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E-mail: gniewko@fizyka.umk.pl

Abstract. A general formulation of the problem of detection for a pair of two
cones is presented. The special case is the detection of entangled states by
entanglement witnesses. Having defined what means “to detect”, one can identify
the subset of elements, which detect optimally. I will present the properties of
this set for a general pair of cones.

In particular, I prove the generalization of the theorem of Lewenstein, Krauss,
Cirac, Horodecki. The entanglement witness W is optimall iff the set of product
wectors {φ⊗ψ : 〈φ⊗ψ|W |φ⊗ψ〉 = 0} spans the whole Hilbert space of a system.

1. Introduction

In the set of mixed states of a bipartite quantum system one can define the subset of
separable states [1]. The state ρ is called separable, when there exists a decomposition
ρ =

∑
i piρ

(1)
i ⊗ ρ

(2)
i . In such states of a system, its subsystems can be correlated only

clasically.
There is no general method to determine, whether a given state is separable or

not. One of the most important tools are entanglement witnesses [2], [3]. A hermitian
observable is called entanglement witness, when its mean value in any separable state
is positive, but the observable is not semi-positive.

For an entanglement witness W we can define the set of entangled states, which
are detected by this entanglement witness, i.e. the states in which the mean value of
the entanglement witness is negative. We denote this set by D(W ). Now, we say that
entanglement witness W1 is finer than an entanglement witness W2, when it detects
more states, i.e. when D(W1) ⊃ D(W2). Entanglement witness, for which there exists
no finer witness, is called optimal [4].

In the set of quantum states we can define another set of states, the set of PPT
states. A states is a PPT state, when its partial transposition ρΓ = (I⊗T )ρ is positive.
The set of PPT states is a superset of the set of separable states, and the equality
holds only, when the dimensions of subsystems are 2× 2 and 2× 3 [2]. All entangled
PPT states are bound entangled [5]. Entanglement witness, which cannot detect PPT
entangled states, is called decomposable [4]. Any decomposable entanglement witness
can be written as W = A + BΓ, where A and B are semi-positive. Entanglement
witnesses, which are not decomposable, are called non-decomposable.

A nondecomposable entanglement witness W1 is called nd-finer (non-
decomposable finer) than another non-decomposable entanglement witness W2, when
W1 detects more PPT enatangled states than W2. A non-decomposable entanglement
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witness W is called nd-optimal (non-decomposable optimal), when there is no other
entanglement witness detecting more PPT entangled states than W [4].

There are two theorems characterizing optimality [4]:

Theorem 1. W1 is finer than W2 ⇐⇒ W2 = λW1 + P , for a positive scalar λ and
a semi-positive observable P .

Theorem 2. W1 is nd-finer than W2 ⇐⇒ W2 = λW1 + D, for a positive scalar λ
and D = A+BΓ for semi-positive observables A and B.

I will present later a generalization of these two theorems. To do that, it is
necessary to remind some basic concepts and facts about the geometry of proper
cones.

2. Geometry of proper cones

This section presents basic definitions and facts of theory of proper cones. For a more
detailed discussion see [6], [7].

Definition 3. A set K ⊂ RN is called a proper cone, iff:

(i) ∀µ, ν ≥ 0 ∀x, y ∈ K µx+ νy ∈ K
(ii) K is closed in RN

(iii) spanK = RN (fullness)
(iv) There exists no subspace of RN contained in K (pointedness)

A set of points of a cone differing by a positive scalar is called a ray of the cone.
Any ray can be written as {k · x : k ∈ R+}, and then we say, that it is generated by
an element x. A ray is called extremal, when a point of the ray cannot be decomposed
as a convex combination of points out of the ray.

Example 4 (Examples of proper cones). The set of unnormalized quantum states
(positive matrices) of d-level system is a proper cone in the real vector space of
hermitian matrices B(Cd). It’s extreme rays are generated by projectors of rank one.
This cone will be denoted by B+(Cd) or simply by B+.

A matrix ρ ∈ B+(Cd1 ⊗ Cd2) is called unnormalized separable state of two
subsystems of dimensions d1 and d2, when it can be decomposed as

ρ =
∑
i

Ai ⊗Bi,

where Ai ∈ B+(Cd1) and Bi ∈ B+(Cd2). It’s easy to check, that the set of
unnormalized separable quantum states is a proper cone in the space of hermitian
matrices B(Cd1 ⊗ Cd2). An extreme ray of this cone is generated by a tensor product
of rank-one semi-positive matrices, so one can write an alternative definition of
unnormalize separable state as:

ρ =
∑
i

|φi ⊗ ψi〉〈φi ⊗ ψi|, (1)

where vectors ψi and φi need not to be normalized. This cone will be denoted by
S1(Cd1 ⊗ Cd2) or simply by S1.

A bipartite quantum state ρ is called PPT state, when ρΓ ≥ 0. The set of
unnormalized PPT states is an intersection of cones B+(Cd1⊗Cd2) and BΓ

+(Cd1⊗Cd2).



General theory of detection and optimality 3

The set of its extreme rays is not known in general. This cone will be denoted by
SPPT (Cd1 ⊗ Cd2) or simply by SPPT .

The set of positive matrices and witnesses detecting entanglement in d1×d2-level
quantum system (a set of matrices positive on product vectors) is a proper cone in
B(Cd1 ⊗ Cd2). The set of its extreme rays is not known in general. This cone will be
denoted by W1(Cd1 ⊗ Cd2) or simply by W1.

The set of positive matrices and decomposable witnesses in d1× d2-level quantum
system is a proper cone, and its extreme rays are generated by matrices of the form P
or PΓ, where P is a projector of rank one. This cone will be denoted byWD(Cd1⊗Cd2)
or simply by WD.

2.1. Duality

For a cone K in a real vector space X one defines a proper cone K∗ in X∗.

Definition 5. A set K∗ defined as

K∗ = {y ∈ X∗ : ∀x ∈ K 〈y|x〉 > 0}
is called a dual cone of a proper cone K.

One can restrict the quantified set in definition to points of extreme rays of K.
The set K∗ is a proper cone. One can consider then the proper cone (K∗)∗.

Using the reflexivity of a finite-dimensional real vector space, one can easily prove,
that (K∗)∗ = K. The duality of proper cones has the following properties:

Fact 6. The properties of duality of cones:

• K ⊂ L ⇒ K∗ ⊃ L∗.
• (K ∩ L)∗ = conv(K∗ ∪ L∗).
• conv(K ∪ L)∗ = K∗ ∩ L∗

An inner product in X constitutes isomorfism between X and X∗. One can then
consider K and K∗ as elements of the same space. When for a cone K holds K = K∗,
one calls K self dual. In spaces of hermitian matrices, which we are interested in, such
an inner product is Hilbert-Schmidt product.

Example 7 (Quantum states). The cone B+ is self dual. Indeed, a matrix ρ ∈ B+ is
semi-positive, iff ∀ψ 〈ψ|ρ|ψ〉 ≥ 0, what can be rewritten as ∀ψ Tr(|ψ〉〈ψ|ρ) ≥ 0. The
matrix ρ is then positive on all extreme rays of B+, so ρ ∈ B∗+.

Example 8 (Separable states and entanglement witnesses). By definition, the matrix
W is an element of the proper cone W1 iff ∀ρ ∈ S1 〈ρ|W 〉HS ≥ 0, so W ∈ S∗1 . These
proper cones are dual to each other.

Example 9 (PPT states and nd-witnesses). The proper cone SPPT is an intersection
of two proper cones: B+ and BΓ

+. Due to the second property in Fact 6, the proper
cone B∗PPT is a convex hull of the sum of proper cones: (B+)∗ ∪ (BΓ

+)∗ = B+ ∪ BΓ
+.

Such a sum is spanned by the sum of sets of extreme rays of both cones, so its extreme
rays are generated by matrices P and PΓ, where P is a projector of rank one. The
proper cone spanned by the set of such extreme points is WD. The cones SPPT and
WD are dual to each other.
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2.2. Faces of a cone

A subset F of a proper cone K ⊂ RN is called a face of a cone, if it is an intersection
of the cone and a kernel of a linear functional which is non-negative on the cone.
Geometrically, a face is an intersection of the cone and a hipersurface tangent to the
cone. The fact that F is a face of a cone K is denoted by F C K.

A face F of a proper cone K is a proper cone in subspace spanF . A face G of
this cone is also a face of K. It allows us to define a relation in the set of faces of the
cone K:

Definition 10 (Subface). Having given two faces F,G C K, we call a face G a subface
of a face F , iff the face G is a face of the proper cone F in the subspace spanF .

The relation of beeing subface constitutes a partial order in the set of faces of a
proper cone. The maximal element due to this partial order is the whole cone K, and
the minimal element is the face {0}.

Intersection of two faces is a face. It allows us to define for a given x the minimal
face containing x as the intersection of all faces containing ρ. Such a face is said to be
generated by an element ρ. From now, the face of a cone K generated by an element
x will be denoted by FK(x).

Consider a face FΦ C K, which is an intersection of the cone K and the kernel
of functional Φ. Consider two elements x0, x1 ∈ K. Let x0 ∈ FΦ ⇔ Φ(x0) = 0 and
let x1 6∈ FΦ ⇔ Φ(x0) > 0. For arbitraty α > 0 an element x0 − αx1 6∈ K, because
Φ(x0 − αx1) = Φ(x0)− αΦ(x1) < 0. It means, that

x1 ∈ FΦ ⇔ ∃α > 0 : x0 − αx1 ∈ K,
but this condition holds for any FΦ containing x0, so also for the intersection of such
faces:

x1 ∈ FK(x0) ⇔ ∃α > 0 : x0 − αx1 ∈ K. (2)

There exists one-to-one correspondece between faces of K and faces of K∗. For
any face F of K one defines a face Φ(F ) called the complementary face of F :

Definition 11 (Complementary face). A face Φ(F ) C K∗ defined by the formula

Φ(F ) = {y ∈ K∗ : ∀x ∈ F 〈y|x〉 = 0}
is called a complementary face of the face F .

Further, we will need some properties of complementarity:

Proposition 12. Properties of complementarity:

(i) F C G ⇔ Φ(G) B Φ(F ).
(ii) Φ({0}) = K.

(iii) Φ(K) = {0}.
Example 13 (Faces of a cone of positive matrices). The structure of the cone B+(Cd)
is exactly known [8]. A face generated by a given element ρ ∈ B+(Cd) is the set of
all positive matrices with the image contained in the image of ρ. The dimension
of FB+(ρ) is equal (rankρ)2. Faces are then in one-to-one correspondence with the
lattice of subspaces of Cd. Denote the face of matrices with the image contained in
a subspace V as FV . It’s quite easy to find the face complementary to FV . We have
Φ(FV ) = FV ⊥ .
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3. Main results

From now on, we will consider two proper cones K ⊂ L in real vector space X.
At the beginning, let us define a relation between an element w ∈ L\K ⊂ X and

an element ρ ∈ K∗ \ L∗ ⊂ X∗.
Definition 14 (Detection of an element in K∗ \L∗ by an element in L \K). We say,
that an element w ∈ L \ K detects an element ρ ∈ K∗ \ L∗, iff ρ(w) < 0. For an
element w ∈ L \K we denote by DL|K(w) the set of all states in K∗ \ L∗ detected by
w.

The Banach separation theorem asures us, that for any element in K∗ \L∗ there
exists an element in L \K detecting it, and that the dual fact holds, i.e. any element
of the set L \K detects an element of a set K∗ \ L∗. One can extend the definition
14 to the whole proper cone L fixing DL|K(k) = ∅ for all k ∈ K ⊂ L.

For two elements w1, w2 ∈ L \K one can define a relation of “being finer”:

Definition 15 (“Being finer“). We say, that an element w1 ∈ L \ K is finer than
an element w2 ∈ L \K with respect to the proper cone K, iff DL|K(w1) ⊇ DL|K(w2)
(w1 detects more elements of K∗ \ L∗ than w2 in the sense of inclusion of sets). We
denote this fact by w1 ≥f(K) w2.

An element which is maximall with respect to this order is called optimal:

Definition 16 (Optimality). An element w1 ∈ L \K is called optimal with respect to
the proper cone K, if there is no other element finer than w1 in L \K (which detects
more elements in K∗ \ L∗).

On the other hand, one can define a relation of order with respect to the cone K:

Definition 17. An element w1 ∈ L is said to be greater than w2 ∈ L with respect to
the cone K, iff

∃λ ∈ R+ : w1 − λw2 ∈ K.
We will denote it by w1 ≥K w2.

One can prove a theorem, that both following relations are equivalent. This is a
generalization of Lemma 2 in [4] for arbitrary proper cones L and K ⊂ L ‡ .

Theorem 18. w1 ≥f(K) w2 ⇔ w1 ≤K w2

Proof: The proof bases on proof from [4].
”⇐”: Assume, that w1 ≤K w2. It means, that w1 = w2 − k for an element

of proper cone K. It means, that if only for an arbitrary ρ ∈ K∗ holds an
inequality ρ(w2) < 0, then also ρ(w1) < 0 holds, so DL|K(w1) ⊃ DL|K(w2), and
then w1 ≥L|K w2.

”⇒”: In the other side, assume that w1 ≥L|K w2, so that DL|K(w1) ⊃ DL|K(w2).
We will prove, that λw2 − w1 ∈ K, when a parameter λ is chosen to be:

λ = inf
ρ∈DL|K(w2)

∣∣∣∣ρ(w1)
ρ(w2)

∣∣∣∣ . (3)

We will do it proving an inequality:

∀ρ ∈ K∗ λρ(w2) ≥ ρ(w1) (4)

depending of the sign of the left-hand side.

‡ In [4] L = W1 and K = B+ or K = SPPT . Moreover, the work deals with normalized states and
witnesses, what the reader should have in mind comparing results.
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(i) ρ(w2) = 0 ⇒ ρ(w1) ≤ 0.
Suppose, that for some ρ ∈ K∗ we have ρ(w2) = 0 ∧ ρ(w1) > 0. Then there
exists such an ε > 0, that ∀ρ′ ∈ B(ρ, ε) ∩ K∗ ρ′(w1) > 0. This set contains
unempty interior, so it have to consist states, for which ρ′(w2) < 0, but it denies
the assumption w1 ≥L|K w2.

(ii) ρ(w2) < 0 ⇒ ρ(w1) ≤ ρ(w2).
We construct an element ρ1 ∈ K∗ as ρ1 = ρ − ρ(w2)I, where I denotes
arbitrary element of a proper cone K∗, for which I(w2) = I(w1) = 1. Such
constructed ρ1 fulfills the assumption from the previous case, so an equality
ρ1(w1) = ρ(w1)− ρ(w2) ≤ 0 holds, what proves the postulated inequality.
We will use it now to prove the inequality (4) for ρ(w2) < 0. We know, that
∀ρ ∈ DL|K(w2) an inequality ρ(w1) < 0 holds. It lets us to substitute the absolute
value in the formula 3 with negation, what leads to:

λ = inf
ρ̃∈DL|K(w2)

ρ̃(w1)
ρ̃(w2)

⇒ ρ(w1)
ρ(w2)

≥ λ ⇒ λρ(w2) ≥ ρ(w1),

what proves the inequality 4 in the case, when its left-hand side is negative.
(iii) ρ(w2) > 0 ⇒ λρ(w2) ≥ ρ(w1)

Let’s take an arbitrary element ρ1 ∈ DL|K(w2). Let’s define by use of it
new element of the proper cone K∗ as ρ2 = ρ(w2)ρ1 − ρ1(w2)ρ. An equality
ρ2(w2) = 0 holds for it, so one can use to it the result of the first step an
get ρ2(w2) = ρ(w2)ρ1(w1) − ρ1(w2)ρ(w1) ≤ 0. We get in result an inequality
ρ(w2)ρ1(w1) ≤ ρ1(w2)ρ(w1). Let’s divide its sides by a negative number
ρ1(w2)ρ(w2). We get then inequality:

ρ1(w1)
ρ1(w2)

≥ ρ(w1)
ρ(w2)

The above inequality holds for an arbitrary ρ1 ∈ DL|K(w2), so it holds also for
the infimum of the right-hand side taken due to the set D(w2). This infimum
defines the λ. Multiplying both sides of such derived inequality by ρ(w1) one gets
the inequality (4) for ρ(w2) > 0.

We have shown in this way, that the inequality (4) is fulfilled independly on the sign
of its left-hand side. �

Example 19. Choosing W1 as L and B+ as K, one gets Theorem 1.

Example 20. Choosing W1 as L and WD as K, one gets Theorem 2.

Having proven the theorem, on has immediately the following:

Proposition 21. The element w ∈ L is optimal with respect to K iff w − k 6∈ L for
any k ∈ K.

3.1. Geometrical properties of optimality

Lemma 22. If an element w ∈ opt(L|K), then FL(w) ⊂ opt(L|K).

Proof: Suppose, that y ∈ FL(w), but y is not optimal. We will see, that then w
cannot be optimal.

y ∈ FL(w)
def⇔ ∃α > 0,∃l1 ∈ L : w − αy = l1,

but y is not optimal, so ∃k ∈ K k 6= 0 ∃l2 ∈ L : y = l2 + k. Then w = l1 + αl2 + αk
so w is not optimal. �
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Lemma 23. F ⊂ opt(L|K) ⇔ F ∩K = {0}
Proof: ”⇒” A non-zero element of K detects no elements in K∗ \ L∗, so it

cannot be optimal (any other set contains empty set - any other witness detects
better) but F ⊂ opt(L|K) only if all elements of F are optimal, so when F ∩K 6= {0},
F 6⊂ opt(L|K).

”⇐” Suppose, that F 6⊂ opt(L|K). It means, that there exists an element x ∈ F
which is not optimal:

∃k ∈ K ∃l ∈ L : x = l + k ∧ k 6= 0,

but it implies, that k = x− l, so k ∈ FL(x). �

Theorem 24. An element w ∈ opt(L|K), iff Φ(FL(w)) ∩K 6= {0}.
Proof: If an element w ∈ opt(L|K), then the whole face generated by w is

included in opt(L|K). Using the Lemma 23 we know that the only point ofK contained
in FL(w) is 0, in particular the only face of K contained in FL(w) is {0}:

w ∈ opt(L|K) ⇔ ∼ ∃G C K,G 6= {0} : G C FL(w)
⇔ ∀G C K,G 6= {0} G 6C FL(w).

Now one can use the complementarity relation between faces:

w ∈ opt(L|K) ⇔ ∀H C K∗, H 6= K∗ H 6B Φ[FL(w)].

Any face of K∗, which is not the whole K∗, does not contain the face Φ[FL(w)]. It
implies, that face in K∗ generated by points of Φ[FL(w)] is equal the whole K∗, so
the set Φ[FL(w)] must contain a point from IntK∗. �

Definition 25. We will denote by PL(w) the set of points of extreme rays of
Φ(FL(w)), i.e. the set of all points y in L∗, such that 〈y|w〉 = 0.

Proposition 26. The element w ∈ L \ K is optimal, iff there exists a convex
combination of PL(w), which gives an element of IntK∗.

Example 27. Let L =W1(Cd1⊗Cd2) and K = B+(Cd1⊗Cd2). Then PL(w) is the set
of projectors onto product vectors φ⊗ψ, for which the inequality 〈φ⊗ψ|w|φ⊗ψ〉 = 0
holds. The elements of IntB∗+ = IntB+ are hermitian matrices of the full rank. The
combination of projectors from PL(w) can be of the full rank, iff the vectors φ ⊗ ψ
spans the whole Cd1 ⊗ Cd2 .

This fact was presented in [4], but only as a sufficient condition of optimality.
Here it has been proved, that it is also a necessary condition.

Let’s now consider the same condition for nd-optimality.

Example 28. Let L = W1(Cd1 ⊗ Cd2) and K = WD(Cd1 ⊗ Cd2). Then PL(w)
is again the set of projectors onto product vectors φ ⊗ ψ, for which the inequality
〈φ⊗ψ|w|φ⊗ψ〉 = 0 holds. The cone SPPT = B+ ∩BΓ

+, so the interior of SPPT is the
intersection of the interiors of B+ and BΓ

+. One has:

ρ ∈ IntSPPT ⇔ ρ ∈ IntB+ ∩ IntBΓ
+ ⇔ ρ ∈ IntB+ ∧ ρΓ ∈ IntB+

It implies, that if w ∈ opt(W1,WD), then w,wΓ ∈ opt(W1,B+). In the opposite
direction the implication does not work, because one can not be sure, if one can choose
the elements ρ1 ∈ B+ and ρ2 ∈ BΓ

+ to be equal.
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