. also [52]). By definition, a block positive operator W ∈ B (H⊗H) is called optimal if and only if

the set ∆W := {ρ ∈ B+ (H) |Tr (ρW ) < 0} is maximal (with respect of inclusion) within the family of sets ∆W ′ (for

W ′ ∈ BP (H⊗H)). It is known [24] that optimal witnesses have to lie on the boundary of BP (H⊗H). In the case of

Figure 3, optimal witnesses coincide with the extreme points of BP (H⊗H). This is specific to the particular pictorial

representation that we use. In reality, there exist optimal entanglement witnesses that are not extreme. Still, not every

optimal witness is needed to determine the shape of the set of separable states, Sep (H⊗H) = BP (H⊗H)◦. It is in

principle possible to consider only the optimal witnesses which are extreme points of the intersection of BP (H⊗H)
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with the hyperplane TrW = 1. This is so because we have the following propositions, [61]

Proposition III.14. An operator ρ ∈ B (H⊗H) is separable iff Tr (Wρ) > 0 for all W extreme in BP (H⊗H)′ :=

{W ∈ BP (H⊗H) |Tr W = 1}.

Proof. The “only if” part is obvious from Proposition III.4. Let eBP (H⊗H)′ denote the set of extreme points

of BP (H⊗H)′. The “if” part of the proposition follows because BP (H⊗H)′ = convhull eBP (H⊗H)′ as well as

BP (H⊗H) = R+
0 BP (H⊗H)′, where the first equality is a consequence of the Krein-Milman theorem (BP (H⊗H)′

is compact) and the latter holds because a block positive operator W has zero trace only if W = 0. All in all, we get

BP (H⊗H) = R+
0 convhull eBP (H⊗H)′ and the proposition follows from Proposition III.4 by using the linearity

of the trace.

Proposition III.15. Every extreme point of BP (H⊗H)′ is an optimal entanglement witness.

Proof. According to Theorem 1 in [24], an entanglement witness W is optimal iff (1 + ε)W − εP 6∈ BP (H⊗H)

for arbitrary ε > 0 and a nonzero P ∈ B+ (H⊗H). Assume that W is an extreme point in BP (H⊗H)′ and

(1 + ε)W − εP ∈ BP (H⊗H) for some ε > 0, P ∈ B+ (H⊗H) \ {0}. This is the same as W − ξP ∈ BP (H⊗H)

for some ξ > 0 or W − υP/ TrP ∈ BP (H⊗H) for some υ > 0. Then, of course, W ′ := (1 + υ) W − υP/ TrP

is an element of BP (H⊗H)′. But this contradicts extremality of W since W = W ′/ (1 + υ) + υP/ ((1 + υ) TrP ),

1/ (1 + υ)+υ/ (1 + υ) = 1 and both W ′ and P/ TrP are elements of BP (H⊗H)′. Thus (1 + ε)W−εP 6∈ BP (H⊗H)

for arbitrary ε > 0 and P ∈ B+ (H⊗H) \ {0}, so W is optimal.

It is therefore natural to define extreme entanglement witnesses as the extreme points of BP (H⊗H)′ and to give

priority to witnesses which are not only optimal, but also extreme. We have

extreme entanglement witnesses = extreme points of BP (H⊗H)′,

and in principle, no other witnesses are needed to describe the set of separable states.

It should be kept in mind that Fig. 3 presents a highly simplified sketch of the problem. Even in the simplest

possible case of a 2 × 2 system the set of separable states is 15 dimensional and it is well known that this convex

set is not a polytope and its geometry is rather involved [51]. Nevertheless, a very clear characterization of optimal

entanglement witnesses that does not substantially depend on the dimension has recently been obtained by G. Sarbicki

[26].
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IV. MAPPING CONES

In the previous sections we have studied maps of B (H) into itself for H a finite dimensional Hilbert space, and

much of the technical work has involved the Choi matrix (13) and the JamioÃlkowski (14) isomorphism. In more

general situations these techniques are not available, and one of us introduced in [3] an alternative approach to study

positivity properties of maps of a C∗-algebra into B (H). We now recall some of the definitions. For simplicity we

continue to assume H is finite dimensional.

Let A be a C∗-algebra. Then there is a duality between bounded linear maps Φ of A into B (H) and linear

functionals Φ̃ on A⊗B (H) given by

Φ̃ (a⊗ b) = Tr
(
Φ(a) bt

)
, a ∈ A, b ∈ B (H) , (64)

where Tr is the usual trace on B (H) and t the transpose. Furthermore, Φ is positive iff Φ̃ is positive on the cone

A+⊗B+ (H) of separable operators. We say a nonzero cone K in P (H) is a mapping cone if Φ ∈ K implies Ψ◦Φ◦Υ ∈ K

for all Ψ, Υ ∈ CP (H). Well known examples are P (H), CP (H), the copositive maps and SP (H). We define

P (A,K) := {x ∈ A⊗B (H) |x = x∗,1⊗Ψ(x) > 0∀Ψ∈K} , (65)

where 1 denotes the identity map on L (H), P (A,K) is a proper closed cone in A ⊗ B (H) containing the cone

A+ ⊗B+ (H).

We say Φ is K-positive if Φ̃ is positive on P (A,K), and denote by PK (H) the set of K-positive maps of A into

B (H). Then Φ is completely positive iff Φ is CP (H)-positive [3, Theorem 3.2] iff Φ̃ is a positive linear functional on

A⊗B (H).

If A is contained in a larger C∗-algebra B then K-positive maps from A to B (H) have K-positive extensions to

maps from B into B (H), [3, Theorem 3.1]. In particular, this holds if B = B (H). Therefore the results from the

previous sections are applicable in much more general situations as soon as we can show K = PK (H). The main

results in the present section are concerned with this problem, and we shall show that it has an affirmative solution

for the cones Pk (H), SPk (H) and leave the discussion of Dk,m (H) and Sk,m (H) to the reader.

Lemma IV.1. The cones Pk (H), SPk (H), Dk,m (H) and Sk,m (H) are all mapping cones.

Proof. If Φ ∈ Pk (H) then 1k ⊗ Φ > 0, where 1k is the identity map on a k-dimensional Hilbert space. Thus if

Ψ ∈ CP (H),

1k ⊗ (Φ ◦Ψ) = (1k ⊗ Φ) (1k ⊗Ψ) > 0 (66)
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and

1k ⊗ (Ψ ◦ Φ) = (1k ⊗Ψ) (1k ⊗ Φ) > 0. (67)

Thus Pk (H) is a mapping cone.

If rk a 6 k then for all b ∈ B (H), rk ab 6 k and rk ba 6 k. Thus Adb ◦ Ada = Adba ∈ SPk (H), and Ada ◦ Adb ∈

SPk (H). It follows that SPk (H) is a mapping cone. From the definitions of Dk,m (H) and Sk,m (H) it follows that

they are also mapping cones.

Theorem IV.2. SPk (H) = PSPk(H) (H), and Pk (H) = PPk(H) (H).

Proof. By Theorem III.12, Φ ∈ Pk (H) iff Ψ◦Φ ∈ CP (H) for all Ψ ∈ SPk (H). Hence by [47, Theorem 1], Φ ∈ Pk (H)

iff Φ belongs to the dual cone PSPk(H) (H)◦ of PSPk(H) (H). By Proposition III.3, Pk (H) = SPk (H)◦. Thus

SPk (H) = Pk (H)◦ = PSPk(H) (H)◦◦ = PSPk(H) (H), proving the first statement.

Similarly by Proposition III.4, Φ ∈ Pk (H)◦ iff Φ ∈ SPk (H). Thus by Theorem III.10, Φ ∈ Pk (H)◦ iff Ψ ◦ Φ ∈

CP (H) for all Ψ ∈ Pk (H), hence by Theorem 1 in [47] iff Φ ∈ PPk(H) (H)◦. Thus Pk (H) = PPk(H) (H).

Using the above theorem and its proof together with Theorem 1 in [47] we can add two more conditions to the

equivalent conditions in Theorems III.10 and III.12,

Corollary IV.3. The following conditions are equivalent for Φ ∈ E (H),

1) Φ ∈ Pk (H), i.e. Φ is k-positive,

2) 1⊗Ψ(CΦ) > 0∀Ψ∈SPk(H),

3) Φ̃ ◦ (1⊗Ψ) > 0∀Ψ∈SPk(H).

Corollary IV.4. The following conditions are equivalent for Φ ∈ E (H),

1) Φ ∈ SPk (H), i.e. Φ is k-superpositive,

2) 1⊗Ψ(CΦ) > 0∀Ψ∈Pk(H),

3) Φ̃ ◦ (1⊗Ψ) > 0∀Ψ∈Pk(H).
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Using Proposition II.7, it becomes evident that the condition 2) in Corollary IV.4 is the same as the k-positive maps

criterion by Terhal and Horodecki [53]. For k = 1, we get the well known positive maps criterion by Horodeccy [15]

(Horodeccy is the plural form of the name Horodecki). Corollary IV.3 provides us with an analogous characterization

of the set of k-block positive operators: An operator a ∈ B (H⊗H) is k-block positive iff (1⊗Ψ) a > 0 for all

k-superpositive maps Ψ.

Furthermore, the main theorem in [49] is a version of Corollary IV.3, slightly modified to encompass 2-copositive

maps. One can easily deduce from it that the set of one-undistillable states on H⊗H is precisely 2-BP (H⊗H).

V. CONCLUDING REMARKS

In this paper we studied the structure of the set of positive maps from the space B (H) of linear operators on a finite-

dimensional Hilbert space H into itself. This topic is of substantial interest in quantum physics, since positive maps

are closely related to the separability problem due to the positive maps criterion by Horodeccy [15]. More generally,

but less acute, positive maps are related to the separability problem because they correspond to hyperplanes that

separate entangled states from the separable ones.

Here we developed general methods for proving results like the Horodeccy criterion, both in the situation where

the JamioÃlkowski isomorphism is at hand and within a more general setup, where other techniques need to be used,

based on mapping cones (cf. Section IV). Our discussion concentrated on k-positive maps and on the dual cones of

k-superpositive maps, consisting of completely positive maps that admit a Kraus representation by operators of rank

6 k (such maps are also called partially entanglement breaking channels, [45]). We gave a number of characterization

theorems (Theorems III.10, III.12, III.11, III.13 and Corollaries IV.3, IV.4) for both k-positive and k-superpositive

maps, pertaining to their properties under taking compositions. Central to these results is the observation that a

product of a k-superpositive map and a k-positive map is again a k-superpositive map (Theorem III.6). We have not

seen that particular result anywhere in the literature. Also our characterization theorems seem to appear for the first

time in this paper.

We introduced (similarly to [45], only using different notation) the cones of (k,m)-entangled, (k, m)-decomposable

and (k, m)-positive maps (Sk,m (H), Dk,m (H) and Pk,m (H), respectively). The main results of this paper can be

trivially generalized to these families of maps.

Most of our work relied on the simple and fine idea of duality between convex cones [54], which is nevertheless

hard to grasp intuitively for spaces of dimension higher than 3 (it is not even completely trivial for three-dimensional
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cones, see Figure 2). We hope that the figures we included in Section III could help the reader to develop basic

intuitions about the geometric background to our work. On that occasion we touched upon the question of optimality

of entanglement witnesses. By pointing out that the extreme points of the set of unital witnesses are optimal, we

tried to spill the idea that future efforts could concentrate on witnesses which are not only optimal, but also extreme.

Within this paper several results by other authors [7, 11, 12, 15, 49, 53] appear as special cases of general theorems.

Presented in the way we did it, they start to reveal a mathematical structure of a certain degree of generality. For

a mathematican, it is natural to ask if there are many examples of this structure, or maybe it is very specific to the

studied cones. In other words, the question is, how many are there interesting examples of mapping cones K in L (H)

such that PK (H) = K? We do not know the answer at the moment. From a physicist’s perspective, the key question

here is to what extend the families Sk,m (H), Dk,m (H) and Pk,m (H) can be useful in entanglement research and how

our theorems can be applied in practice. The example of the paper [49] suggests that our discussion is not purely

abstract and may relate to physically relevant questions like the distillability of entanglement.
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[51] I. Bengtsson and K. Życzkowski, Geometry of Quantum States, Cambridge University Press, Cambridge, 2006

[52] J. K. Korbicz, M. L. Almeida, J. Bae, M. Lewenstein, A. Acin, Structural approximations to positive maps and

entanglement-breaking channels, Phys. Rev. A 78, 062105 (2008)

[53] B. Terhal and P. Horodecki, A Schmidt number for density matrices Phys Rev. A 61, 040301 (2000)

[54] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1997

[55] A. Sanpera, D. Bruß and M. Lewenstein, Schmidt number witnesses and bound entanglement, Phys Rev. A 63 050301(R)



28

(2001)

[56] M.-D. Choi, Some assorted inequalities for positive linear maps on C∗-algebras, J. Operator Theory 4, 271 (1980)

[57] K. Tanahashi, J. Tomiyama, Indecomposable positive maps in matrix algebras, Canad. Math. Bull. 31 (3), 308 (1988)

[58] F. Hulpke, D. Bruß, M. Lewenstein, and A. Sanpera, Simplifying Schmidt number witnesses via higher-dimensional em-

beddings, Quant. Inf. Comp. 4, 207 (2004)
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