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Complex Systems → Quantum Physics 

  

Recently, two Nobel prices and distinguished physicists : 
Murray Gell-Man (Nobel 1969 : Quark models) and 
Robert Laughlin (Nobel 1998 : the Fractional Quantum 
Hall effect), published remarkable books about 
Complex Systems 
1) The Quark and the Jaguar: Adventures in the Simple 
and the Complex(Murray Gell-Mann)
2) A Different Universe: Reinventing Physics from the 
Bottom Down Par Robert B. Laughlin
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Complex Systems → Quantum Physics (cont'd)

  
Murray Gell-Man is one of the founders of the Santa Fe 
Institute for Complex Systems and, in his book, 
Robert Laughlin advocates that all phenomena and in 
particular physical laws, even at the macroscopic level 
Had to be better understood from the point of view of 
emergence. This is rather traditional for Statistical 
Mechanics which treats of means, but although rather 
easy to accept at a second glance, it is true for “exact” 
classical laws (Mariotte-Boyle, Biot-Savart, Coulomb, 
Ohm).
Let's take the example of the last one (Ohm's law).



4

Complex Systems → Quantum Physics (cont'd)

  
As soon as the first 
atomic models were 
known, Drude's Model 
(developed by 
Paul Drude in 1900) 
could explain Ohm's 
Law as a “statistical 
Emergence”. Here 
electrons (shown here 
in blue) constantly 
bounce between 
heavier, stationary 
crystal ions (shown 
in red).  U=RI
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Exactly solvable models

  

Non eqn. models

Complex Systems  Complex Systems  

Exactly Solved models

Eqn. and op. models

Other tracks : 
experiments, 
simulations
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Physical models

  

Combinatorics

Complex Systems  Complex Systems  

Exactly Solved models
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The triple birth of 
Quantum Mechanics ...
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1900-1925, twenty-five years of 
effervescence, experiences, observations, 
inventions and … confusion. 
The model was mature … and not unique !

During the 12 month period (june 1926 to 
June 1926) three models of QM were 
Completely developed and published and 

…
they were shown to be equivalent !
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Matrix 
Mechanics
by Werner
Heisenberg

Wave 
Mechanics
by Erwin
Schrödinger

Quantum 
Algebra
by Paul
Dirac

Pictures are from the book « Introducing Quantum Theory » by J. P. McEvoy and Oscar Zarate 
(August 8, 2000). Discussion of ideas and historical facts were expertised by physicists as mainly 
accurate.



They all have their « levels » (energy Levels, 
labels of orbits …) represented on a Fock space 
which pertains to the theory of 
General Transition Systems 

a|w

Automata (finite number of edges) 
●Sweedler's duals (physics, finite number of 
states)
●Representations in general
●Level systems (Quantum Physics)
●Markov chains (prob. automata when finite)
 Fock spaces (QM, analytic combinatorics)





… one has AB-BA=1.
Example in Physics : annilhilation/creation
operators on the traditional Fock Space

0 1 2 3 4 5 6 7 8 ...

a+|(k+1)1/2

a|(k+1)1/2

Level k Level k+1
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The (classical, for bosons) normal ordering problem 
goes as follows.

• Weyl (two-dimensional) algebra defined as
< a+, a ; [a , a+ ]=1 >

• Known to have no (faithful) representation by 
bounded operators in a Banach space.

There are many « combinatorial » (faithful) 
representations by operators. The most famous one 
is the Bargmann-Fock representation 

a  d/dx ; a+  x
where a has degree -1 and a+ has degree  1.
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Example with Ω = a+ a a+ a a+ 

    a+               a          a+              a              a+ 



15    a+               a          a+              a              a+ 



16    a+               a          a+              a              a+ 
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    a+               a          a+              a              a+

a+aa+aa+= 1 a+a+a+aa + 3 a+a+a + 1 a+



18

A typical element in the Weyl algebra is of the form  

, 0
( , )( )k l

k l
c k l a a+

≥
Ω = ∑

(normal form). 
But HW is graded by the excess defined on a string 
w(a+,a) by excess(w) = |w|

a+ 
- |w|

a

Ω is then homogeneous of degree e (excess) iff one has

, 0
( , )( )k l

k l
k l e

c k l a a+

≥
− =

Ω = ∑
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Due to the symmetry of the Weyl algebra, we can 
suppose, with no loss of generality that e≥0. For 
homogeneous operators one has generalized  
Stirling numbers defined by

0
( ) ( , )( )n ne k k

k
a S n k a a+ +

Ω
≥

Ω = ∑

(*) G. Dattoli, P.L. Ottaviani, A. Torre and L. Vàsquez, 
Evolution operator equations: integration with algebraic and finite 
difference methods, La Rivista del Nuovo Cimento 20 1 (1997).

Example: Ω1 = a+2a a+4a + a+3a a+2 (e=4)
Ω2 = a+2a a+ + a+a a+2 (e=2)

If there is only one « a » in each monomial as 
in Ω2, one can use the integration techniques of 
the Frascati(*) school (even for inhomogeneous) 
operators of the type Ω=q(a+)a + v(a+)
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It can be proved that the matrices of coefficients for 
expressions with only a single « a » are 
matrices of special type : that of substitutions with 
prefunction factor. 
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Where φ(x)=λx+higher terms and g(x)=1+higher terms. 
The fact that, in the case of a single “a”, the matrices of 
generalized Stirling numbers are matrices of substitutions with 
prefunctions is due to the fact that the one-parameter groups 
associated with the operators of 
type  Ω=q(x)d/dx+v(x) are conjugate to vector fields on 
the line. 

Where φ(x)=x+higher terms and g(x)=1+higher terms. 
The fact that, in the case of a single “a”, the matrices of 
generalized Stirling numbers are matrices of substitutions 
with prefunctions is due to the fact that the 
one-parameter groups associated with the operators of 
type  Ω=q(x)d/dx+v(x) are conjugate to vector fields on 
the line. 
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Conjugacy trick :

Let u2=exp(∫(v/q)) and u1=q/u2 then 
u1u2=q; u1u’2=v and the operator q(a+)a+v(a+)

reads, via the Bargmann-Fock correspondence 

(u2u1)d/dx+ u1u’2=u1(u’2 + u2d/dx)= u1d/dx u2 =

1/u2 (u1 u2 d/dx ) u2

Which is conjugate to a vector field and integrates as a 
substitution with prefunction factor.
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Example: The expression Ω = a+2a a+ + a+a a+2 above 
corresponds to the operator 
(the line below ω is in form q(x)d/dx+v(x))

3 3 3 3
2 2 2 2

2 2

3 2 32 3 (2 ) ( )

d dx x x x
dx dx

d dx x x x x x x
dx dx

ω

φ− −

= + =

+ = =

Now, φ is a vector field and its one-parameter group 
acts by a one parameter group of substitutions. 
We can compute the action by another conjugacy 
trick which amounts to straightening φ to a constant 
field.
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Thus set 
exp(λ φ)[f(x)]=f(u-1(u(x)+λ)) for some u … 

By differentiation w.r.t. λ at (λ=0) one gets

u’=1/(2x3) ; u=-1/(4x2) ; u-1(y)=(-4y)-1/2
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In view of the conjugacy established previously we 
have that exp(λ ω)[f(x)] acts as  

3 3
2 2

2

4 22 3

1
1 4(1 4 )

( ) ( ( , )).( ( , ))

 ( )  x
xx

U f x f T x T x

f

λ

λλ

λ λ−

−−

=

=

which explains the prefactor. Again we can check by 
computation that the composition of (Uλ )s amounts to 
simple addition of parameters !! 
Now suppose that exp(λ ω) is in normal form. 
In view of  Eq1 (slide 9) we must have

  
0 0 0

exp( )  ( , ) ( )
! !

nen n n
ne k k

n n k

dx S n k x
n n dxω

λ ω λλ ω
≥ ≥ =

= =∑ ∑ ∑
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Hence, introducing the eigenfunctions of the derivative
(a method which is equivalent to the computation with 
coherent states) one can recover the mixed generating 
series of Sω(n,k) from the knowledge of the 
one-parameter group of transformations.  

0 0
exp( ) (  ( , ) )

!

nen
yx ne k k yx

n k
e x S n k x y e

n ω
λλ ω

≥ =

 =  ∑ ∑

Thus, one can state
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Proposition (*): With the definitions introduced, the 
following conditions are equivalent (where f  Uλ[f] is 
the one-parameter group exp(λω)).

( )

, 0
1. ( ,  )    ( )

!

2.  [ ]( )  ( ) (  (1  ( )))

n
k y x

n k
e e

xS n k y g x e
n

U f x g x f x x

φ
ω

λ λ φ λ

≥
=

= +

∑

Remark : Condition 1 is known as saying that 
S(n,k) is of « Sheffer » type.

G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. Blasiak, One-
parameter groups and combinatorial physics, 
World Scientific Publishing. arXiv: quant-ph/04011262}
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Example : With Ω = a+2a a+ + a+a a+2 (previous slide), 

we had  e=2 and 

2

24
2 3 2

1
(1 4 ) 1 4

[ ]( ) =  ( ) x
x x

U f x fλ λ λ− −
Then, applying the preceding correspondence one gets

4
3

14
3

1( 1)1 1 4
(1 4 )

, 0
( )1

(1 4 )

( ,  )   =  e =
!

 e  
n

n
n

n yk x
x

n k
y c x

x

xS n k y
nω

≥

−
−

−
≥

−

∑

∑

Where   are the central binomial coefficients.
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Proposition (*): With the definitions introduced, 

the following conditions are equivalent 

(where f  Uλ[f] is the one-parameter group exp(λω)).

( )

, 0
1. ( ,  )    ( )

!

2.  [ ]( )  ( ) (  (1  ( )))

n
k y x

n k
e e

xS n k y g x e
n

U f x g x f x x

φ
ω

λ λ φ λ

≥
=

= +

∑

Remark : Condition 1 is known as saying that S(n,k) is 
of « Sheffer » type.

G. Duchamp, A.I. Solomon, K.A. Penson, A. Horzela and P. Blasiak, 
One-parameter groups and combinatorial physics, 
World Scientific Publishing. arXiv: quant-ph/04011262}



40

Remarks on the proof of the proposition :
  
2)  1) Can be proved by direct computation.
1)  2) Firstly the operator exp(λω) is continuous  
for the Treves topology on the EGF. Secondly, the 
equality in (2) is linear and continous in f (both sides). 
Thirdly the set of exp(yx) for y complex 
is total in the spaces of EGF endowed with this topology 
and the equality is satisfied on this set.
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A bit more on the correspondence 
Subs. w. pref. <--> Vector fields

Proposition : Let  

USWP={MЄ U(N,C)|^f(z)= g(z)f(φ(z))}

with g(z)=1+...higher terms ; φ(z)=z+...higher terms 
and τ

n  
be the usual truncation

τ
n 
:

 
U(N,C) → U([0..n]x[0..n],C)

Then
a) The images AS

n
=τ

n 
(U(N,C)) are algebraic groups

b) USWP is the projective limit of the AS
n

c) Therefore, for every zЄC, M ЄUSWP ⇒ Mz ЄUSWP
d) The Lie algebra of USWP is the set of matrices 
associated with the differential operators 
q(z)D+v(z) ; q(z)=βz2+...higher t. ; v(z)=ηz+...higher t.
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Substitutions, gazes of graphs and the 
« connected graph theorem»

 A great, powerful and celebrated result:
(For certain classes of graphs)
If C(x) is the EGF of CONNECTED graphs, then
exp(C(x)) is the EGF of ALL graphs. 
(Uhlenbeck, Mayer, Touchard,…)

This implies that the matrix 
M(n,k)=number of graphs with n vertices and 

having k connected components 
is the matrix of a substitution (like SΩ(n,k) previously
but without prefactor). 
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Endofunctions, idempotent numbers, partitions ...

One can prove that, if M is a matrix of substitution 
(with identity diagonal) then, all its powers (positive, 
negative and fractional) are substitution matrices and 
form a one-parameter group of substitutions, thus 
coming from a vector field on the line which could (in 
theory) be computed.

We are in search of a nice combinatorial principle... 
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For example, to begin with, the Stirling substitution 
z ez-1. We know that there is a unique one-
parameter group of substitutions sλ(z) such that, for λ 
integer, one has the value (s2(z)  partition of 
partitions)

But we have no nice description of this group nor of 
the vector field generating it.
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For these one-parameter groups and conjugates of vector fields 

G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. 
Blasiak,  

One-parameter groups and combinatorial physics, 

Third International Workshop on Contemporary Problems in 
Mathematical Physics (COPROMAPH3), Porto-Novo (Benin), 
November 2003. arXiv : quant-ph/0401126.

For the Sheffer-type sequences and coherent states

K A Penson, P Blasiak, G H E Duchamp, A Horzela  and A I Solomon, 

Hierarchical Dobinski-type relations via substitution and the moment 
problem,

J. Phys. A: Math. Gen. 37 3457 (2004) arXiv : quant-ph/0312202



  



  



  

Two exponentials ...
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A simple formula giving the Hadamard product of two EGFs

In a their paper, Quantum field theory of partitions,
 Bender, Brody and Meister introduce a special Field 
Theory described by a product formula in the purpose 
of proving that any sequence of numbers could be 
described by a suitable set of rules applied to some 
type of graphs. 
These graphs label monomials and are obtained 
in the case of special interest when the functions have 1 
as constant term. 

Bender, C.M, Brody, D.C. and Meister, 
Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)
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• Writing F and G as free exponentials we shall see that 
the expansion can be indexed by specific diagrams 
(which are bicoloured graphs).

Some 5-line diagrams
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 These diagrams are in fact labelling monomials. 
•We are then in position of imposing two types of 
rules: 

- On the diagrams (Selection rules) : on the 
outgoing, 
ingoing degrees, total or partial weights.  
- On the set of diagrams (Composition and 
Decomposition 
rules) : product and coproduct of diagram(s) 

 This leads to structures of Hopf algebras for spaces 
freely generated by the two sorts of diagrams 
(labelled and unlabelled).
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 Labelled diagrams generate the space of Matrix 
Quasisymmetric Functions, we thus obtain a new Hopf algebra 
structure on this space.
● Natural deformations (counting graph parameters as 
●crossings and superpositions) can be introduced in the product 
●law to give a three parameter (two formal - or continuous - 
●and one boolean) true Hopf deformation of this algebra of diagrams. 

 Labelled diagrams generate the space of Matrix 
Quasisymmetric Functions, we thus obtain a new 
Hopf algebra structure on this space.
 Natural deformations (counting graph parameters as 
crossings and superpositions) can be introduced in the 
product law to give a three parameter 
(two formal - or continuous - and one boolean) 
true Hopf deformation of this algebra of diagrams. 
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Planar decorated 
Trees

Connes-Kreimer 
MQSym

FQSymDIAG

LDIAG

LDIAG(qc,qs,qt)

(0,0,0) (1,1,1)

Euler-Zagier 
Sums

Images and Specializations

LDIAG_CONV

LDIAG(1,1)
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The Hadamard product of two sequences 

is given by the pointwise product 

We can at once transfer this law on EGFs by

but, here, as 

we get  

Product formula
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When the constant terms are 1, i. e. F(0)=G(0)=1,
we can write with free alphabets

and
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In general, we adopt the notation 

for the type of a (set) partition which means that 
there are a

1
 singletons a

2
 pairs a

3
 3-blocks a

4
 4-blocks 

and so on.

The number of set partitions of type α as above is
well known (see Comtet for example)

  

Thus, using what has been said in the beginning, with
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Now, one can count in another way the expression
numpart(α)numpart(β), remarking that this is the 
number of pair of set partitions (P1,P2) with 
type(P1)=α, type(P2)=β. But every couple of 
partitions (P1,P2) has an intersection matrix ...

one has
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{1,5}  {2}  {3,4,6}

{1,2}         1       1        0

{3,4}         0       0        2

{5,6}         1       0        1

{1,5} {1,2}

{2} {3,4}

{3,4,6} {5,6}

Feynman-type diagram 
(Bender & al.)

Packed matrix
see NCSF 6
(GHED, Hivert, 
and Thibon)
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Now the product formula for EGFs reads

The main interest of this new form is that 
we can impose rules on the counted graphs.

and 



63

Weight 4
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Diagrams of (total) weight 5
Weight=number of lines
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         1       0        1

         1       0        0

         0       2        1

V2 V2 V2

L2

L1

L3

For example, the diagram below corresponds to the
monomial  (L1 L2 L3) (V2)3 

We get here a correspondence 
diagram  monomial in (Ln) and (Vm). 
Set 

m(d,L,V,z)=Lα(d) Vβ(d) z|d|
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Question Can we define a (Hopf algebra) 
structure on the space spanned by the diagrams which 
represents the operations on the monomials 
(multiplication and doubling of variables) ?

Answer : Yes

First step: Define the space

Second step: Define a product  

Third step: Define a coproduct
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First step: Define the spaces 
 Diag=⊕d∈diagrams C d  LDiag=⊕d∈labelled diagrams C d

at this stage, we have an arrow LDiag  Diag 
(finite support functionals on the set of diagrams).

Second step: The product on Ldiag is just the 
concatenation of diagrams (we draw diagrams with 
their black spots downwards) 

d1 d2 = d1d2 

So that m(d1*d2,L,V,z)= m(d1,L,V,z)m(d2,L,V,z)

Remark: Concatenation of diagrams amounts to do the blockdiagonal 
product of the corresponding matrices. 
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This product is associative with unit (the empty 
diagram). 
It is compatible with the arrow LDiag  Diag and so 
defines the product on Diag which, in turn is 
compatible with the product of monomials.

LDiag x LDiag Mon x Mon

LDiag Diag

Diag x Diag

Mon
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Third step: For the coproduct on Ldiag, we have 
several possibilities :

a) Split wrt to the white spots (two ways) 
b) Split wrt the black spots (two ways) 
c) Split wrt the edges

Comments : (c) does not give a nice identity with the 
monomials (when applying d  m(d,?,?,?)) nor do 
(b) and (c) by intervals. 

 (b) and (c) are essentially the same (because of the 
WS  BS symmetry) 
In fact (b) and (c) by subsets give a good 

representation and, moreover, they are appropriate  
for several physical models. 

Let us choose (b) by subsets, for instance…
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This coproduct is compatible with the usual coproduct 
on the monomials. 

If ∆bs(d)=Σ d(1) ⊗ d(2)  

then 

Σ m(d(1) ,1,V',z) m(d(2) ,1,V'',z) =  m(d,1,V'+V'',z)

It can be shown that, with this structure (product 
with unit, coproduct and the counit d  δd,∅), 
Ldiag is a Hopf algebra 
and that the arrow LdiagDiag endows Diag 
with a structure of Hopf algebra. 
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The question now is to interpolate between the two 
algebras in order to examine perturbations and 
deformations on direct and dual laws.

Remark: The labelled diagram are in one-to-one 
correspondence with the packed matrices as explained 
above. The product defined on diagrams is the product 
of the functions (φSP)p packed of NCSF VI p 709 (*).
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In order to connect these Hopf algebras to others of 
interest for physicists, we have to deform the product. 
The most popular technic is to use  a monoidal action 
with many parameters (as braiding etc.). 
Here, it is an analogue of the symmetric semigroup 
(the stacking-concatenation monoid) which acts on 
the black spots 
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More graphs and paths from 
Computer Science to exactly 
solve models of physics.



  

Dyck paths   (well bracketed words, trees, …)

(     )     (      (     (      )    (      )     (      )     )      )



  

(     )     (      (     (      )    (      )     (      )     )      )

Equation : D = vide + (D) D … on compte les «mots» avec un « x »
par parenthèse et on trouve T(x)=x0 + x2 T2(x) ce qui se résout par la  
méthode usuelle  …

x2 T2 –T+1=0   Variable : T Paramètre : x



  



  

Changement de niveau en physique

Positifs = D(aD)* 

2

0

1



  



  

More graphs : HW graphs
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Thank You
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