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Tour 24 - 2ième ét., 4 pl. Jussieu, F 75252 Paris Cedex 05, France

We describe an algebra G of diagrams which faithfully gives a diagrammatic representation of
the structures of both the Heisenberg-Weyl algebra H - the associative algebra of the creation
and annihilation operators of quantum mechanics - and U(LH), the enveloping algebra of the
Heisenberg Lie algebra LH. We show explicitly how G may be endowed with the structure of a
Hopf algebra, which is also mirrored in the structure of U(LH).
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I. INTRODUCTION

One’s comprehension of abstract mathematical con-
cepts often goes via concrete models. In many cases
convenient representations are obtained by using combi-
natorial objects. Their advantage comes from simplicity
based on intuitive notions of enumeration, composition
and decomposition which allow for insightful interpreta-
tions, neat pictorial arguments and constructions (???).
This makes the combinatorial perspective particularly at-
tractive for quantum physics, due to the latter’s active
pursuit of a better understanding of fundamental phe-
nomena. An example of such an attitude is given by
Feynman diagrams, which provide a graphical represen-
tation of quantum processes; these diagrams became a
tool of choice in quantum field theory (??). Recently, we
have witnessed major progress in this area which has led
to a rigorous combinatorial treatment of the renormal-
ization procedure (??) – this breakthrough came with
the recognition of Hopf algebra structure in the pertur-
bative expansions (???). There are many other exam-
ples in which combinatorial concepts play a crucial role,
ranging from attempts to understand peculiar features of
quantum formalism to a novel approach to calculus, e.g.
see (?????) for just a few recent developments in theses
directions. In the present paper we consider some com-
mon algebraic structures of Quantum Theory and will
show that the combinatorial approach has much to offer
in this domain as well.

The current formalism and structure of Quantum The-
ory is based on the theory of operators acting on a Hilbert
space. According to a few basic postulates, the physical
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concepts of a system, i.e. the observables and transfor-
mations, find their representation as operators which ac-
count for experimental results. An important role in this
abstract description is played by the notions of addition,
multiplication and tensor product which are responsible
for peculiarly quantum properties such as interference,
non-compatibility of measurements as well as entangle-
ment in composite systems (???). From the algebraic
point of view, one appropriate structure capturing these
features is a bi-algebra or, more specifically, a Hopf al-
gebra. These structures comprise a vector space with
two operations, multiplication and co-multiplication, de-
scribing how operators compose and decompose. In the
following, we shall be concerned with a combinatorial
model which provides an intuitive picture of this type of
abstract structure.

However, the bare formalism is, by itself, not enough to
provide a description of real quantum phenomena. One
must also associate operators with physical quantities.
This will, in turn, involve the association of some al-
gebraic structure with physical concepts related to the
system. In practice the most common correspondence
rules are based on an associative algebra, the Heisenberg–
Weyl algebra H. This mainly arises by analogy with clas-
sical mechanics whose Poissonian structure is reflected
in the quantum-mechanical commutator of position and
momentum observables [x, p] = i~ (?). In the first in-
stance this commutator gives rise to a Lie algebra LH

(??), which naturally extends to a Hopf algebra struc-
tures in the enveloping algebra U(LH) (??). An im-
portant equivalent commutator is that of the creation–
annihilation operators [a, a†] = 1, employed in the occu-
pation number representation in quantum mechanics and
the second quantization formalism of quantum field the-
ory. Accordingly, we take the Heisenberg–Weyl algebra
H as our starting point.

In this paper we develop a combinatorial approach to
the Heisenberg–Weyl algebra and present a comprehen-
sive model of this algebra in terms of diagrams. In some
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respects this approach draws on Feynman’s idea of rep-
resenting physical processes as diagrams used as a book-
keeping tool in the perturbation expansions of quantum
field theory. We discuss natural notions of diagram com-
position and decomposition which provide a straightfor-
ward interpretation of the abstract operations of multipli-
cation and co-multiplication. The resulting combinato-
rial algebra G may be seen as a lifting of the Heisenberg–
Weyl algebra H to a richer structure of diagrams, cap-
turing all the properties of the latter. Moreover, it will
be shown to have a natural bi-algebra and Hopf algebra
structure providing a concrete model for the enveloping
algebra U(LH) as well. Schematically, these relationships
can be pictured as follows
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where all the arrows are algebra morphisms and ϕ is a
Hopf algebra morphism. Whilst the lower part of the
diagram is standard, the upper part and the construc-
tion of the combinatorial algebra G illustrate a genuine
combinatorial underpinning of these abstract algebraic
structures.
The paper is organized as follows. In Section II we

start by briefly recalling the algebraic structure of the
Heisenberg–Weyl algebra H and the enveloping algebra
U(LH). In Section III we define the Heisenberg–Weyl di-
agrams and introduce the notion of composition which
leads to the combinatorial algebra G. Section IV deals
with the concept of decomposition, endowing the dia-
grams with a Hopf algebra structure. The relation be-
tween the combinatorial structures in G and the algebraic
structures in H and U(LH) are explained as they appear
in the construction. For ease of reading most proofs have
been moved to the Appendices.

II. HEISENBERG–WEYL ALGEBRA

The objective of this paper is to develop a combina-
torial model of the Heisenberg–Weyl algebra. In order
to fully appreciate the versatility of our construction, we
start by briefly recalling some common algebraic struc-
tures and clarifying their relation to the Heisenberg–Weyl
algebra.

A. Algebraic setting

An associative algebra with unit is one of the most basic
structures used in the theoretical description of physical

phenomena. It consists of a vector space A over a field K

which is equipped with a bilinear multiplication law A×
A ∋ (x, y) −→ x y ∈ A which is associative and possesses
a unit element I.1 Important notions in this framework
are a basis of an algebra, by which is meant a basis for
its underlying vector space structure, and the associated
structure constants. For each basis {xi} the latter are
defined as the coefficients γk

ij ∈ K in the expansion of the

product xi xj =
∑

k γ
k
ij xk. We note that the structure

constants uniquely determine the multiplication law in
the algebra.2 For example, when the underlying vector
space is finite dimensional of dimension N , that is each
vector-space element has a unique expansion in terms of
N basis elements, then there is only a finite number, at
most N3, of non-vanishing γk

ij ’s. A canonical example
of the (noncommutative) associative algebra with unit is
a matrix algebra, or more generally an algebra of linear
operators acting in a vector space.

A description of composite systems is obtained through
the construction of a tensor product. Of particular im-
portance for physical applications is how the transfor-
mations distribute among the components. A canonical
example is the algebra of angular momentum and its rep-
resentation on composite systems. In general, this issue
is properly captured by the notion of a bi-algebra which
consists of an associative algebra with unit A which is ad-
ditionally equipped with a co-product and a co-unit. The
co-product is defined as a co-associative linear mapping
∆ : A −→ A ⊗ A prescribing the action from the alge-
bra to a tensor product, whilst the co-unit ε : A −→ K

gives a linear map to the underlying field K. Further-
more, the bi-algebra axioms require ∆ and ε to be al-
gebra morphisms, i.e. to preserve multiplication in the
algebra, which asserts the correct transfer of the algebraic
structure of A into the tensor product A⊗A. Addition-
ally, a proper description of the action of an algebra in
a dual space requires the existence of an antimorphism
S : A −→ A called the antipode, thus introducing a Hopf
algebra structure in A. For a complete set of bi-algebra
and Hopf algebra axioms see (???).

In this context it is instructive to discuss the difference
between Lie algebras and associative algebras which is
often misunderstood. A Lie algebra is a vector space L
over a field K with a bilinear law L × L ∋ (x, y) −→
[x, y] ∈ L, called the Lie bracket, which is antisym-
metric [x, y] = −[y, x] and satisfies the Jacobi identity:
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. Lie algebras are not
associative in general3 and lack an identity element. A

1 A full list of axioms may be found in any standard text on alge-
bra, such as (??).

2 The structure constants must of course satisfy the constraints
provided by the associative law.

3 However, all the Heisenberg Lie algebras h2n+1 are also (triv-
ially) associative in the sense that for all x, y, z ∈ h2n+1,
x ⋆ (y ⋆ z) = (x ⋆ y) ⋆ z(= 0) where ⋆ is the composition (bracket)
in the Lie algebra.
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standard remedy for these deficiencies consists of passing
to the enveloping algebra U(L) which has the more fa-
miliar structure of an associative algebra with unit and,
at the same time, captures all the relevant properties of
L. An important step in its realization is the Poincaré–
Birkhoff–Witt theorem which provides an explicit de-
scription of U(L) in terms of ordered monomials in the
basis elements of L, see (?). As such, the enveloping alge-
bras can be seen as giving faithful models of Lie algebras
in terms of a structure with an associative law.
Below, we illustrate these abstract algebraic construc-

tions within the context of the Heisenberg–Weyl algebra.
These abstract algebraic concepts gain by use of a con-
crete example.

B. Heisenberg–Weyl algebra revisited

In this paper we consider the Heisenberg–Weyl alge-
bra, denoted by H, which is an associative algebra with
unit, generated by two elements a and a† subject to the
relation

a a† = a†a+ I . (1)

This means that the algebra consists of elements A ∈ H
which are linear combinations of finite products of the
generators, i.e.

A =
∑

rk,...,r1
sk,...,s1

Ark,...,r1
sk,...,s1

a† rk ask ... a† r2 as2 a† r1 as1 , (2)

where the sum ranges over a finite set of multi-indices
rk, ..., r1 ∈ N and sk, ..., s1 ∈ N (with the convention
a0 = a† 0 = I). Throughout the paper we stick to the
notation used in the occupation number representation
in which a and a† are interpreted as annihilation and
creation operators. We note, however, that one should
not attach too much weight to this choice as we consider
algebraic properties only, so particular realizations are
irrelevant and the crux of the study is the sole relation
of Eq. (1). For example, one could equally well use X
as multiplication by z, and derivative operator D = ∂z
acting in the space of complex polynomials, or analytic
functions, which also satisfy the relation [D,X] = I.
Observe that the representation given by Eq. (2) is

ambiguous in so far as the rewrite rule of Eq. (1) allows
different representations of the same element of the al-
gebra, e.g. aa† or equally a†a + I. The remedy for this
situation lies in fixing a preferred order of the generators.
Conventionally, this is done by choosing the normally or-
dered form in which all annihilators stand to the right of
creators. As a result, each element of the algebra H can
be uniquely written in normally ordered form as

A =
∑

k,l

αkl a
† k al . (3)

In this way, we find that the normally ordered monomi-
als constitute a natural basis for the Heisenberg–Weyl

algebra, i.e.

Basis of H :
{
a† kal

}

k,l∈N
,

indexed by pairs of integers k, l = 0, 1, 2, ..., and Eq. (3)
is the expansion of the element A in this basis. One
should note that the normally ordered representation of
the elements of the algebra suggests itself not only as the
simplest one but is also of practical use and importance
in applications in quantum optics (???) and quantum
field theory (??). In the sequel we choose to work in this
particular basis. For the complete algebraic description
of H we still need the structure constants of the algebra.
They can be readily read off from the formula for the
expansion of the product of basis elements

a† paq a† kal =

min (q,k)
∑

i=0

(
q

i

)(
k

i

)

i! a† p+k−iaq+l−i . (4)

We note that working in a fixed basis is in general a
nontrivial task. In our case, the problem reduces to re-
arranging a and a† to normally ordered form which may
often be achieved by combinatorial methods (??).

C. Enveloping algebra U(LH)

We recall that the Heisenberg Lie algebra, denoted by
LH, 4 is a 3-dimensional vector space with basis {a†, a, e}
and Lie bracket defined by [a, a†] = e, [a†, e] = [a, e] = 0.
Passing to the enveloping algebra involves imposing the
linear order a† ≻ a ≻ e and constructing the enveloping
algebra U(LH) with basis given by the family

Basis of U(LH) :
{
a† kal em

}

k,l,m∈N
,

which is indexed by triples of integers k, l,m = 0, 1, 2, ....
Hence, elements B ∈ U(LH) are of the form

B =
∑

k,l,m

βklm a† kal em . (5)

According to thePoincaré–Birkhoff–Witt theorem, the
associative multiplication law in the enveloping algebra
U(LH) is defined by concatenation, subject to the rewrite
rules

a a† = a†a+ e ,

e a† = a†e , (6)

e a = a e .

One checks that the formula for multiplication of basis
elements in U(LH) is a slight generalization of Eq. (4)

4 This Lie algebra, the Heisenberg Lie algebra, which is written
here as LH , is often called h3 in the literature, with h2n+1

being the extension to n creation operators.
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and is

a† paq er a† kal em =

=

min (q,k)
∑

i=0

(
q

i

)(
k

i

)

i! a† p+k−i aq+l−i er+l+i . (7)

Note that the algebra U(LH) differs from H by the ad-
ditional central element e which should not be confused
with the unity I of the enveloping algebra.5 This dis-
tinction plays an important role in some applications as
explained below. In situations when this difference is in-
substantial one may set e→ I recovering the Heisenberg–
Weyl algebra H, i.e. we have the surjective morphism
π : U(LH) −→ H given by

π
(
a† iaj ek

)
= a† iaj . (8)

This completes the algebraic picture which can be sub-
sumed in the following diagram

U(LH)
π // // H

LH
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We emphasize that the inclusions ι : LH −→ U(LH) and
κ = π◦ι : LH −→ H are Lie algebra morphisms, while the
surjection π : U(LH) −→ H is a morphism of associative
algebras with unit. Note that different structures are
carried over by these morphisms.
Finally, we observe that the enveloping algebra U(LH)

may equipped with a Hopf algebra structure. This may
be constructed in a standard way by defining the co-
product6 ∆ : U(LH) −→ U(LH) ⊗ U(LH) on the gener-
ators x = a†, a, e setting ∆(x) = x ⊗ I + I ⊗ x, which
further extends to

∆
(
a† paq er

)
=

∑

i,j,k

(
p

i

)(
q

j

)(
r

k

)

a† iaj ek ⊗ a† p−iaq−j er−k . (9)

Similarly, the antipode S : U(LH) −→ U(LH) is given
on generators by S(x) = −x, and hence from the anti-
morphism property yields

S
(
a† paq er

)
= (−1)p+q+r er aq a† p . (10)

Finally, the co-unit ε : U(LH) −→ K is defined in the
following way

ε
(
a† paq er

)
=

{
1 if p, q, r = 0 ,
0 otherwise .

(11)

5 As usual, we write a0 = a†
0
= e0 = I

6 Note that this definition gives a co-commutative Hopf algebra.
One may also define a non-co-commutative co-product (?).

A word of warning here: the Heisenberg–Weyl algebra
H can not be endowed with a bi-algebra structure con-
trary to what is sometimes tacitly assumed. This is be-
cause properties of the co-unit contradict the relation
of Eq. (1), i.e. it follows that ε(I) = ε(a a† − a†a) =
ε(a) ε(a†)− ε(a†) ε(a) = 0 whilst one should have ε(I) =
1. This brings out the importance of the additional cen-
tral element e 6= I which saves the day for U(LH).

III. ALGEBRA OF DIAGRAMS AND COMPOSITION

In this Section we define the combinatorial class of
Heisenberg–Weyl diagrams which is the central object
of our study. We equip this class with an intuitive notion
of composition, permitting the construction of an alge-
bra structure and thus providing a combinatorial model
of the algebras H and U(LH).

A. Combinatorial concepts

We start by recalling a few basic notions from graph
theory (?) needed for a precise definition of the
Heisenberg–Weyl diagrams, and then provide an intuitive
graphical representation of this structure.
Briefly, from a set-theoretical point of view, a directed

graph is a collection of edges E and vertices V with the
structure determined by two mappings h, t : E −→ V
prescribing how the head and tail of an edge are attached
to vertices. Here we address a slightly more general set-
ting consisting of partially defined graphs whose edges
may have one of the ends free (but not both), i.e. we
consider finite graphs with partially defined mappings h
and t such that dom(h)∪dom(t) = E, where dom stands
for domain. We call a cycle in a graph any sequence of
edges e1, e2, ..., en such that h(ek) = t(ek+1) for k < n
and h(en) = t(e1). A convenient concept in graph theory
concerns the notion of equivalence. Two graphs given by
h1, t1 : E1 −→ V1 and h2, t2 : E2 −→ V2 are said to be
equivalent if one can be isomorphically transformed into
the other, i.e. both have the same number of vertices and
edges and there exist two isomorphisms αE : E1 −→ E2

and αV : V1 −→ V2 faithfully transferring the structure
of the graphs in the following sense

E1

h //
t

//

αE

��

V1

αV

��
E2

h //
t

// V2

The advantage of equivalence classes so defined is that
we can liberate ourselves from specific set-theoretical re-
alizations and think of a graph only in terms of relations
between vertices and edges which can be conveniently de-
scribed in a graphical way – this is the attitude we adopt
in the sequel.
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In this context, we propose the following formal defi-
nition:

Definition 1 (Heisenberg–Weyl Diagrams)

A Heisenberg–Weyl diagram Γ is a class of partially de-
fined directed graphs without cycles. It consists of three
sorts of lines: the inner ones Γ

0
having both head and

tail attached to vertices, the incoming lines Γ
−

with free

tails, and the outgoing lines Γ
+

with free heads.

A typical modus operandi when working with classes
is to invoke representatives. Following this practice, by
default we make all statements concerning Heisenberg–
Weyl diagrams with reference to its representatives, as-
suming that they are class invariants, which assumption
can be routinely checked in each case.

The formal Definition 1 gives an intuitive picture in
graphical form - see the illustration Fig. 1. A diagram
can be represented as a set of vertices • connected by lines
each carrying an arrow indicating the direction from the
tail to the head. Lines having one of the ends not at-
tached to a vertex will be marked with △ or N△ at the free
head or tail respectively. We will conventionally draw all
incoming lines at the bottom and the outgoing lines at
the top with all arrows heading upwards; this is always
possible since the diagrams do not have cycles. This pic-
tures the Heisenberg-Weyl diagram as a sort of process
or transformation with vertices playing the role of inter-
mediate steps.

FIG. 1 An example of a Heisenberg–Weyl diagram with three
distinguished characteristic sorts of lines: the inner ones

|Γ
0
| = 4, the incoming lines |Γ

−

| = 4 and outgoing lines

|Γ
+

| = 3.

An important characteristic of a diagram Γ is the total
number of its lines denoted by |Γ |. In the next sections
we further refine counting of the lines to the inner, the
incoming and the outgoing lines, denoting the result by

|Γ 0|, |Γ
−

| and |Γ
+

| respectively. Clearly, one has |Γ | =

|Γ 0|+ |Γ
−

|+ |Γ
+

|.

B. Diagram composition

A crucial concept of this paper concerns composition of
Heisenberg–Weyl diagrams. This has a straightforward
graphical representation as the attaching of free lines one
to another, and is based on the notion of a matching.
A matching m of two sets A and B is a choice of pairs

(ai, bi) ∈ A × B all having different components, i.e. if
ai = aj or bi = bj then i = j. Intuitively, it is a collection
of pairs (ai, bi) obtained by taking away ai from A and
bi from B and repeating the process several times with
sets A and B gradually reducing in size. We denote the
collection of all possible matchings by A◭⊳◭⊳B, and its re-

striction to matchings comprising i pairs only by A◭⊳◭⊳
i

B.
It is straightforward to check by exact enumeration the

formula |A◭⊳◭⊳
i

B| =
(
|A|
i

)(
|B|
i

)
i!, which is valid for any i if

the convention
(
n
k

)
= 0 for n < k is applied.

The concept of diagram composition suggests itself, as:

Definition 2 (Diagram Composition)

Consider two Heisenberg–Weyl diagrams Γ2 and Γ1 and

a matching m ∈ Γ
−

2 ◭⊳◭⊳Γ
+

1 between the free lines going

out from the first one Γ
+

1 and the free lines going into

the second one Γ
−

2 . The composite diagram, denoted by

Γ2

m
◭ Γ1, is constructed by joining the lines coupled by

the matching m.

This descriptive definition can be formalized by refer-
ring to representatives in the following way. Given two
disjoint graphs Γ1 and Γ2, i.e. such that VΓ2

∩ VΓ1
= Ø

and EΓ2
∩ EΓ1

= Ø, we construct the composite graph

Γ2

m
◭ Γ1 consisting of vertices V

Γ2◭
m

Γ1
= VΓ2

∪ VΓ1
and

edges E
Γ2◭

m

Γ1
= EΓ2

∪ EΓ1
∪ m − (pr2(m) ∪ pr1(m)),

where pr is the projection on the first or second com-
ponent in EΓ2

× EΓ1
. Then, the head and tail func-

tions unambiguously extend to the set EΓ2
∪ EΓ1

−
(pr2(m) ∪ pr1(m)) and for e = (eΓ2

, eΓ1
) ∈ m we de-

fine h
Γ2◭

m

Γ1
(e) = hΓ2

(eΓ2
) and t

Γ2◭
m

Γ1
(e) = tΓ1

(eΓ1
).

Clearly, choice of the disjoint graphs in classes is always
possible and the resulting directed graph does not con-
tain cycles. It then remains to check that the composition
of diagrams so defined, making use of representatives, is
class invariant.
Definition 2 can be straightforwardly seen as if dia-

grams were put over one another with some of the lines
going out from the lower one plugged into some of the
lines going into the upper one in accordance with a given

matching m ∈ Γ
−

2 ◭⊳◭⊳Γ
+

1 , for illustration see Fig. 2. Ob-
serve that in general two graphs can be composed in
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many ways, i.e. as many as there are possible matchings

(elements in Γ
−

2 ◭⊳◭⊳Γ
+

1 ). In Section III.C we exploit all
these possible compositions to endow the diagrams with
the structure of an algebra. Note also that the above
construction depends on the order in which diagrams are
composed and in general the reverse order yields different
results.

FIG. 2 Composition of two diagrams Γ2

m

◭ Γ1 according to

the matching m ∈ Γ
−

2 ◭⊳◭⊳Γ
+

1 consisting of three connections.

We conclude by two simple remarks concerning the
composition of two diagrams Γ2 and Γ1 constructed by
joining exactly i lines. Firstly, we observe that possible
compositions can be enumerated explicitly by the for-
mula

|Γ
−

2 ◭⊳◭⊳
i

Γ
+

1 | =

(
|Γ

−

2 |

i

)(
|Γ

+

1 |

i

)

i! . (12)

Secondly, the number of incoming, outgoing and inner
lines in the composed diagram does not depend on the

choice of a matching m ∈ Γ
−

2 ◭⊳◭⊳
i

Γ
+

1 and reads respectively

|(Γ2

m
◭ Γ1)

+

| = |Γ
+

2 |+ |Γ
+

1 | − i ,

|(Γ2

m
◭ Γ1)

−

| = |Γ
−

2 |+ |Γ
−

1 | − i ,

|(Γ2

m
◭ Γ1)

0

| = |Γ
0

2 |+ |Γ
0

1 |+ i . (13)

C. Algebra of Heisenberg–Weyl Diagrams

We show here that the Heisenberg–Weyl diagrams
come equipped with a natural algebraic structure based
on diagram composition. It will appear to be a combina-
torial refinement of the familiar algebras H and U(LH).

An algebra requires two operations, addition and mul-
tiplication, which we construct in the following way. We
define G as a vector space over K generated by the basis
set consisting of all Heisenberg–Weyl diagrams, i.e.

G =
{ ∑

i
αi Γi : αi ∈ K, Γi −

Heisenberg–Weyl
diagram

}

. (14)

Addition and multiplication by scalars in G has the usual
form

∑

i
αi Γi +

∑

i
βi Γi =

∑

i
(αi + βi) Γi , (15)

and

β
∑

i
αi Γi =

∑

i
β αi Γi . (16)

The nontrivial part in the definition of the algebra G
concerns multiplication, which by bilinearity

∑

i
αi Γi ∗

∑

j
βj Γj =

∑

i,j
αiβj Γi ∗ Γj , (17)

reduces to determining it on the basis set of the
Heisenberg–Weyl diagrams. Recalling the notions of Sec-
tion III.B, we define the product of two diagrams Γ2 and
Γ1 as the sum of all possible compositions, i.e.

Γ2 ∗ Γ1 =
∑

m∈Γ
−

2
◭⊳◭⊳Γ

+

1

Γ2

m
◭ Γ1 . (18)

Clearly, the sum is well defined as there is only a finite

number of compositions (elements in Γ
−

2 ◭⊳◭⊳Γ
+

1 ). Note
that although all coefficients in Eq. (18) are equal to one,
some terms in the sum may appear several times giving
rise to nontrivial structure constants. The multiplication
thus defined is noncommutative and possesses a unit ele-
ment which is the empty graph Ø (no vertices, no lines).
Moreover, the following theorem holds (for the proof of
associativity see Appendix A):

Theorem 1 (Algebra of Diagrams)

Heisenberg–Weyl diagrams form a (noncommutative) as-
sociative algebra with unit (G,+, ∗,Ø).

Our objective, now, is to clarify the relation of the al-
gebra of Heisenberg–Weyl diagrams G to the physically
relevant algebras U(LH) and H. We shall construct for-
getful mappings which give a simple combinatorial pre-
scription of how to obtain the two latter structures from
G.
We define a linear mapping ϕ : G −→ U(LH) on the

basis elements by

ϕ(Γ ) = a† |Γ
+
| a |Γ

−

| e |Γ
0
| . (19)

This prescription can be intuitively understood by look-
ing at the diagrams as if they were carrying auxiliary
labels a†, a and e attached to all the outgoing, incom-
ing and inner lines respectively. Then the mapping of
Eq. (19) just neglects the structure of the graph and only
pays attention to the number of lines, i.e. counting them
according to the labels. Clearly, ϕ is onto and it can be
proved to be a genuine algebra morphism, i.e. it pre-
serves addition and multiplication in G (for the proof see
Appendix B).
Similarly, we define the morphism ϕ̄ : G −→ H as

ϕ̄(Γ ) = a †|Γ
+
| a |Γ

−

| , (20)
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which differs from ϕ by ignoring all inner lines in the
diagrams. It can be expressed as ϕ̄ = π ◦ ϕ and hence
satisfies all the properties of an algebra morphism.
We recapitulate the above discussion in the following

theorem:

Theorem 2 (Forgetful mapping)

The mappings ϕ : G −→ U(LH) and ϕ̄ : G −→ H defined
in Eqs. (19) and (20) are surjective algebra morphisms,
and the following diagram commutes

G
ϕ

||||yy
yy

yy
yy

y
ϕ̄

�� ��>
>>

>>
>>

>

U(LH)
π // // H

(21)

Therefore, the algebra of Heisenberg–Weyl diagrams G
is a lifting of the algebras U(LH) and H, and the latter
two can be recovered by applying appropriate forgetful
mappings ϕ and ϕ̄. As such, the algebra G can be seen
as a fine graining of the abstract algebras U(LH) and
H. Thus these latter algebras gain a concrete combina-
torial interpretation in terms of the richer structure of
diagrams.

IV. DIAGRAM DECOMPOSITION AND HOPF ALGEBRA

We have seen in Section III how the notion of com-
position allows for a combinatorial definition of diagram
multiplication, opening the door to the realm of algebra.
Here, we consider the opposite concept of diagram de-
composition which induces a combinatorial co-product in
the algebra, thus endowing Heisenberg–Weyl diagrams
with a bi-algebra structure. Furthermore, we will show
that G forms a Hopf algebra as well.

A. Basic concepts: Combinatorial decomposition

Suppose we are given a class of objects which allow for
decomposition, i.e. split into ordered pairs of pieces from
the same class. Without loss of generality one may think
of the class of Heisenberg–Weyl diagrams and some, for
the moment unspecified, procedure assigning to a given
diagram Γ its possible decompositions (Γ ′′, Γ ′). In gen-
eral there might be various ways of splitting an object
according to a given rule and, moreover, some of them
may yield the same result. We denote the collection of
all possibilities by 〈Γ 〉 = {(Γ ′′, Γ ′)} and for brevity write

Γ  (Γ ′′, Γ ′) ∈ 〈Γ 〉 . (22)

Note that strictly 〈Γ 〉 is a multiset, i.e. it is like a set but
with arbitrary repetitions of elements allowed. Hence, in
order not to overlook any of the decompositions, some
of which may be the same, we should use a more appro-
priate notation employing the notion of a disjoint union,

denoted by
⊎
, and write

〈Γ 〉 =
⊎

decompositions
Γ (Γ ′′,Γ ′)

{(Γ ′′, Γ ′)} . (23)

The concept of decomposition is quite general at this
point and its further development obviously depends on
the choice of the rule. One usually supplements this con-
struction with additional constraints. Below we discuss
some natural conditions one might expect from a decom-
position rule.

(0) Finiteness. It is reasonable to assume that an
object decomposes in a finite number of ways, i.e. for
each Γ the multiset 〈Γ 〉 is finite.

(1) Triple decomposition. Decomposition into
pairs naturally extends to splitting an object into three
pieces Γ  (Γ3, Γ2, Γ1). An obvious way to carry out
the multiple splitting is by applying the same proce-
dure repeatedly, i.e. decomposing one of the compo-
nents obtained in the preceding step. However, follow-
ing this prescription one usually expects that the result
does not depend on the choice of the component it is ap-
plied to. In other words, we require that we end up with
the same collection of triple decompositions when split-
ting Γ  (Γ ′′, Γ1) and then splitting the left component
Γ ′′
 (Γ3, Γ2), i.e.

Γ  (Γ ′′, Γ1) (Γ3, Γ2, Γ1) , (24)

as in the case when starting with Γ  (Γ3, Γ
′) and then

splitting the right component Γ ′
 (Γ2, Γ1), i.e.

Γ  (Γ3, Γ
′) (Γ3, Γ2, Γ1) . (25)

This condition can be seen as the co-associativity prop-
erty for decomposition, and in explicit form boils down
to the following equality:

⊎

(Γ ′′,Γ1)∈〈Γ 〉
(Γ3,Γ2)∈〈Γ ′′〉

{(Γ3, Γ2, Γ1)} =
⊎

(Γ3,Γ
′)∈〈Γ 〉

(Γ2,Γ1)∈〈Γ ′〉

{(Γ3, Γ2, Γ1)} . (26)

The above procedure straightforwardly extends to split-
ting into multiple pieces Γ  (Γn, ... , Γ1). Clearly, the
condition of Eq. (26) entails the analogous property for
multiple decompositions.

(2) Void object. Often, in a class there exists a sort
of a void (or empty - we use both terms synonymously)
element Ø, such that objects decompose in a trivial way.
It should have the the property that any object Γ 6= Ø
splits into a pair containing either Ø or Γ in two ways
only:

Γ  (Ø, Γ ) and Γ  (Γ,Ø) , (27)

and Ø (Ø,Ø). Clearly, if Ø exists, it is unique.

(3) Symmetry. For some rules the order between
components in decompositions is immaterial, i.e. the rule
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allows for an exchange (Γ ′, Γ ′′) ←→ (Γ ′′, Γ ′). In this
case the following symmetry condition holds

(Γ ′, Γ ′′) ∈ 〈Γ 〉 ⇐⇒ (Γ ′′, Γ ′) ∈ 〈Γ 〉 , (28)

and the multiplicities of (Γ ′, Γ ′′) and (Γ ′′, Γ ′) in 〈Γ 〉 are
the same.

(4) Composition–decomposition compatibility.
Suppose that in addition to decomposition we also have a
well-defined notion of composition of objects in the class.
We denote the multiset comprising all possible composi-
tions of Γ2 with Γ1 by Γ2 ◭ Γ1, e.g. for the Heisenberg–
Weyl diagrams we have

Γ2 ◭ Γ1 =
⊎

m∈Γ
−

2
◭⊳◭⊳Γ

+

1

Γ2

m
◭ Γ1 . (29)

Now, given a pair of objects Γ2 and Γ1, we may think
of two consistent decomposition schemes which involve
composition. We can either start by composing them to-
gether Γ2 ◭ Γ1 and then splitting all resulting objects
into pieces, or first decompose each of them separately
into 〈Γ2〉 and 〈Γ1〉 and then compose elements of both
sets in a component-wise manner. One may require that
the outcomes are the same no matter which way the pro-
cedure goes. Hence, a formal description of compatibility
comes down to the equality:

⊎

Γ∈Γ2◭Γ1

〈Γ 〉 =
⊎

(Γ ′′

2 ,Γ ′

2)∈〈Γ2〉
(Γ ′′

1 ,Γ ′

1)∈〈Γ1〉

(Γ ′′
2 ◭ Γ ′′

1 )× (Γ ′
2 ◭ Γ ′

1) . (30)

We remark that this property indicates that the void ob-
ject Ø of condition (2) is the same as the neutral element
for composition.

(5) Finiteness of multiple decompositions. Re-
call the process of multiple decompositions Γ  

(Γn, ...Γ1) constructed in condition (1) and observe that
one may extend the number of components to any n ∈ N.
However, if one considers only nontrivial decompositions
which do not contain void components Ø it is often the
case that the process terminates after a finite number of
steps. In other words, for each Γ there exists N ∈ N such
that

{Γ  (Γn, ...Γ1) : Γn, ..., Γ1 6= Ø} = ∅ (31)

for n > N . In practice, objects usually carry various
characteristics counted by natural numbers, e.g. the
number of elements they are built from. Then, if the de-
composition rule decreases such a characteristic in each
of the components in a nontrivial splitting, it inevitably
exhausts and then the condition of Eq. (31) is automat-
ically fulfilled.

Having discussed the above quite general conditions
expected from a reasonable decomposition rule we are
now in a position to return to the realm of algebra. We

have already seen in Section III.C how the notion of com-
position induces a multiplication which endows the class
of Heisenberg–Weyl diagrams with the structure of an
algebra, see Theorem 1. Following this route we now
employ the concept of decomposition to introduce the
structure of a Hopf algebra in G. A central role in the
construction will be played by the three mappings given
below.
Let us consider a linear mapping ∆ : G −→ G ⊗ G de-

fined on the basis elements as a sum of possible splittings,
i.e.

∆(Γ ) =
∑

(Γ ′,Γ ′′)∈〈Γ 〉

Γ ′ ⊗ Γ ′′ . (32)

Note, that although all coefficients in Eq. (32) are equal
to one, some terms in the sum may appear several times.
This is because elements in the multiset 〈Γ 〉 may repeat
and the numbers counting their multiplicities are some-
times called section coefficients (?). Observe that the
sum is well defined as long the number of decompositions
is finite, i.e. condition (0) is satisfied.
We also make use of a linear mapping ε : G −→ K

which extracts the coefficient of the void element Ø. It
is defined on the basis elements by:

ε(Γ ) =

{
1 if Γ = Ø ,
0 otherwise .

(33)

Finally, we need a linear mapping S : G −→ G defined
by the formula

S(Γ ) =
∑

Γ (Γn,...,Γ1)
Γn,...,Γ1 6=∅

(−1)n Γn ∗ ... ∗ Γ1 , (34)

for Γ 6= Ø and S(Ø) = Ø. Note that it is an alternating
sum over products of nontrivial multiple decompositions
of an object. Clearly, if the condition (5) holds the sum
is finite and S is well defined.
The mappings ∆, ε and S, built upon a reasonable

decomposition procedure, provide G with a rich algebraic
structure as summarized in the following lemma (for the
proofs see Appendix C):

Lemma 1 (Decomposition and Hopf algebra)

(i) If the conditions (0), (1) and (2) are satisfied, the
mappings ∆ and ε defined in Eqs. (32) and (33) are the
co-product and co-unit in the algebra G. The co-algebra
(G,∆, ε) thus defined is co-commutative, provided condi-
tion (3) is fulfilled.
(ii) In addition, if condition (4) holds we have a gen-

uine bi-algebra structure (G,+, ∗,Ø,∆, ε).
(iii) Finally, under condition (5) we establish a Hopf

algebra structure (G,+, ∗,Ø,∆, ε, S) with the antipode S
defined in Eq. (34).

We remark that the above discussion is applicable to
a wide range of combinatorial classes and decomposition
rules which we have thus far left unspecified. Below,
we apply these concepts to the class of Heisenberg–Weyl
diagrams.
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B. Hopf algebra of Heisenberg–Weyl diagrams

In this Section, we provide an explicit decomposition
rule for the Heisenberg–Weyl diagrams satisfying all the
conditions discussed in Section IV.A. In this way we
complete the whole picture by introducing a Hopf algebra
structure on G.
We start by observing that for a given Heisenberg–

Weyl graph Γ , each subset of its edges L ⊂ EΓ induces
a subgraph Γ |L which is defined by restriction of the
head and tail functions to the subset L. Likewise, the
remaining part of the edges R = EΓ − L gives rise to a
subgraph Γ |R. Clearly, the results are again Heisenberg–
Weyl graphs. Thus, by considering ordered partitions
of the set of edges into two subsets L + R = EΓ , i.e.
L ∪ R = EΓ and L ∩ R = ∅, we end up with pairs of
disjoint graphs (Γ |L , Γ |R). This suggests the following
definition:

Definition 3 (Diagram Decomposition)

A decomposition of a Heisenberg–Weyl diagram Γ is any
splitting (ΓL, ΓR) induced by an ordered partition of its
lines L + R = EΓ . Hence, the multiset 〈Γ 〉 comprising
all possible decompositions can be indexed by the set of
ordered double partitions {(L,R) : L+R = EΓ }, and we
have

〈Γ 〉 =
⊎

L+R=EΓ

{(Γ |L , Γ |R)} . (35)

The graphical picture is clear: the decomposition of a
diagram Γ  (Γ |L , Γ |R) is defined by the choice of lines
L ⊂ EΓ , which taken out make up the first component
of the pair whilst the remainder induced by R = EΓ −
L constitutes the second one. (See the illustration in
Fig. 3.)
We observe that the enumeration of all decompositions

of a diagram Γ is straightforward since the multiset 〈Γ 〉
can be indexed by subsets of EΓ . Because |EΓ | = |Γ |,

explicit counting gives |〈Γ 〉| =
∑

i

(
|Γ |
i

)
= 2|Γ |. This

simple observation can be generalized to calculate the
number of decompositions (Γ |L , Γ |R) ∈ 〈Γ 〉 in which the
first component has i outgoing, j incoming and k inner

lines, i.e. | Γ |
+

L | = i, | Γ |
−

L | = j, | Γ |
0

L | = k. Accordingly,
the enumeration reduces to the choice of i, j and k lines

out of the sets Γ
+

, Γ
−

and Γ
0
respectively, which gives

∣
∣
∣
∣
∣
∣






(Γ |L , Γ |R) ∈ 〈Γ 〉 :

|Γ |
+

L
|=i

|Γ |
−

L
|=j

|Γ |
0

L
|=k







∣
∣
∣
∣
∣
∣

=

(
|Γ

+

|

i

)(
|Γ

−

|

j

)(
|Γ 0|

k

)

.

(36)

Of course, the second component Γ |R is always deter-
mined by the first one Γ |L and hence the number of its
outgoing, incoming and inner lines is given by

| Γ |
+

R | = |Γ
+

| − i ,

| Γ |
−

R | = |Γ
−

| − j , (37)

| Γ |
0

R | = |Γ
0

| − k .

Having explicitly defined the notion of diagram decom-
position, one may check that it satisfies conditions (1) -
(5) of Section IV.A; for the proofs see Appendix D. In
this context Eq. (32) defining the co-product in the alge-
bra G takes the form

∆(Γ ) =
∑

L+R=EΓ

Γ |L ⊗ Γ |R , (38)

and the antipode of Eq. (34) may be rewritten as

S(Γ ) =
∑

An+...+A1=EΓ

An,...,A1 6=∅

(−1)n Γ |An
∗ ... ∗ Γ |A1

. (39)

for Γ 6= Ø and S(Ø) = Ø. Therefore, referring to
Lemma 1, we supplement Theorem 1 by the following
result:

Theorem 3 (Hopf algebra of Diagrams)

The algebra of Heisenberg–Weyl diagrams G has a
Hopf algebra structure (G,+, ∗,Ø,∆, ε, S) with (co-
commutative) co-product, co-unit and antipode as defined
in Eqs. (38), (33) and (39) respectively.

The algebra of Heisenberg–Weyl diagrams G was
shown to be directly related to the algebra U(LH)
through the forgetful mapping ϕ which preserves alge-
braic operations as explained in Theorem 2. Here, how-
ever, in the context of Theorem 3 the algebra G is ad-
ditionally equipped with a co-product, co-unit and an-
tipode. Since U(LH) is also a Hopf algebra, it is natural
to ask whether this extra structure is preserved by the
morphism ϕ of Eq. (19). It turns out that indeed it is
also preserved, and one can augment Theorem 2 in the
following way (for the proof see Appendix B):

Theorem 4 (Hopf algebra morphism ϕ)

The forgetful mapping ϕ : G −→ U(LH) defined in
Eq. (19) is a Hopf algebra morphism.

In this way, we have extended the results of Section III
to encompass the Hopf algebra structure of the envelop-
ing algebra U(LH). This completes the picture of the
algebra of Heisenberg–Weyl diagrams G as a combinato-
rial model which captures all the relevant properties of
the algebras H and U(LH).

V. CONCLUSIONS

(?)
*************************************
Conclusions: TO DO ...
Say explicitly that this is not Connes–Krimer algebra

and it is the combinatorial algebra which originates (is
compatible, has at its root) from the Lie algebra provided
by the LH

*************************************
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FIG. 3 An example of diagram decomposition Γ  (Γ |
L
, Γ |

R
). The choice of edges L ⊂ EΓ inducing the diagram Γ |

L
is

depicted on the left diagram as dashed lines.

Possible Journals: Ann. Phys., Phys. Rev. D, J. Phys.
A, Phys. Lett. A, ...

Possible referees: Kuś, Severini, Louck, Vourdas, Ka-
triel, Burdik, Foata, Coecke, ...
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APPENDIX A: Associativity of multiplication in G

We prove associativity of the multiplication defined in
Eq. (18). From bilinearity, we need only check it for the
basis elements, i.e.

Γ3 ∗ (Γ2 ∗ Γ1) = (Γ3 ∗ Γ2) ∗ Γ1 . (A1)

Written explicitly, the left- and right-hand sides of this
equation take the form

Γ3 ∗ (Γ2 ∗ Γ1) =
∑

m′

∑

m21

Γ3

m′

◭ (Γ2

m21

◭ Γ1) (A2)

where m′ ∈ Γ
−

3 ◭⊳◭⊳(Γ2

m21

◭ Γ1)
+

and m21 ∈ Γ
−

2 ◭⊳◭⊳Γ
+

1 ,
whilst

(Γ3 ∗ Γ2) ∗ Γ1 =
∑

m32

∑

m′′

(Γ3

m32

◭ Γ2)
m′′

◭ Γ1 (A3)

where m32 ∈ Γ
−

3 ◭⊳◭⊳Γ
+

2 and m′′ ∈ (Γ3

m32

◭ Γ2)
−

◭⊳◭⊳Γ
+

1 .
Consider the double sums in the above equations, in-

dexed by (m′,m21) and (m32,m
′′) respectively, and ob-

serve that there exists a one-to-one correspondence be-
tween their elements. We construct it by a fine graining
of the matchings, see Fig. 4, and define the following two
mappings. The first one is

(m′,m21) −→ (m32,m
′′) , (A4)

where m32 = m′ ∩ (Γ
−

3 × Γ
+

2 ) and m′′ = m21 ∪ (m′ ∩

(Γ
−

3 × Γ
+

1 )), and similarly the second one

(m32,m
′′) −→ (m′,m21) , (A5)

with m′ = m32∪(m
′′∩(Γ

−

3 ×Γ
+

1 )) and m21 = m′′∩(Γ
−

2 ×

Γ
+

1 ). Clearly, the mappings are inverses of each other,
which ensures a one-to-one correspondence between ele-
ments of the double sums in Eqs. (A2) and (A3). More-
over, the summands that are mapped onto each other are

equal, i.e. the corresponding diagrams Γ3

m′

◭ (Γ2

m21

◭ Γ1)

and (Γ3

m32

◭ Γ2)
m′′

◭ Γ1 are exactly the same. This com-
pletes the proof by showing equality of the right-hand
sides of Eqs. (A2) and (A3).

APPENDIX B: Forgetful morphism ϕ

In Theorems 2 and 4 we stated that the linear mapping
ϕ : G −→ U(LH) defined in Eq. (19) was a Hopf algebra
morphism. We now prove this statement.

We start by showing that ϕ preserves multiplication
in G. From linearity it is enough to check for the basis
elements that ϕ(Γ2 ∗Γ1) = ϕ(Γ2)ϕ(Γ1), which is verified
in the following sequence of equalities:

ϕ(Γ2 ∗ Γ1)
(18)
=

∑

m∈Γ
−

2
◭⊳◭⊳Γ

+

1

ϕ(Γ2

m
◭ Γ1) =

∑

i

∑

m∈Γ2◭⊳◭⊳
i

Γ1

ϕ(Γ2

m
◭ Γ1) (B1)

(13)
=

∑

i

∑

m∈Γ
−

2
◭⊳◭⊳
i

Γ
+

1

(a†) |Γ
+

2 |+|Γ
+

1 |−i a |Γ
−

2 |+|Γ
−

1 |−i e |Γ
0

2 |+|Γ
0

1 |+i

=
∑

i

(a†) |Γ
+

2 |+|Γ
+

1 |−i a |Γ
−

2 |+|Γ
−

1 |−i e |Γ
0

2 |+|Γ
0

1 |+i
∑

m∈Γ
−

2
◭⊳◭⊳
i

Γ
+

1

1 (B2)

(12)
=

∑

i

(
|Γ

−

2 |

i

)(
|Γ

+

1 |

i

)

i! (a†) |Γ
+

2 |+|Γ
+

1 |−i a |Γ
−

2 |+|Γ
−

1 |−i e |Γ
0

2 |+|Γ
0

1 |+i

(7)
=

(

(a†) |Γ
+

2 | a |Γ
−

2 | e |Γ
0

2 |

)(

(a†) |Γ
+

1 | a |Γ
−

1 | e |Γ
0

1 |

)

= ϕ(Γ2)ϕ(Γ1) .

In the above derivation the main trick in Eq. (B1) con-
sists of splitting the set of diagram matchings into disjoint
subsets according to the number of connected lines, i.e.

Γ
−

2 ◭⊳◭⊳Γ
+

1 =
⋃

i Γ
−

2 ◭⊳◭⊳
i

Γ
+

1 . Then, observing that the sum-

mands in Eq. (B2) do not depend on m ∈ Γ
−

2 ◭⊳◭⊳
i

Γ
+

1 , we
may execute explicitly one of the sums counting elements

in Γ
−

2 ◭⊳◭⊳
i

Γ
+

1 with the help of Eq. (12).

We also need to show that the co-product, co-unit and
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FIG. 4 Fine graining of the matchings m′ ∈ Γ
−

3 ◭⊳◭⊳(Γ2

m21

◭

Γ1)
+

and m′′ ∈ (Γ3

m32

◭ Γ2)
−

◭⊳◭⊳Γ
+

1 used in the proof of asso-
ciativity of multiplication.

antipode are preserved by ϕ. This means that when pro-
ceeding via the mapping ϕ from G to U(LH) one can
use the co-product, co-unit and antipode in either of the
algebras and obtain the same result i.e.

(ϕ⊗ ϕ) ◦∆ = ∆ ◦ ϕ , (B3)

ε = ε ◦ ϕ , (B4)

ϕ ◦ S = S ◦ ϕ , (B5)

where ∆, ε and S on the left-hand sides act in G whilst
on the right-hand sides in U(LH). The proof of Eq. (B3)
rests upon the counting formula in Eq. (36) and the ob-
servation of Eq. (37), which justify the following equali-
ties

(ϕ⊗ ϕ) ◦∆(Γ ) =
∑

L+R=EΓ

ϕ (Γ |L)⊗ ϕ (Γ |R) =
∑

L⊂EΓ

ϕ (Γ |L)⊗ ϕ
(
Γ |EΓ−L

)

(36),(37)
=

∑

i,j,k

(
|Γ

+

|

i

)(
|Γ

−

|

j

)(
|Γ 0|

k

)

a† i aj ek ⊗ a† |Γ
+
|−i a|Γ

−

|−j e|Γ
0
|−k (9)

= ∆ ◦ ϕ (Γ ) .

Eq. (B4) is readily verified by comparing Eqs. (33) and
(11). Eq. (B5) is similarly checked, as the structure of
Eq. (34) faithfully transfers via morphism into the anal-
ogous general formula for the antipode in the graded
Hopf algebras (see (??)), the latter of course reproducing
Eq. (10) in the case of Lie algebras.

APPENDIX C: From decomposition to Hopf algebra

In order to prove Lemma 1 we should check in part
(i) co-associativity of the co-product ∆ and properties of
the co-unit ε, in part (ii) show that the mappings ∆ and
ε preserve multiplication in G, and for part (iii) verify
the defining properties of the antipode S.

(i) Co-algebra

The co-product ∆ : G −→ G⊗G is co-associative if the
following equality holds

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆ . (C1)

Since ∆ defined in Eq. (32) is linear it is enough to check
(C1) for the basis elements Γ . Accordingly, the left-hand
side takes the form

(∆⊗ Id) ◦∆(Γ ) = (Id⊗∆)
∑

(Γ1,Γ ′′)∈〈Γ 〉

Γ1 ⊗ Γ ′′

=
∑

(Γ1,Γ
′′)∈〈Γ 〉

(Γ2,Γ3)∈〈Γ ′′〉

Γ1 ⊗ Γ2 ⊗ Γ3 , (C2)
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whereas the right-hand side is

(Id⊗∆) ◦∆(Γ ) = (∆⊗ Id)
∑

(Γ ′,Γ3)∈〈Γ 〉

Γ ′ ⊗ Γ3

=
∑

(Γ ′,Γ3)∈〈Γ 〉
(Γ1,Γ2)∈〈Γ ′〉

Γ1 ⊗ Γ2 ⊗ Γ3 . (C3)

If condition (1) of Section IV.A holds, the property
Eq. (26) asserts equality of the right-hand sides of
Eqs. (C2) and (C3) and the co-product defined in
Eq. (32) is co-associative.
By definition, the co-unit ε : G −→ K should satisfy

the equalities

(ε⊗ Id) ◦∆ = Id = (Id⊗ ε) ◦∆ , (C4)

where the identification K ⊗ G = G ⊗ K = G is implied.
We check the first one for the basis elements Γ by direct
calculation:

(ε⊗ Id) ◦∆(Γ ) = (ε⊗ Id)
∑

(Γ1,Γ2)∈〈Γ 〉

Γ1 ⊗ Γ2

=
∑

(Γ1,Γ2)∈〈Γ 〉

ε(Γ1)⊗ Γ2 (C5)

= 1⊗ Γ = Γ = Id (Γ ) .

Note that we have applied condition (2) of Section IV.A
by taking all terms in the sum Eq. (C5) equal to zero
except the unique decomposition (Ø, Γ ) picked up by ε
as defined in Eq. (33). The identification 1 ⊗ Γ = Γ
completes the proof of the first equality in Eq. (C4); ver-
ification of the second one is analogous.
Co-commutativity of the co-product ∆ under the con-

dition (3) is straightforward since from Eq. (28) we have

∆(Γ ) =
∑

(Γ ′,Γ ′′)∈〈Γ 〉

Γ ′ ⊗ Γ ′′ =
∑

(Γ ′,Γ ′′)∈〈Γ 〉

Γ ′′ ⊗ Γ ′ .

(ii) Bi-algebra

The structure of a bi-algebra results whenever the co-
product ∆ : G ⊗ G −→ G and co-unit ε : G −→ K of
the co-algebra are compatible with multiplication in G.
Thus, we need to verify for basis elements Γ1 and Γ2 that

∆ (Γ2 ∗ Γ1) = ∆ (Γ2) ∗∆(Γ1) , (C6)

with component-wise multiplication in the tensor prod-
uct G ⊗ G on the right-hand-side, and

ε (Γ2 ∗ Γ1) = ε (Γ2) ε (Γ1) , (C7)

with terms on the right-hand-side multiplied in K.
We check Eq. (C6) directly by expanding both sides

using the definitions of Eqs. (18), (29) and (32). Accord-

ingly, the left-hand-side takes the form

∆(Γ2 ∗ Γ1) =
∑

Γ∈Γ2◭Γ1

∆(Γ )

=
∑

Γ∈Γ2◭Γ1

∑

(Γ ′′,Γ ′)∈〈Γ 〉

Γ ′′ ⊗ Γ ′

(C8)

while the right-hand side is

∆ (Γ2) ∗∆(Γ1) =
∑

(Γ ′′

2 ,Γ ′

2)∈〈Γ2〉
(Γ ′′

1 ,Γ ′

1)∈〈Γ1〉

(Γ ′′
2 ⊗ Γ ′

2) ∗ (Γ
′′
1 ⊗ Γ ′

1)
︸ ︷︷ ︸

(Γ ′′

2
∗Γ ′′

1
)⊗(Γ ′

2
∗Γ ′

1
)

=
∑

(Γ ′′

2 ,Γ ′

2)∈〈Γ2〉
(Γ ′′

1 ,Γ ′

1)∈〈Γ1〉

∑

Γ ′′∈Γ ′′

2 ◭Γ
′′

1

Γ ′∈Γ ′

2◭Γ
′

1

Γ ′′ ⊗ Γ ′

(C9)

A closer look at condition (4) and Eq. (30) shows a one-
to-one correspondence between terms in the sums on the
right-hand sides of Eqs. (C8) and (C9), verifying the va-
lidity of Eq. (C6).
Verification of Eq. (C7) rests upon the simple observa-

tion that composition of diagrams Γ2 ∗Γ1 yields the void
diagram only if both of them are void. Then, both sides
are equal to 1 if Γ1 = Γ2 = Ø and 0 otherwise, which
confirms Eq. (C7).

(iii) Hopf algebra

A Hopf algebra structure consists of a bi-algebra
(G,+, ∗,Ø,∆, ε) equipped with an antipode S : G −→ G
which is an endomorphism satisfying the property

µ ◦ (Id⊗ S) ◦∆ = Ξ = µ ◦ (S ⊗ Id) ◦∆ , (C10)

where µ : G ⊗G −→ G is the multiplication µ(Γ2⊗Γ1) =
Γ2 ∗ Γ1, and Id : G −→ G is the identity map on G. We
have introduced the auxiliary linear mapping Ξ : G −→ G
merely to simplify the proof. This mapping is defined by
Ξ = η ◦ ε where the unit map η : K −→ G satisfies
η(α) = αØ. Ξ is thus the projection on the subspace
spanned by Ø, i.e.

Ξ(Γ ) =

{
Γ if Γ = αØ , α ∈ K ,
0 otherwise .

(C11)

We now prove that S given in Eq. (34) satisfies the con-
dition of Eq. (C10). We start by considering an auxiliary
linear mapping Φ : End(G) −→ End(G) defined by

Φ(f) = µ ◦ (Id⊗ f) ◦∆, f ∈ End(G). (C12)

Observe that under the assumption that Φ is invertible
the first equality in Eq. (C10) can be rephrased into the
condition

S = Φ−1(Ξ) . (C13)
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Now, our objective is to show that Φ is invertible and
calculate its inverse explicitly. By extracting the identity
we get Φ = Id + Φ+ and observe that such defined Φ+

can be written in the form

Φ+(f) = µ ◦ (Ξ̄⊗ f) ◦∆, f ∈ End(G) , (C14)

where Ξ̄ = Id− Ξ is the complement of Ξ projecting on
the subspace spanned by Γ 6= Ø, i.e.

Ξ̄(Γ ) =

{
0 if Γ = αØ , α ∈ K ,
Γ otherwise .

(C15)

We claim that the mapping Φ is invertible with inverse
given by7

Φ−1 =

∞∑

n=0

(−Φ+)n . (C16)

In order to check that the above sum is well defined we
analyze the sum term by term. It is not difficult to cal-
culate powers of Φ+ explicitly

(
Φ+

)n
(f)(Γ ) =

∑

Γ (Γn,...,Γ1,Γ0)
Γn,...,Γ1 6=Ø

Γn ∗ ... ∗ Γ1 ∗ f(Γ0) . (C17)

We note that in the above formula products of multiple
decompositions arise from repeated use of the property
of Eq. (C6); the exclusion of empty components in the
decompositions (except the single one on the right hand
side) comes from the definition of Ξ̄ in Eq. (C15). The
latter constraint together with condition (5) asserts that
the number of non-vanishing terms in Eq. (C16) is always
finite proving that Φ−1 is well defined. Finally, using
Eqs. (C16) and (C17) one explicitly calculates S from
Eq. (C13), obtaining the formula of Eq. (34).
In conclusion, by construction the linear mapping S

of Eq. (34) satisfies the first equality in Eq. (C10); the
second equality can be checked analogously. Therefore
we have proved S to be an antipode thus making G into
a Hopf algebra. We remark that, by a general theory
of Hopf algebras (??), the property of Eq. (C10) implies
that S is an anti-morphism and that it is unique. More-
over, if G is commutative or co-commutative S is an in-
volution, i.e. S ◦ S = Id.

APPENDIX D: Properties of diagram decomposition

We verify that the decomposition of Definition 3 sat-
isfies conditions (0) - (5) of Section IV.A.

7 For a linear mapping L = Id+ L+ : V −→ V its inverse can be
constructed as L−1 =

∑∞
n=0

(−L+)n provided the sum is well
defined. Indeed, one readily checks that L ◦ L−1 = (Id + L+) ◦∑∞

n=0
(−L+)n =

∑∞
n=0

(−L+)n +
∑∞

n=0
(−L+)n+1 = Id, and

similarly L−1 ◦ L = Id.

Condition (0) follows directly from the construction,
as we consider finite diagrams only.
The proof of condition (1) consists of providing a one-

to-one correspondence between schemes (24) and (25) de-
composing a diagram Γ into triples. Accordingly, one
easily checks (see illustration Fig. 5) that each triple
(Γ |L , Γ |M , Γ |R) obtained by

Γ  (Γ |L , Γ |R̄) (Γ |L , Γ |M , Γ |R) (D1)

where Γ |R̄  (Γ |M , Γ |R), also turns up as the decom-
position

Γ  (Γ |L̄ , Γ |R) (Γ |L , Γ |M , Γ |R) , (D2)

where Γ |L̄  (Γ |L , Γ |M ), for the choice L̄ = L + M .
Conversely, triples obtained by the scheme (D2) coincide
with the results of (D1) for the choice R̄ = M+R. There-
fore, the multisets of triple decompositions are equal and
Eq. (26) holds.

FIG. 5 Triple decomposition of a Heisenberg–Weyl diagram
used in the proof of condition (1).

Condition (2) is straightforward since the void graph
Ø is given by the empty set of lines, and hence the de-
compositions Γ  (Γ,Ø) and Γ  (Ø, Γ ) are uniquely
defined by the partitions EΓ +Ø = EΓ and Ø+EΓ = EΓ

respectively.
The symmetry condition (3) results from swapping

subsets L↔ R in the partition L+R = EΓ which readily
yields Eq. (28).
In order to check property (4) we need to construct

a one-to-one correspondence between elements of both
sides of Eq. (30). First, we observe that elements of the

left-hand-side are decompositions of Γ2

m
◭ Γ1 for all m ∈
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FIG. 6 Decompositions of a composite diagram Γ = Γ2

m

◭ Γ1

for some m ∈ Γ2◭⊳◭⊳Γ1 used in the proof of condition (4).

Γ2◭⊳◭⊳Γ1, i.e.

(Γ2

m
◭ Γ1|L , Γ2

m
◭ Γ1|R) (D3)

where L + R = E
Γ2◭

m

Γ1
. On the other hand, the right-

hand-side consists of component-wise compositions of
pairs (Γ2|L2

, Γ2|R2
) ∈ 〈Γ2〉 and (Γ1|L1

, Γ1|R1
) ∈ 〈Γ1〉

for L2 + R2 = EΓ2
and L1 + R1 = EΓ1

, which written
explicitly are of the form

(Γ2|L2

mL

◭ Γ1|L1
, Γ2|R2

mR

◭ Γ1|R1
) (D4)

with mL ∈ Γ2|L2
◭⊳◭⊳ Γ1|L1

and mR ∈ Γ2|R2
◭⊳◭⊳ Γ1|R1

.
We construct two mappings between elements of type
(D3) and (D4) by the following assignments, see Fig. 6
for a schematic illustration. The first one is defined as:

(m,L,R) −→ (L1, R1, L2, R2,mL,mR) ,

where Li = EΓi
∩ L, Ri = EΓi

∩ R for i = 1, 2 and
mL = m ∩ L, mR = m ∩R. The second one is given by:

(L1, R1, L2, R2,mL,mR) −→ (m,L,R) ,

with m = mL ∪mR and L = L2 ∪L1, R = R2 ∪R2. One
checks that these mappings are inverses of each other
and, moreover, the corresponding pairs of diagrams (D3)
and (D4) are the same. This verifies that the multisets
on the left- and right-hand sides of Eq. (30) are equal
and that condition (4) is satisfied.

Condition (5) is straightforward from the construction
since the edges of a diagram Γ can be nontrivially par-
titioned into at most |Γ | subsets (each consisting of one
edge only).
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