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Abstract

Computations in renormalizable perturbative quantum field theories reveal mathematical

structures which go way beyond the formal structure which is usually taken as underlying

quantum field theory. We review these new structures and the role they can play in future de-

velopments.

� 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Quantum field theory is a venerable subject by now as the sole means providing us

on a daily basis with insights into the laws of nature in the high energy laboratories
around the world. Its most spectacular successes are in the perturbative regime,

where it provides for much celebrated coincidence between radiative correction cal-

culations and experiment. Similarly successful is its Euclidean counterpart in the

realms of statistical physics [1].

While demanding in their technical details, the computational praxis of these cal-

culations has essentially remained the same since loop calculations started in earnest

several decades ago:

• recursively, construct local counterterms so as to make any term in the perturbat-
ive expansion finite;

• find finite renormalizations such that the Ward–Takahashi- and Slavnov–Taylor

identities are respected order by order;

• and finally, calculate as much as you can.
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The Standard Model fares notoriously well when subjected to this program, and

in particular in its radiative correction sector it allows for an indirect look at inac-

cessible high energies, with results which so far do not support any deviation from

that model in any conclusive manner.

It is well understood how to set up such calculations in accordance with the re-
quirements of quantized local gauge theories. Here and there one or the other tech-

nicality still demands clarification (see [2] for an example), but by now the dedicated

group of practitioners of quantum field theory has the technical challenges implied

by locality, causality, and internal symmetries well under control.

The surprises and challenges for those practitioners of quantum field theory come

from a rather unexpected direction: there is, in this praxis of computational quantum

field theory seemingly overloaded by technicalities, a clear sign of deeper mathemat-

ical structure underlying quantum field theory which starts to emerge when one in-
vestigates the structure of higher order terms in the celebrated loop expansion.

For me, the two big surprises hidden in high loop order calculations are:

• the number-theoretic content of QFT and

• the Lie algebra of Feynman graphs overlooked for half a century.

Theyboth, Iwill argue, combine towards pointing to a connectionof quantumphys-

ics to number theory which, to mymind, must be understood before we have any hope

of deciphering the message of physics at small distances in any meaningful way.

Both surprises are typical perturbative phenomena. Both, I believe, tell us some-
thing about the exact theory which none of the so-called rigorous approaches to

quantum field theory seems yet to be able to reveal. Indeed, it seems to be a notori-

ous property of perturbation theory that this sum of the parts is larger than the

whole, in the sense that quite often the perturbative expansion is more revealing even

in circumstances where an exact solution is available [3].

In this sense, our venerable subject of QFT is still rather juvenile: we are only at

the beginning of getting an idea about the transcendental nature of the numbers and

special functions in its realm. Even more baffling, the Lie algebras underlying Feyn-
man graphs are at this moment poorly investigated whilst apparently very rich in

structure: the question of to what degree the secrets of the physics of the very small

lie hidden in their representation theory we only just about now learned to ask.

In this overview we want to describe mathematical structures in renormalizable

quantum field theories as they were discovered recently. We focus on renormalizable

theories in four dimensions of spacetime and their perturbative expansion in terms of

Feynman graphs, with emphasis given to possible non-perturbative aspects.

We will review recent results concerning the Hopf and Lie algebra structures in
such theories first. From there, we will connect them to various branches in mathe-

matics, foremost among them number theory, and also to selected aspects of non-

commutative geometry.

We also will present some new results, with a detailed derivation given elsewhere,

and will continuously point out open questions and perspectives.

Almost all the material presented stems from practical experience with the calcu-

lation of Feynman graphs. Indeed, our viewpoint is quite similar to that of �t Hooft

and Veltman�s Diagrammar [4]: in the absence of a truly rigorous derivation of
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Feynman rules, let us take Feynman diagrams as the starting point and try to under-

stand their structure. It is most amazing to what extent combinatorial and graph-the-

oretic structures already prescribe the properties which are usually celebrated as the

triumph of the axiomatic underpinning of QFT. It is most gratifying indeed to see

locality emerge just from basic combinatorial properties of Lie and Hopf algebras
of graphs, and even more gratifying to my mind to see the close relation to f-func-
tions already emerge at a combinatorial level. A further treat along these lines is the

emergence of the renormalization group from the consideration of one-parameter

groups of automorphisms of this Hopf algebra, and the final culmination of these

structures in the Riemann–Hilbert problem and its connection to renormalization

theory [5,6].

None of this is in conflict with the standard lore on QFT as developed in the

1970s. What is at stake though is the question of how fundamental this textbook ap-
proach is. The hints are growing that there is a deeper level possible in the under-

standing of QFT and that the axiomatics of QFT are, possibly, corollaries of yet

to be discovered mathematical structures, structures which all celebrate the funda-

mental role played by locality and its consequences in the elimination of short-dis-

tance singularities. The emergence of beautiful structures in the concepts of

renormalization theory only emphasizes the importance of the groundwork of the

fathers of renormalization theory for future progress with QFT.

In section one we summarize the basic notions of perturbative quantum field the-
ory using the pre-Lie structure of graph insertions. This allows us to derive forest

formulas for renormalization in a rather succinct manner. The basic route towards

a perturbative quantum field theory from this viewpoint is to:

• Decide what the field content is of your theory, appropriately specifying quantum

numbers (spin, mass, flavor, color, and such) of fields, restricting interactions so as

to obtain a renormalizable theory.

• Consider all 1PI graphs you can construct with edges corresponding to free-field

covariances and vertices for local interactions and realize that they allow for a
pre-Lie algebra of graph insertions. Antisymmetrize this pre-Lie product to get

a Lie algebra of graph insertions and consider the Hopf algebra which is dual

to the enveloping algebra of this Lie algebra [5,7].

• Realize that the coproduct and antipode of this Hopf algebra give rise to the forest

formula which generates local counterterms upon introducing a Rota–Baxter

map, a renormalization scheme in a physicists parlance [8,9].

• Use the Hochschild cohomology of this Hopf algebra to prove finiteness of renor-

malized graphs and to show that you can absorb singularities in local counter-
terms [5,8,10].

• Use the full Hopf algebra of graphs (which has the structure of a semi-direct prod-

uct of superficially divergent graphs with convergent ones) to obtain the finite ren-

ormalization needed to satisfy the requirements of quantized gauge symmetries

[5,9].

This structure underlies any of the approaches to perturbative quantum field theory,

and whether we do x-space methods or momentum space methods is essentially a

matter of taste and practical consideration, which often favor momentum space
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integrations. The beautiful number-theoretic aspects of perturbative quantum field

theory would still lay dormant were it not for momentum space integration methods

which allow to gather evidence at three loops and far beyond [11–17].

Immediate questions which arise from this viewpoint, partially answered in the lit-

erature, are the classification of renormalization schemes in terms of Rota–Baxter al-
gebras [8,9], an exploration of the amazing connection to the Riemann–Hilbert

problem which emerges in the context where the Rota–Baxter map is a minimal sub-

traction using an analytic regularization parameter [5,6], and the study of homomor-

phisms of the Lie group—associated to the Lie algebra of graphs—to

diffeomorphism groups of physical parameters, which establishes the perturbative

renormalization group via its one-parameter group of automorphisms [6]. A short

review of these results finishes section one.

In Section 3 we consider perspectives and work in progress emerging from the re-
sults reported in Section 2. Our main point is the discussion of a connection between

Euler products and quantum field theory. We start with the Riemann f-function and

derive it as a solution to a Dyson–Schwinger equation. This is only meant as moti-

vation to reverse the process and to look for Euler products in quantum field theory

in general. These products are obtained using a symmetrized product of graph inser-

tions induced in the Hopf algebra by the pre-Lie structure in the dual. We discuss the

structure of a formal solution to a Dyson–Schwinger equation in terms of Euler

products of primitive graphs. In particular, we find that questions about gauge sym-
metries are intimately connected with such factorizations. This raises one central

question: how do such factorizations fare under evaluation by the Feynman rules?

Is the evaluation of a product related to the product of the evaluations? Before we

can address this question in a meaningful way it is helpful to remind oneself about

some basic facts obtained by the evaluation of prime graphs: graphs which are prim-

itive under the coproduct and hence free of subdivergences. They play the role of

primes underlying the sought after factorization and provide a rich source of num-

ber-theoretic structure in quantum physics. Hence we briefly review the role of num-
ber theory in connection with residues in quantum field theory. This is certainly one

of the most surprising subjects worthy of study in quantum field theory: the intimate

connection between transcendence and number theory, topology of Feynman graphs

and gauge symmetries has slipped our attention far too long, but slowly is becoming

a prominent theme in physics and mathematics [11,18]. We will review the main re-

sults and briefly comment on common structures between generalized polylogs and

Feynman graphs. We then continue to discuss the factorization of QFT.

The material in Section 2 is a review following [10,19], the material in Section 3 is,
at least partially, new or a report on work in progress.

2. Lie and Hopf algebras of Feynman graphs

Feynman graphs form a pre-Lie algebra. This result needs no more than tracing

through the basic definitions used in perturbation theory. The first ingredient is a

definition of n-particle irreducible graphs: an n-particle irreducible graph (n-PI
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graph) C consists of edges and vertices such that upon removal of any set of n of its

edges it is still connected. Its set of edges is denoted by C½1� and its set of vertices is

denoted by C½0�. Edges and vertices can be of various different types.

The pre-Lie product defined below maps 1PI graphs to 1PI graphs, and is thus a

well-defined operation on such graphs. For any vertex v 2 C½0� we call the set
fv :¼ ff 2 C½1� jv \ f 6¼ ;g its type. It is a set of edges. Edges of a graph are either in-

ternal, or external. If we shrink all internal edges to a point, we call the resulting edge

or vertex graph a residue: we define res(C) to be the result of identifying C½0� [ C½1�
int

with a point in C. Under the Feynman rules, res(C) evaluates to the corresponding

tree-level contribution.

A pre-Lie product on graphs emerges when we start plugging graphs into each

other: an internal edge or a vertex is replaced by a 1PI graph which has external

edges which match the vertex or internal edge to be replaced. Note that this incor-

porates a statement about renormalizability: the graphs to be inserted should have
a residue which appears as a local interaction vertex. For a renormalizable field the-

ory, the superficially divergent graphs certainly fulfil this criterion.

2.1. The pre-Lie structure

Consider two graphs C1;C2. First, assume that C2 is an interaction graph so that it

has more than two external legs. For a chosen vertex vi 2 C½0�
1 such that fvi � C½1�

2;ext

(indicating that the two (multi-)sets are identical), we define

C1 vi C2 ¼ C1=vi [ C2=C
½1�
2;ext; ð1Þ

where in the union of these two sets we create a new graph by gluing each edge

fj 2 fvi to one element in C½1�
2;ext. Then we sum over all these possible bijections be-

tween fvi and C½1�
2;ext, and normalize such that topologically different graphs are gen-

erated precisely once.

We now define

C1  C2 ¼
X
w2C½0�

1

fw�C½1�
2;ext

C1 w C2: ð2Þ

All this can be easily generalized to the insertion of self-energy graphs, graphs which

have just two external edges, replacing internal edges by self-energy graphs which

have the corresponding external edges [5,7]. One then has:

Theorem 1. [5,7,8] The operation  is pre-Lie:
½C1  C2�  C3 � C1  ½C2  C3� ¼ ½C1  C3�  C2 � C1  ½C3  C2�: ð3Þ

To understand this theorem, note that the equation says that the lack of asso-

ciativity in the bilinear operation  is invariant under permutation of the elements

indexed 2, 3. This suffices to show that the antisymmetrization of this map fulfills
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a Jacobi identity. Hence we get a Lie algebra L by antisymmetrizing this oper-

ation

½C1;C2� ¼ C1  C2 � C2  C1 ð4Þ
and a Hopf algebra H as the dual of the universal enveloping algebra of this Lie

algebra, on general grounds [5,20]. Typically, one restricts attention to graphs which

are superficially divergent, with residues corresponding to field monomials in the

Lagrangian, while superficially convergent graphs can be incorporated using suitable

semi-direct products with abelian algebras [5]. Fig. 1 gives examples of Lie brackets

for various different theories. Our notation here is somewhat loose, an appropriate

orientation of fermion lines in the QED case is to be understood in the figure. Also,

the sum over all bijections ensures the correct summation over all orientations in
internal fermion loops.

Similarly, if form-factor decompositions are needed this can be incorporated us-

ing the notion of external structures or simply colorings of (sub-) graphs [5,10].

2.2. The principle of multiplicative subtraction

Having defined Lie algebra structures on graphs, it is now easy to harvest

them to derive the renormalization process. As announced, we just have to du-
alize the universal enveloping algebra UðLÞ of L and obtain a commutative,

but not cocommutative Hopf algebra H [5]. To find this dual, one uses a Kro-

necker pairing and constructs it in accordance with the Milnor–Moore theorem

[5,7,20].

We want to distinguish carefully now between the Hopf and Lie algebras of Fe-

ynman graphs, so we write dC for the multiplicative generators of the Hopf algebra

and write ZC for the dual basis of the universal enveloping algebra of the Lie algebra

L with pairing

hZC; dC0 i ¼ dK
C;C0 ; ð5Þ

Fig. 1. Assorted Lie brackets as examples: (i) /3
6 graphs, (ii) /4

4 graphs, (iii) QED graphs.
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where on the rhs we have the Kronecker dK , and extend the pairing by means of the

coproduct

hZC1
ZC2

;X i ¼ hZC1
� ZC2

;DðX Þi: ð6Þ
First of all, we start by considering one-particle irreducible graphs as the linear

generators of the Hopf algebra, with their disjoint union as product. We then iden-

tify the Hopf algebra as described above by a coproduct D : H!H�H:

DðCÞ ¼ C� 1þ 1� Cþ
X
c�C

c� C=c; ð7Þ

where the sum is over all unions of one-particle irreducible (1PI) superficially di-

vergent proper subgraphs and we extend this definition to products of graphs so that

we get a bialgebra. The above sum should, when needed, also run over appropriate

projections to formfactors, to specify the appropriate type of local insertion [5] which

appear in local counterterms, which we omitted in the above sum for simplicity.

Fig. 2 gives examples of coproducts for various theories.
A short remark on notation: for any Hopf algebra element X we often write a

shorthand for its coproduct

DðX Þ ¼ ~DDðX Þ þ X � 1þ 1� X ¼ X � 1þ 1� X þ X 0 � X 00:

Let now X be a 1PI graph. For each term in the sum ~DDðX Þ ¼
P

i X
0
ðiÞ � X 00

ðiÞ we have

unique gluing data Gi such that

X ¼ X 00
ðiÞ Gi X 0

ðiÞ 8i: ð8Þ

These gluing date describe the necessary bijections to glue the components X 0
ðiÞ back

into X 00
ðiÞ so as to obtain X: given the right gluing data, we can reassemble the whole

from its parts.

Having a coproduct, we still need a counit and antipode (coinverse): the counit e
vanishes on any non-trivial Hopf algebra element, eð1Þ ¼ 1; eðX Þ ¼ 0. At this stage

we have a commutative, but typically not cocommutative bialgebra [21]. It actually

is a Hopf algebra as the antipode in such circumstances comes for free as

SðCÞ ¼ �C�
X
c�C

SðcÞC=c: ð9Þ

Fig. 2. Assorted coproducts DðCÞ: (i) /3
6, (ii) /4

4, (iii) QED.
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The next thing we need are Feynman rules, maps / : H! V from the Hopf al-

gebra of graphs H into an appropriate space V.
Over the years, we have invented many calculational schemes in perturbative

quantum field theory, and hence it is of no surprise that there are many choices

for this space. In any case, we will have for disjoint 1PI graphs /ðC1C2Þ �
/ðC2C1Þ ¼ /ðC1Þ/ðC2Þ 8/ : H! V , where V is an appropriate target space for

the evaluation of the graphs. Then, with the Feynman rules providing a canonical

character /, we will have to make one further choice: a renormalization scheme. This

is a map R : V ! V , and we demand that is does not modify the UV-singular struc-

ture, and furthermore should obey

RðxyÞ þ RðxÞRðyÞ ¼ RðRðxÞyÞ þ RðxRðyÞÞ; ð10Þ
an equation which guarantees the multiplicativity of renormalization and is at the

heart of the Birkhoff decomposition to be discussed below: it tells us that elements in

V split into two parallel subalgebras given by the image and kernel of R [9]. Algebras

for which such a map exists are known as Rota–Baxter algebras, a subject of in-

creasing importance recently [22,23].

Finally, the principle of multiplicative subtraction emerges: we define a further

character S/
R which deforms / � S slightly and delivers the counterterm for C in

the renormalization scheme R:

S/
R ðCÞ ¼ �R½/ðCÞ� � R

X
c�C

S/
R ðcÞ/ðC=cÞ

" #
ð11Þ

which should be compared with the undeformed

/ � S ¼ �/ðCÞ �
X
c�C

/ � SðcÞ/ðC=cÞ: ð12Þ

Then, the classical results of renormalization theory follow immediately [8,20,24].

We obtain the renormalization of C by the application of a renormalized character

C ! S/
RH/ðCÞ

and Bogoliubov�s �RR operation as

�RRðCÞ ¼ /ðCÞ þ
X
c�C

S/
R ðcÞ/ðC=cÞ; ð13Þ

so that we have

S/
RH/ðCÞ ¼ �RRðCÞ þ S/

R ðCÞ: ð14Þ
Here, S/

RH/ is an element in the group of characters of the Hopf algebra, with the

group law given by

/1H/2 ¼ mV � ð/1 � /2Þ � D;

so that the coproduct, counit and coinverse (the antipode) give the product, unit and

inverse of this group, as befits a Hopf algebra. This Lie group has the previous Lie

algebra L of graph insertions as its Lie algebra [5].
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In the above, we have given all formulas in their recursive form. Zimmermann�s
original forest formula solving this recursion is obtained when we trace our consider-

ations back to the fact that the coproduct of rooted trees can be written in non-recur-

sive form, and similarly the antipode [24]. We also note that the principle of

multiplicative subtraction can be formulated in much greater generality, as it is a basic
combinatorial principle, see for example [25] for another appearance of this principle.

2.3. The bidegree

A fundamental notion is the bidegree of a 1PI graph. Usually, induction in per-

turbative QFT, aiming to prove a desired result is carried out using induction over

the loop number, an obvious grading for 1PI graphs. On quite general grounds, for

our Hopf algebras there exists another grading, which is actually much more useful.
We call it the bidegree, bid(C) [10,26]. To motivate it, consider a superficially diver-

gent n-loop graph C which has no divergent subgraph. It is evident that its short-dis-

tance singularities can be treated by a single subtraction, for any n. It is not the loop
number, but the number of divergent subgraphs which is the most crucial notion

here. Fortunately, this notion has a precise meaning in the Hopf algebra of superfi-

cially divergent graphs using the projection into the augmentation ideal, a projection

which has the scalars q1 as its kernel. This indeed counts the degree in renormaliza-

tion parts of a graph: an overall superficially convergent graph has bidegree zero by
definition, a primitive Hopf algebra element has bidegree one, and so on.

So we have H ¼ �1
i¼0H

ðiÞ, with bidðHðiÞÞ ¼ i. To define this decomposition, let

HAug be the augmentation ideal of the Hopf algebra, and let P : H!HAug be

the corresponding projection P ¼ id� E � e, with EðqÞ ¼ q1 2H Let ~DDðX Þ ¼
DðX Þ � 1� X � X � 1, as before. ~DD is still coassociative, and for any X 2HAug there

exists a unique maximal k such that ~DDk�1ðX Þ 2 ½Hð1Þ��k
. Here, Hð1Þ is the linear span

of primitive elements y : DðyÞ ¼ y � 1þ 1� y. We call this maximal k the bidegree

of a graph C.
As an example, the reader might determine the bidegree of the graphs in Figs. 1

and 2 and can check that it is homogeneous under the Lie bracket as well as under

the coproduct and under the product (disjoint union). Typically, all properties con-

nected to questions of renormalization theory can be proven more efficiently using

the grading by the bidegree instead of the loop number, a point which deserves some

detailed comment.

2.4. Renormalization and Hochschild cohomology

Each Feynman graph C can be written in the form C ¼ Bc;GX
þ ðX Þ, where c is a bide-

gree one graph, X is a collection of subdivergences of C such that, when we shrink

them all to a point in C; c remains, and GX is some data which tells us where to insert

these subdivergences. Any such map Bc;GX
þ extends to a map on the Hopf algebra

which is a closed Hochschild one-cocycle [10,20].

This suggests a particularly nice way to prove locality of counterterms and finite-

ness of renormalized Green functions, by using the Hochschild closedness of the
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operator Bc;GX
þ . Indeed it raises the bidegree by one unit and is therefore a natural

candidate to obtain such bounty. Underlying this approach is the kinship between

the Hopf algebras of Feynman graphs with the universal Hopf algebra of non-planar

rooted trees, which has a very simple Hochschild cohomology [20,27].

We will proceed by an induction over the bidegree which is much more natural
than the usual induction over the number of loops. So assume that SRH/ðCÞ is finite
and SRðCÞ a local counterterm for all C with bidðCÞ6 k. Show these properties for all

C with bidðCÞ ¼ k þ 1.

The start of the induction is easy: at unit bidegree, /ðCÞ � R½/ðCÞ� is finite and

SRðCÞ is local by assumption on R.
Let us assume we have established the desired properties of SR and SRH/ acting

on all Hopf algebra elements up to bidegree k. Assume bidðCÞ ¼ k þ 1. We have

C ¼ Bc;G
þ ðX Þ; ð15Þ

where bidðcÞ ¼ 1, bidðX Þ ¼ k;X some monomial in the Hopf algebra. Next,

DðCÞ ¼ Bc;G
þ ðX Þ � 1þ 1

�
� Bc;G

þ
�
DðX Þ ð16Þ

which expresses the crucial fact that Bc;G
þ is a closed Hochschild one-cocycle.

Using the Hochschild closedness of Bc;G
þ one immediately gets

SRH/ðCÞ ¼ SRðCÞ þ Bþð/; SRH/; c;G;X Þ ð17Þ
and

SRðCÞ ¼ �R½Bþð/; SRH/; c;G;X Þ�: ð18Þ
Here we use a map Bþð/; SRH/; c;G;X Þ which inserts the renormalized results SRH/
into the integral /ðcÞ in accordance with the gluing data [9,10].

From here, the induction step boils down to a simple estimate using the fact that

the powercounting for asymptotically large internal loop momenta in /ðcÞ is modi-

fied by the insertion of SRH/ðX Þ (which is finite by assumption, having bidegree k)
only by powers of logarithms of internal momenta of c, and that delivers the result

easily, using the standard integral representation by the Feynman rules

/ðCÞ ¼
Z Y

e2C½1�
int

dDkeP�1ðkeÞ
Y

v2C½0�

DðDÞ
X
j2fv

kj

 !
gðvÞ; ð19Þ

with a suitable ordering of propagators and vertices understood. A finite renor-
malization to achieve not only finiteness, but for example to resurrect the gauge

invariance of the theory, can be incorporated in this approach via a further con-

volution with a character of the Hopf algebra. Details of such an approach will be

the subject of future work.

This ends the review of the basic notions of renormalization theory. It remains to

comment on progress which was initiated by this algebraic viewpoint along two lines:

a connection to the Riemann–Hilbert problem [5,6] and strong hints towards con-

nections with number theory, coming from the values of residues of bidegree one
graphs [11], as well as from the structure of the Dyson–Schwinger equations, but also
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arising from number theory itself [28]. But first, let us review the connection to the

Riemann–Hilbert problem.

2.5. The Birkhoff decomposition and the renormalization group

Where do we stand now? We have recognized the iterative subtraction mechanism

of perturbative quantum field theory as a Hopf algebra structure. The Bogoliubov

recursion designed to guarantee local counterterms originates in very natural Lie

and Hopf algebra structures of graphs, and thus forest formulas have been given

their mathematical identification. The Lie group of characters on this Hopf algebra

is based on a rather huge Lie algebra of antisymmetrized graph insertions. It has as

many generators as there are 1PI graphs, and even if we restrict ourselves to the

primitive (bidegree one) graphs into which any graph decomposes, we still are con-
fronted with an infinite number of those, if our theory is renormalizable. Still, the

algebraic structures reported so far allow for surprising new insight into the structure

of QFT. A first such step is the recognition of the algebraic constraint on the renor-

malization map R. It leads to a Birkhoff decomposition which relates QFT to the

Riemann–Hilbert problem [5,6]. This certainly gives hope for a better understanding

of the analytic structure of Green functions, as they now start looking like general-

ization of other solutions to a Riemann–Hilbert problem, with KZ equations and hy-

pergeometric functions coming to mind.
Further progress was made upon recognition of the role diffeomorphisms of phys-

ical parameters play in this context: group homomorphisms from the group of char-

acters of Feynman graphs to diffeomorphisms of physical parameters are provided

by QFT galore, and the Birkhoff decomposition is compatible with these homomor-

phisms: an unrenormalized physical observable has a decomposition into a bare and

a renormalized part, a result which summarizes in one line the wisdom of locality

and the renormalization group [6]. Still, the link towards the Riemann–Hilbert prob-

lem reveals the deficiencies of perturbative quantum field theory quite pointedly: the
decomposition makes sense only in an infinitesimal disk, the order of the pole is un-

bounded and the diffeomorphism is anyhow only a formal one. The latter point cries

for resummation, the former points, as we will argue, demand some renormalization

group improvement of perturbation theory, based on a factorization of graphs to be

discussed below, to restore the credibility of perturbation theory as an input in any

means to come to conclusions on the non-perturbative theory.

The Feynman rules in dimensional or analytic regularization determine a charac-

ter / on the Hopf algebra which evaluates as a Laurent series in a complex regular-
ization parameter e, with poles of finite order, this order being bounded by and hence

dependent on the bidegree of the Hopf algebra element to which / is applied. In min-

imal subtraction, /� :¼ S/
R¼MS has similar properties: it is a character on the Hopf

algebra which evaluates as a Laurent series in a complex regularization parameter

e, with poles of finite order, this order being bounded by the bidegree of the Hopf

algebra element to which S/
R¼MS is applied, only that there will be no powers of e

which are P 0. Then, /þ :¼ S/
R¼MSH/ is a character which evaluates in a Taylor se-

ries in e, all poles are eliminated. We have the Birkhoff decomposition
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/ ¼ /�1
� H/þ: ð20Þ

This establishes an amazing connection between the Riemann–Hilbert problem

and renormalization [5,6]. It uses in a crucial manner once more that the multiplic-
ativity constraints Eq. (10),

R½xy� þ R½x�R½y� ¼ R½R½x�y� þ R½xR½y��;
ensure that the corresponding counterterm map SR is a character as well,

SR½xy� ¼ SR½x�SR½y� 8x; y 2 H ; ð21Þ
by making the target space of the Feynman rules into a Rota–Baxter algebra,

characterized by this multiplicativity constraint. The connection between Rota–

Baxter algebras and the Riemann–Hilbert problem, which lurks in the background

here, remains largely unexplored, as of today.

As announced, renormalization in the MS scheme can now be summarized in a

single phrase: with the character / given by the Feynman rules in a suitable regular-

ization scheme and well-defined on any small curve around e ¼ 0, find the Birkhoff

decomposition /þðeÞ ¼ /�H/.
The unrenormalized analytic expression for a graph C is then /½C�ðeÞ, the MS-

counterterm is SMSðCÞ ¼ /�½C�ðeÞ and the renormalized expression is the evaluation

/þ½C�ð0Þ. Once more, note that the whole Hopf algebra structure of Feynman graphs

is present in this group: the group law demands the application of the coproduct,

/þ ¼ /�H/ � S/
MSH/.

But still, one might wonder what a huge group this group of characters really is.

What one confronts in QFT is the group of diffeomorphisms of physical parameters:

lo and behold, changes of scales and renormalization schemes are just such (formal)
diffeomorphisms. So, for the case of a massless theory with one coupling constant g,
for example, this just boils down to formal diffeomorphisms of the form

g ! wðgÞ ¼ g þ c2g2 þ � � �
The group of one-dimensional diffeomorphisms of this form looks much more

manageable than the group of characters of the Hopf algebras of Feynman graphs

of such a theory.

2.6. Diffeomorphisms of physical parameters

Thus, it would be very nice if the whole Birkhoff decomposition could be ob-
tained at the level of diffeomorphisms of the coupling constants. This is certainly

most desirable from a physicists viewpoint: after all, we would like to have the

theory parametrized by physical observables, and changes we can make in our

way of formulating the theory should correspond to changes we can make in

those observables.

The crucial step toward that goal is to realize the role of a standard QFT formula

of the form (in the context of /3
6 theory, say)

gnew ¼ goldZ1Z
�3=2
2 ; ð22Þ
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which expresses how to obtain the new coupling in terms of a diffeomorphism of the

old. This was achieved in [6], recognizing this formula as a Hopf algebra homo-

morphisms from the Hopf algebra of diffeomorphisms to the Hopf algebra of Fe-

ynman graphs, regarding Zg ¼ Z1Z
3=2
2 , a series over counterterms for all 1PI graphs

with the external leg structure corresponding to the coupling g, in two different ways.
It is at the same time a formal diffeomorphism in the coupling constant gold and a

formal series in Feynman graphs. As a consequence, there are two competing co-

products acting on Zg. That both give the same result defines the required homo-

morphism, which transposes to a homomorphism from the largely unknown group

of characters of H to the one-dimensional diffeomorphisms of this coupling.

The crucial fact in this is the recognition of the Hopf algebra structure of diffeo-

morphisms by Connes and Moscovici [29]: Assume you have formal diffeomor-

phisms /;w in a single variable

x ! /ðxÞ ¼ xþ
X
k>1

c/
k xk; ð23Þ

and similarly for w. How do you compute the Taylor coefficients c/�w
k for the com-

position / � w from the knowledge of the Taylor coefficients c/
k ; c

w
k . It turns out that

it is best to consider the Taylor coefficients

d/
k ¼ logð/0ðxÞÞðkÞð0Þ ð24Þ

instead, which are as good to recover / as the usual Taylor coefficients. The answer
lies then in a Hopf algebra structure:

d/�w
k ¼ m � ð ~ww� ~//Þ � DCMðdkÞ; ð25Þ

where ~//; ~ww are characters on a certain Hopf algebra HCM (with coproduct DCM) so

that ~//ðdiÞ ¼ d/
i , and similarly for ~ww. Thus one finds a Hopf algebra with abstract

generators dn such that it introduces a convolution product on characters evaluating

to the Taylor coefficients d/
n ; d

w
n , such that the natural group structure of these

characters agrees with the diffeomorphism group. This is a very small piece of the

work in [29], which was very crucial though in understanding the connection between

the group of diffeomorphisms of physical parameters and the group of characters on
our Hopf algebra H: it turns out that this Hopf algebra of Connes and Moscovici is

intimately related to rooted trees in its own right [20], signalled by the fact that it is

linear in generators on the rhs, as are the coproducts of rooted trees and graphs

[7,20].

There are a couple of basic facts which enable one to make in general the transi-

tion from this rather foreign territory of the abstract group of characters of a Hopf

algebra of Feynman graphs (which, by the way, equals the Lie group assigned to the

Lie algebra with universal enveloping algebra the dual of this Hopf algebra) to the
rather concrete group of diffeomorphisms of physical observables. These steps are:

• Recognize that Z factors are given as counterterms over formal series of graphs

starting with 1, graded by powers of the coupling, hence invertible.

• Recognize the series Zg as a formal diffeomorphism, with Hopf algebra coeffi-

cients.

D. Kreimer / Annals of Physics 303 (2003) 179–202 191



• Establish that the two competing Hopf algebra structures of diffeomorphisms and

graphs are consistent in the sense of a Hopf algebra homomorphism.

• Show that this homomorphism transposes to a Lie algebra and hence Lie group

homomorphism.

This works out extremely well, with details given in [6]. In particular, the effective
coupling geffðeÞ now allows for a Birkhoff decomposition in the space of formal

diffeomorphisms:

Theorem 2. [6]

geffðeÞ ¼ geff�ðeÞ�1 � geffþðeÞ ð26Þ
where geff�ðeÞ is the bare coupling and geffþð0Þ the renormalized effective coupling.

The above results hold as they stand for any massless theory which provides a sin-

gle coupling constant, with the relevant Hopf algebra homomorphism for example in

the QED case given by enew ¼ Z�1=23 eold (and Z3 regarded as a sum over all 1PI vac-

uum polarization diagrams). If there are multiple interaction terms in the Lagrang-
ian, one finds similar results relating the group of characters of the corresponding

Hopf algebra to the group of formal diffeomorphisms in the multidimensional space

of coupling constants.

Finally, the Birkhoff decomposition of a loop, dðeÞ 2 DiffðX Þ admits a beautiful

geometric interpretation [6], described in Fig. 3.

Fig. 3. A geometric picture for the Birkhoff decomposition [6]. Here, d is the character obtained from / by

evaluating it as a complex number on an infinitesimal loop around the point of interest � ¼ 0, and d� are

the components of its Birkhoff decomposition which induce transitions (formal diffeomorphisms) in the

fiber X.
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So what stops us from using this connection to the Riemann–Hilbert problem and

establishing quantum field theory as a solution to this problem? There are two topics

here: first of all, we are up to now talking about formal series, and a resummation is

certainly needed to turn our formal diffeomorphisms into actual ones.Here, recent pro-

gress by Ramis [30] with formal series in connection with the Riemann–Hilbert prob-
lem, even in the case of zero radius of convergence, hopefully proves very relevant. It is

in particular encouraging to see the emergence of ‘‘ambiguity groups’’ [28,30] appear-

ing in this context: a proper identification of the renormalization group in terms of a

Galois symmetry is one of the ideas which has slowly emerged in recent years.

But even before resummation, for each term in the perturbation series, the finite

value is not necessarily the right input parameter for such a resummation. There are

the well-known deficiencies of perturbation theory [31,32]:

• The subtraction of a counterterm in perturbation theory renders ambiguous de-
pendencies on logarithms of scales in the renormalized amplitudes which are

not to be trusted as such, and is in conflict with the requirements from the renor-

malization group. A multiscale expansion seems to capture the essence of scaling

in QFT more faithfully. Nevertheless, the exactness of perturbation theory is strik-

ing, and overcoming this obstacle without the sacrifice of the achievements of mo-

mentum space Feynman diagram perturbation theory would be most desirable.

• Iterating chains of one-loop graphs can produce renormalons in perturbation the-

ory. They can be, circumstantially, used to parametrize the unknown regime of the
non-perturbative, but are in the end just a suspicious infinite sum of the previous

obstacle.

• S/
R ðCÞ, for bidðCÞ > 1, is a Laurent series which has poles of higher order, though all

subdivergences have been eliminated in that local counterterm. It would be more

natural, and desirable for our Riemann–Hilbert decomposition, if the pole term

wouldbe only of first order say after absorbing the subdivergences: a uniformbound,

independent of the bidegree ofC, on the order of the pole term would make our Rie-

mann–Hilbert problemmuchmore regular, even if the coefficients of that finite order
pole still form a series in the coupling with vanishing radius of convergence. The ap-

pearances of higher order poles is again related to the first obstacle, as they arise from

an iteration of scaling degrees coming from subdivergences calculated in perturba-

tion theory. These poles are indeed completely determined by the residues in the the-

ory [6], and can be obtained from the scattering-type formula of [6], with

combinatorial coefficients which turn out to be generalized factorials [9,33], by that

formula. These poles are thus highly redundant and reflect our inefficient handling of

scaling properties in perturbation theory once more.
• At higher loop orders, poles appear which are arbitrarily close to the region of in-

terest (a little disk around � ¼ 0), which typically come from the expansion of

Cð1� n�Þ in perturbation theory, with n being the loop number. Again, the ap-

pearance of these poles at �1=n can be traced back to the same origin as the pre-

vious obstacles. These poles force us (for large loop number) to consider an

infinitesimal disk around � ¼ 0 in the Birkhoff decomposition.

Alas, the logarithmic scaling properties of perturbation theory are not in accordance

with the exact renormalization group, and to overcome this difficulty, and to
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understand better the relation between perturbative and non-perturbative ap-

proaches, again, the Lie algebra of Feynman graphs offers assistance. This is a very

new development, and we will in the next section just outline some recent work in

progress, partially mentioned already in [10]. We start by motivating factorizations

in quantum field theory.

3. Perspective: Euler products in QFT

In this section we want to comment on a connection between Dyson–Schwinger

equations and Euler products. Ultimately, I believe that there is a deep connection

between the two subjects, and to motivate this connection let us start with a subject

from number theory, the Riemann f function, and obtain it as a solution to a
Dyson–Schwinger equation. For now, this is only meant as a sufficient stimulus to

invert the reasoning and look for Euler products in quantum field theory.

3.1. The Riemann f function from a Dyson–Schwinger equation

The Riemann f-function is the analytic continuation of the sum
P

n 1=n
s , and can

be written in the form of an Euler product

fðsÞ ¼
X

n

1

ns
¼
Y

p

1

1� p�s
; RðsÞ > 1; ð27Þ

where the product is over all primes p of the (rational) integers.

Let us now define a Hopf algebra of sequences (p1; . . . ; pk), where the pi are

primes, and introduce Bp
þ½J � as the sequence which is obtained by adding a new prime

p as the first element to the sequence J, for example B3
þ½ð5; 3; 2Þ� ¼ ð3; 5; 3; 2Þ. The

Hopf algebra structure emerges when we require that Bp
þ is Hochschild closed for

all p:

DðBp
þ½J �Þ ¼ Bp

þ½J � � 1þ ½id� Bp
þ�D½J �; ð28Þ

with Dð1Þ ¼ 1� 1 and we identify 1 with the empty sequence. Define the value wðJÞ
to be the product of the entries of J, and let the symmetry factor SðJÞ be k! ðSðJÞ be
the number of sequences which have the same value, which simply is k!) if the se-

quence has length lðJÞ ¼ k. Note that for a one element sequence (p),

D½ðpÞ� ¼ ðpÞ � 1þ 1� ðpÞ; ð29Þ
primitive elements have prime value, wððpÞÞ ¼ p.

Consider the ‘‘Dyson–Schwinger equation’’

fðqÞ ¼ 1þ q
X

p

Bp
þ½fðqÞ�; ð30Þ

so that we obtain a formal series (in ‘‘the coupling’’ q)

fðqÞ ¼ 1þ q
X

p

ðpÞ þ q2
X
p1;p2

ðp1; p2Þ þ � � � ð31Þ
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Define ‘‘Feynman rules’’ by /sðJÞ ¼ ð1=ðlðJÞ!ÞwðJÞ�sÞ, and set

fðs;qÞ ¼ /s½fðqÞ�: ð32Þ
Then, we recover Riemann�s f function as

fðsÞ ¼ lim
q!1

fðs; pÞ: ð33Þ

Note the general structure of the formal ‘‘Dyson–Schwinger equation’’ above: it

determines an unknown fðqÞ in terms of itself, as ‘‘1 plus a sum over the image of

the unknown fðqÞ under all closed Hochschild one cocycles Bp
þ, weighted by appro-

priate symmetry factors.’’

Next, we remind ourselves that fðsÞ has an Euler product. Is there an Euler prod-
uct for f?

The answer is yes, and the simplest way is to get it from the well-known shuffle

product on sequences. We introduce this associative and commutative product via

Bp1
þ ðJ1Þ t Bp2

þ ðJ2Þ ¼ Bp1
þ J1 t Bp2

þ ðJ2Þ
� �

þ Bp2
þ Bp1

þ ðJ1Þ t J2
� �

: ð34Þ

Then,

fðqÞ ¼
Yt

p

1

1� qðpÞ ; where
1

1� qðpÞ ¼ 1þ qðpÞ þ q2ðpÞ t ðpÞ þ � � � ; ð35Þ

and where the shuffle product is used in the Euler product throughout. We then have

fðsÞ ¼ /sjq¼1

Yt
p

1

1� qðpÞ

 !
¼
Y

p

1

1� p�s
; ð36Þ

the evaluation of the product is the product of the evaluations.

The reason we dared calling the above equation a Dyson–Schwinger equation is a
simple fact—the true Dyson–Schwinger equations of QFT have a similar structure:

they express an unknown Green function as a sum over all possible insertions of it-

self in all possible skeleton diagrams. This allows to write the unknown Green func-

tion as a sum over all possible images over all closed Hochschild one-cocycles in the

theory (the Bc
þ obtained by summing over all possible gluing data Gi in the Bc;Gi

þ con-

sidered before), precisely provided by the primitive bidegree one graphs c, which play

the role of primes. Let us review quickly their fascinating properties first.

3.2. Residues in QFT

Consider a Feynman graph in some say renormalizable quantum field theory and

assume the graph is free of superficially divergent subgraphs. We can always restrict

ourselves to logarithmic divergent graphs by factorizing out suitable polynomials in

masses and external momenta. Then, such a logarithmic divergent quantity has a res-

idue which is independent of all these parameters. It is a well-defined number and the

only chance we have at changing this number is to change the topology of the graph
under consideration. So that should be a rather interesting number, and indeed,
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nature rewards us for posing a good question by revealing an intimate connection

between the topology of the graph and the number-theoretic residues one obtains

upon evaluating such a graph. The residue here is the coefficient of short-distance

singularity in such a graph, calculated as the coefficient of the first-order pole in di-

mensional regularization, or even as a residue in the operator-theoretic sense. As our
graph has bidegree one, it provides a residue which is a universal number indepen-

dent of the choice of regularization. Topologically, the simplest graphs are ladder

graphs. Their residues are rational numbers [11].

Then, the next class of graphs are graphs which have a less trivial topology, re-

flected by a non-trivial Gauss code with (1, 2, 1, 2) being the first such topology given

in Fig. 4, see [11]. By all computational experience, graphs which have such a Gauss

code deliver a residue � fð3Þ. From there, a whole universe unfolds, revealing deep

connections between the symmetries in a QFT, and its transcendental richness [11].
One remarkable fact is that the decomposition into two-line reducible parts cor-

responds to a factorization of graphs which is compatible with their evaluation: the

evaluation of the full graph delivers the product of the evaluation of the parts, as in

the product of prime knots [11–13].

There is no space here to comment on the weird and wonderful data with which

renormalizable QFT provide us in such circumstances, with fascinating new phe-

nomena appearing at higher loop orders [34], and we refer the reader to [11] for

an exhaustive census of such phenomena. But still, one fact is worth mentioning:
the relation between the presence or absence of transcendental numbers depending

on the internal symmetries in the theory, a connection which started with Rosner�s
observation [35] of the absence of fð3Þ in the residues of QED at three loops, and

which has found even more striking confirmation ever since, but still deserves much

further exploration [11,36].

Also, there are two basic structures in Feynman graphs: the convolution of ren-

ormalization schemes

S/
R1
H/ ¼ S/

R1
HS/

R2
� S

� �
H S/

R2
H/

� �
; ð37Þ

which generalizes Chen�s lemma [9], and the generalized shuffle identity

/ðC1 _ C2Þ � /ðC1Þ/ðC2Þ; ð38Þ

Fig. 4. Non-exhaustive list of examples of QFT graphs realizing the Gauss code diagram {1,2,1,2} (on the

left), related to the appearance of fð3Þ in their evaluation. The two Feynman graphs are from /4
4 and QED.

Only internal vertices matter.
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the factorization to be introduced below. In structure, they are very similar to the

relations which appear amongst generalized polylogarithms [18] and Euler–Zagier

sums, the number class most obviously related to Feynman diagrams, even if they

might not yet exhaust them. For now, radiative correction calculations have stim-

ulated many a development in that area of number theory. Number theory in return
hopefully is able to further our understanding of QFT, in particular with respect to

an identification of a QFT by its transcendental nature, eventually.

3.3. Factorizing graphs

Let us now ask the question whether a factorization into Euler products can be

found in quantum field theory? And then, if this can be found on the combinatorial

level, will the evaluation, by the Feynman rules, equal the product of the evaluations,
and, if not, by how much will it deviate?

After all, a typical Dyson–Schwinger equation is of the form

X ¼ 1þ
X

c

Bc
þðgk½[kX �Þ; ð39Þ

where the infinite sum in the Hopf algebra is over primitive graphs c; k ¼ kðcÞ is the
degree of c, and as the notation indicates, the maps Bc

þ are closed Hochschild one-

cocycles, and the sum is over all of those. X is here to be regarded as an infinite sum

of graphs contributing to a chosen Green function, and evaluation by the Feynman
rules delivers the usual Dyson–Schwinger equations given as an integral equation

over the kernels provided by the primitive graphs c. Note that, as insertion into a

primitive graph commutes with the coproduct in the desired way, we can directly

read-off the renormalized Dyson–Schwinger equation as

XR ¼ ZX þ
X

c

Bc
þðgk½[kXR�Þ; ð40Þ

where ZX is the negative part in the Birkhoff decomposition with respect to a ren-

ormalization scheme R. Here, ½[kX � indicates a k-fold disjoint union of X, regarded
as the product in the Hopf algebra of graphs.

Actually, we typically have a coupled set of such equations with several unknowns

(Green functions) but we here simply discuss the structure of such equations, suitable

generalizations being straightforward.

So the natural question to ask is: is there an Euler product for the formal sum gen-

erated by such an equation? The answer is indeed affirmative.

The crucial step lies in the definition of the product _ which generalizes the shuffle

product t, appropriate for totally ordered sequences, to the partial order given by
being a subgraph.

Let us shortly describe this product: let a sequence of primitive graphs

J ¼ ðc1; . . . ; ckÞ be given. We say that a graph C is compatible with that sequence,

C � J , iff its bidegree equals the length k of the sequence and

hZck � � � � � Zc1; ~DD
k�1ðCÞi 6¼ 0;
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where we use the previous pairing between the Lie algebra elements Zc and the Hopf

algebra. Let nC be the number of sequences compatible with C. Define

C1 _ C2 ¼
X
I1�C1

I2�C2

X
C�I1tI2

1

nC
C; ð41Þ

where the first sum is over all sequences compatible with the two graphs C1;C2 and

the second sum is over all sequences appearing in the shuffle of I1; I2 and over all

compatible graphs C. This is a commutative associative product on 1PI graphs. It

has a relation to the pre-Lie product introduced before, to be described elsewhere.

Then, we have

Theorem 3.

X ¼
Y_

c

1

1� gkðcÞc
;

the proof of which is elementary given the definition of the product _, which maps

1PI graphs to 1PI graphs.

Most urgent is an understanding to what extent this is compatible with the eval-

uation by Feynman rules /: how much can we say about

/
Y_

c

1

1� c

 !
vs
Y

c

1

1� /ðcÞ ¼ fGð/Þ?

Here, fGð/Þ shall be regarded as a ‘‘f function’’ (in quotes, as we do not give here any

non-trivial results concerning functional relations or such) which, for a fixed Green

function G has an Euler product over the primitive (bidegree one) graphs c (which all

have a graphical residue resðcÞ which agrees with the tree-level contribution to G)
and where the variable / is the chosen character on the Hopf algebra of graphs

underlying the QFT in which the Green function appears.

To phrase it otherwise, how much stops us to consider actually an Euler product

over all primitive graphs to get a formal solution to Dyson–Schwinger equations in
general? Can we just construct f-functions dedicated to a chosen Green function, de-

fined via an Euler product over primitive elements?

A few comments are immediate: no, perturbation theory does not factorize

straightforwardly into its primitives. But there are many encouraging signs. First

of all, the scattering type formula of [6] shows that in dimensional regularization

the leading coefficient of singularity respects the desired factorization. This is use-

ful. Indeed, for arbitrary superficially divergent graphs C1;C2 one immediately

shows

/ðC1 v C2Þ
/ðC1Þ/ðC2Þ

¼ n1 þ n2

n2

ð1þ OðeÞÞ; ð42Þ

where n1; n2 are the number of loops in C1;C2 and e is the dimensional regularization

parameter (similarly in other regularizations).
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The combinatorial pre-factor ðn1 þ n2Þ=n2 is easy to understand and to deal with.

It is in the non-leading terms where progress had to be made. But let us muse a bit

about what the consequences of such a factorization would be. Using the definition

of S/
R , one immediately has, for products of primitives,

/ðc1 v c2Þ ¼ /ðc1Þ/ðc2Þ () S/
R ðc1 v c2Þ

¼ �R½/ðc1Þ/ðc2Þ � R½/ðc2Þ�/ðc1Þ�
¼ �R½/ðc1Þð/ðc2 � R½/ðc2Þ�Þ�; ð43Þ

which evidently has only a first-order pole, and that property remains true for ar-
bitrary products of primitives, and hence for the whole Hopf algebra, if and only if /
multiplicative. Actually, most of the deficiencies of perturbation theory evaporate if

we can evaluate with a / which is a character with respect to the product , or _, for
that matter.

The two crucial steps towards such a factorization, which amounts to a partial re-

summation of graphs, are:

• A requirement to absorb vertex subdivergences in Green functions which depend

only on a single scale, so that the beneficial properties of one-parameter groups of
scaling come to bear, a requirement which sits very comfortably with the fact that

gauge theories relate vertex subdivergences to self-energies [37].

• An appropriate use of the renormalization group in the Dyson–Schwinger

equations, which allows to describe the presence or absence of factorization

in a controlled way in relation to the fixpoint behavior of the b-function of

the theory.

That the renormalization group enters is quite obvious: the structure of the Euler

product as a product over geometric series over residues of primitive graphs excludes
any explosion as associated with a renormalon, a fact which by itself suggests that if

we are to achieve such a factorization, the renormalization group should play a role.

So these type of questions are certainly of interest, and results along these lines will

be pointed out in upcoming work.

Finally, let us mention a first simple example as to how basic algebraic structures

of our graph insertions relate to physical properties of a theory.

Proposition 4.
(i) The product C1 _ C2 is integral for 1PI graphs in /3

6 and /4
4.

(ii) It is non-integral for QED: C1 _ C2 ¼ 0) C1 ¼ 0 or C2 ¼ 0 or C1 ¼ C2 ¼ -# -

But now, the Hopf algebra of QED graphs can be divided by an appropriate ideal

of graphs C containing -#- (the ideal of graphs C s.t. DbidðCÞ�1ðCÞ has -#- as an el-

ement) and in the quotient—in which our product is integral—it turns out that the

Ward identities hold automatically. The proposition has a generalization to non-abe-

lian gauge theories which is under scrutiny at the moment.
The final aspect in our outlook on QFT is about symmetries in the DysonSchw-

inger equations which can relate them to differential Galois groups. The equations

are integral equations of a complicated kind. But they still offer a lot of the symme-
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tries also known from differential equations. So a few short comments along the lines

of [10] shall finish this section.

3.4. Galois groups and Feynman graphs

There are many symmetries in a Dyson–Schwinger equation, which reveal them-

selves as invariants under the permutation of places where to insert subgraphs, so

they are reflected by identities between pole terms of graphs. We have an obvious

ring structure we are dealing with, using products C1 _ C2 of 1PI graphs. We start

drifting towards a treatment of Feynman graphs as a ring, with associated field of

fractions say, where the role of primes is played by primitive graphs, and an Euler

product combined with an appropriate shuffle identity for Feynman rules should

guide us towards an appropriate notion of a f-function for a given Green function.
To get an idea what these symmetries are related to, we remind ourselves that in the

skeleton expansion of a Dyson–Schwinger equation we sum over all possible inser-

tion places (gluing data). Indeed, the resulting series over graphs can be written using

elementary symmetric polynomials in the insertion places, c½0� say, of the skeleton c.
So consider the combination C1ði � jÞC2, the difference of the insertion of a sub-

graph C2 into C1 at two different places i; j.
Following [7,10] we can consider the ‘‘differential equation’’ (here, Z½resðC2Þ;C2�ðX Þ is

a derivation which replaces C2 by its tree-level counterpart resðC2Þ in X)
Z½resðC2Þ;C2�ðX Þ ¼ C1; ð44Þ

which is solved by the bidegree two Hopf algebra element X ¼ C1 i C2 as well as by

the bidegree two X ¼ C1 j C2. Furthermore, the bidegree one primitive

X ¼ C1ði � jÞC2 solves the homogeneous equation

Z½resðC2Þ;C2�ðX Þ ¼ 0; ð45Þ

where we assume throughout that C1 and C2 are of bidegree one. If one linearizes a

Dyson–Schwinger equation and restricts it to a finite number of underlying skele-

tons, the equation, rewritten as a differential equation, has many structural simi-

larities with differential equations which have regular singularities, as also the above

argument exemplifies. This suggests to connect the insertion of subgraphs at various

different places with Galois symmetries, and is the motivation to indeed look at

invariants under such symmetries in Feynman graphs, with a beautiful first result
reported in [38]: the coefficient of the highest weight transcendental in the residues of

two graphs connected by such a symmetry is invariant. While this is obvious, thanks

to the scattering type formula, for the coefficient of the highest pole in the regu-

larization parameter, it is indeed a very subtle result for the residue in a graph of

large bidegree.

3.5. Summary

The interplay between number theory, non-commutative geometry and perturbat-

ive quantum field theory reveals, to my mind, strong hints towards the structure of
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quantum field theory. Many of the ideas featured here are not to be harvested

quickly, but to my mind it is a fascinating obligation of a theorist to unravel the

structures of the theories which have been most successful so far in our description

of nature, and which have been carefully extracted from experimental evidence by

the high energy and condensed matter theoretical physics communities. The combi-
natorial structures of renormalization with the relation to the Riemann–Hilbert

problem, the appearance of Euler–Zagier sums as residues of diagrams, and the fac-

torization properties of the Dyson–Schwinger equations all point towards funda-

mental mathematical structures. Recent ideas and progress in pure mathematics

[28,30] point towards quantum field theory. We finally might get the message.

References

[1] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, fourth ed., Oxford University Press,

Oxford, 2002.

[2] D. Espriu, J. Manzano, P. Talavera, Phys. Rev. D 66 (2002) 076002, arXiv:hep-ph/0204085.

[3] M. Marino, Chern-Simons theory, matrix integrals, and perturbative three-manifold invariants

arXiv:hep-th/0207096.

[4] G. �t Hooft, M. Veltman, DIAGRAMMAR, Cern Report 73/9, 1973. Reprinted in: Particle

interactions at very high energies, NATO Adv. Study Inst. Series, Sect. B, vol. 4B, p. 177.

[5] A. Connes, D. Kreimer, Commun. Math. Phys. 210 (2000) 249, hep-th/9912092.

[6] A. Connes, D. Kreimer, Commun. Math. Phys. 216 (2001) 215, hep-th/0003188.

[7] A. Connes, D. Kreimer, Ann. Henri Poincare 3 (2002) 411, arXiv:hep-th/0201157.

[8] D. Kreimer, Adv. Theor. Math. Phys. 2 (1998) 303, q-alg/9707029.

[9] D. Kreimer, Adv. Theor. Math. Phys. 3 (2000) 627, hep-th/9901099.

[10] D. Kreimer, Structures in Feynman graphs—Hopf algebras and symmetries, Talk given at the

Dennisfest, Stony Brook June 14–21, 2001, hep-th/0202110, to appear.

[11] D. Kreimer, Knots and Feynman Diagrams, Cambridge University Press, Cambridge, 2000.

[12] D.J. Broadhurst, D. Kreimer, Int. J. Mod. Phys. C 6 (1995) 519, hep-ph/9504352.

[13] D.J. Broadhurst, D. Kreimer, Phys. Lett. B 393 (1997) 403, hep-th/9609128.

[14] D.J. Broadhurst, J.A. Gracey, D. Kreimer, Z. Phys. C 75 (1997) 559, arXiv:hep-th/9607174.

[15] D.J. Broadhurst, D. Kreimer, J. Symb. Comput. 27 (1999) 581, hep-th/9810087.

[16] D.J. Broadhurst, D. Kreimer, Phys. Lett. B 475 (2000) 63, hep-th/9912093.

[17] D.J. Broadhurst, D. Kreimer, Nucl. Phys. B 600 (2001) 403, hep-th/0012146.

[18] A.B. Goncharov, math-ag/0208144.

[19] D. Kreimer, Phys. Rep. 363 (2002) 387, hep-th/0010059.

[20] A. Connes, D. Kreimer, Commun. Math. Phys. 199 (1998) 203, hep-th/9808042.

[21] C. Kassel, Quantum Groups, Springer, Berlin, 1995.

[22] J.-L. Loday, M.O. Ronco, math-at/0205043, and references there.

[23] K. Ebrahimi-Fard, math-ph/0207043.

[24] D. Kreimer, Commun. Math. Phys. 204 (1999) 669, hep-th/9810022.

[25] F. Markopoulou, hep-th/0006199.

[26] D.J. Broadhurst, D. Kreimer, Commun. Math. Phys. 215 (2000) 217, hep-th/0001202.

[27] L. Foissy, Les alg�eebres des Hopf des arbres enracin	ees d	eecor	eees, Thesis, Univ. Reims, Dept. of Math.,

available from the author: loic.foissy@univreims.fr, 2001.

[28] A. Connes, S	eem. Poincar	ee 2 (2002) 75.

[29] A. Connes, H. Moscovici, Commun. Math. Phys. 198 (1998) 199, math. dg/9806109.

[30] J.-P. Ramis, Tr�ees anciennes et tr�ees nouvelles m	eethodes de sommation de s	eeries divergentes, Talk

given at Colloque: Renormalization—Theory and Perspectives, IHES, October 14–18, 2002.

[31] V. Rivasseau, S	eem. Poincar	ee 2 (2001) 1.

D. Kreimer / Annals of Physics 303 (2003) 179–202 201



[32] A.S. Wightman, in: J. de Boer, et al. (Eds.), The Lessons of Quantum Theory, Elsevier, Amsterdam,

1986.

[33] D. Kreimer, R. Delbourgo, Phys. Rev. D 60 (1999) 105025, hep-th/9903249.

[34] P. Belkale, P. Brosnan, math.ag/0012198.

[35] J.L. Rosner, Phys. Rev. Lett. 17 (1966) 1190;

Ann. Phys. 44 (1967) 11.

[36] D.J. Broadhurst, R. Delbourgo, D. Kreimer, Phys. Lett. B 366 (1996) 421, hep-ph/9509296.

[37] A.A. Slavnov, Theor. Math. Phys. 130 (1) (2002) 1.

[38] I. Bierenbaum, R. Kreckel, D. Kreimer, J. Math. Phys., in press, hep-th/0111192.

202 D. Kreimer / Annals of Physics 303 (2003) 179–202


	New mathematical structures in renormalizable quantum field theories
	Introduction
	Lie and Hopf algebras of Feynman graphs
	The pre-Lie structure
	The principle of multiplicative subtraction
	The bidegree
	Renormalization and Hochschild cohomology
	The Birkhoff decomposition and the renormalization group
	Diffeomorphisms of physical parameters

	Perspective: Euler products in QFT
	The Riemann zeta function from a Dyson-Schwinger equation
	Residues in QFT
	Factorizing graphs
	Galois groups and Feynman graphs
	Summary

	References


