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1 Introduction

.../...
the method of Weshung consists in a recurrence based on the total degree. However this
method cannot be used with variable coefficients. Another proof was given in [Joris and
al. 1998] based on monodromy. Here, we give a general theorem on differential algebra
and show that, at the cost of using variable domains (which is the realm of germ spaces)
and replace the recurrence on total degree by a recursion on the words (with the graded
lexicographic ordering), one can encompass the previous results mentionned above and
get much larger rings of coefficients

2 Non commutative differential equations (abstract

setting).

The ground field k is supposed commutative and of characteristic zero. We suppose given a
commutative differential k-algebra (A, d) that is a k-algebra (associative and commutative
with unit) A endowed with an element d ∈ Der(A). We will suppose that the ring of
constants ker(d) is exactly k.

An alphabet X being given, one can at once extend the derivation d to a derivation
of the algebra A〈〈X〉〉 by

d(S) =
∑

w∈X∗

d(〈S|w〉)w . (1)

Theorem 2.1 Let (A, d) be a k-commutative associative differential algebra with unit
(ch(k) = 0) and C be a differential subfield of A (i.e. d(C) ⊂ C). We suppose that
S ∈ A〈〈X〉〉 is a solution of the differential equation

d(S) = MS ; 〈S|1〉 = 1 (2)

where the multiplier M =
∑

x∈X uxx ∈ C〈〈X〉〉 is an homogeneus series (a polynomial in
case X is finite) of degree 1.
The following condition are equivalent :
i) The family (〈S|w〉)w∈X∗ of coefficients of S is free over C.
ii) The family of coefficients (〈S|y〉)y∈X∪{1X∗} is free over C.
iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f) =
∑

x∈X

αxux =⇒ (∀x ∈ X)(αx = 0) . (3)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(

(ux)x∈X

)

= {0} . (4)

Proof — (i)=⇒(ii) Obvious.
(ii)=⇒(iii)
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Suppose that the family (〈S|y〉)y∈X∪{1X∗} (coefficients taken at letters and the emty word)
of coefficients of S is free over C and let us consider a relation as eq. (32)

d(f) =
∑

x∈X

αxux . (5)

We form the polynomial P = −f1X∗ +
∑

x∈X αxx. One has d(P ) = −d(f)1X∗ and

d(〈S|P 〉) = 〈d(S)|P 〉+ 〈S|d(P )〉 = 〈MS|P 〉 − d(f)〈S|1X∗〉 = (
∑

x∈X

αxux)− d(f) = 0 (6)

and, then 〈S|P 〉 must be a constant, say λ ∈ k. For Q = P − λ.1X∗ , we have

supp(Q) ⊂ X ∪ {1X∗} and 〈S|Q〉 = 〈S|P 〉 − λ〈S|1X∗〉 = 〈S|P 〉 − λ = 0 .

This implies that Q = 0 and, as Q = −(f +λ)1X∗ +
∑

x∈X αxx, one has, in particular, all
the αx = 0.
(iii)⇐⇒(iv)
Obvious, (iv) being a geometric reformulation of (iii).
(iii)⇐⇒(i)
Let K be the kernel of P 7→ 〈S|P 〉 (a linear form C〈X〉 → C) i.e.

K = {P ∈ C〈X〉|〈S|P 〉 = 0} . (7)

If K = {0}, we are done. Otherwise, let us adop the following strategy.
First, we order X by some well-ordering < ([3] III.2.1) and X∗ by the graded lexicographic
ordering ≺ defined by

u ≺ v ⇐⇒ |u| < |v| or (u = pxs1 , v = pys2 and x < y) (8)

it is easy to check that ≺ is also a well-ordering relation. For each nonzero polynomial
P , we note lead(P ) its leading monomial i.e. the greatest element of its support supp(P )
(for ≺).
Now, as R = K − {0} is not empty, let w0 be the minimmal element of lead(R) and
choose a P ∈ R such that lead(P ) = w0. We write

P = fw0 +
∑

u≺w0

〈P |u〉u ; f ∈ C − {0} . (9)

the polynomial Q = 1
f
P is also in R with the same leading monomial, but the leading

coefficient is now 1 and Q reads

Q = w0 +
∑

u≺w0

〈Q|u〉u . (10)

Differentiating 〈S|Q〉 = 0, one gets

0 = 〈d(S)|Q〉+ 〈S|d(Q)〉 = 〈MS|Q〉+ 〈S|d(Q)〉 =
〈S|M †Q〉+ 〈S|d(Q)〉 = 〈S|M †Q+ d(Q)〉 (11)

with
M †Q+ d(Q) =

∑

x∈X

ux(x
†Q) +

∑

u≺w0

d(〈Q|u〉)u ∈ C〈X〉 . (12)
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It is impossible that M †Q + d(Q) ∈ R because it would be of leading monomial strictly
less than w0, hence M †Q+ d(Q) = 0. This is equivalent to the recursion

d(〈Q|u〉) = −
∑

x∈X

ux〈Q|xu〉 ; for x ∈ X , v ∈ X∗ (13)

From this last relation, we derive that 〈Q|w〉 ∈ k for every w of length deg(Q) and,
because 〈S|1〉 = 1, one must have deg(Q) > 0. Then, write w0 = x0v and compute the
coefficient at v

d(〈Q|v〉) = −
∑

x∈X

ux〈Q|xv〉 =
∑

x∈X

αxux (14)

with coefficients αx = −〈Q|xv〉 ∈ k as |xv| = deg(Q) for all x ∈ X. Condition PI implies
that all coefficients 〈Q|xu〉 are zero, in particular, as 〈Q|x0u〉 = 1, we get a contradiction.
This proves that K = {0}.
�

3 Series with variable coefficients.

3.1 Motivations.

In this section, we implement an abstract setting which is intended to apply on function
spaces. As a motivation, let us illustrate this by an example.
Let V be a connected and simply connected analytic variety of dimension one (for example,
the doubly cut plane C − (] − ∞, 0[∪]1,+∞[), or the universal covering of C − {0, 1}),
H = Cω(V ;C) be the space of all analytic fonctions on V . This space is a differential
algebra with the derivative d

dz
. One extends at once this derivative (then denoted by d)

to H〈〈X〉〉 by

d(S) =
∑

w∈X∗

d

dz
(〈S|w〉)w (15)

it is easy to check (proof in the general case below) that d is a derivation of the algebra
H〈〈X〉〉. Differential equations of the type

d(S) = MS (16)

where M =
∑

x∈X ux(z)x were widely considered in the domains of (à faire automa-
tique, Drinfel’d, Weshung, etc...) and provide, through integrators build by iterated
integrals, spaces of special functions. An immediate application of theorem (à faire ??)
below provides the result that, for any solution of (16) (with 〈S|1〉 = 1), the family of
functions (〈S|w〉)w∈X∗ is free over the field of rational functions on V .

3.2 General setting

Let M, be a locally finite monoid [?] and H〈〈M〉〉, be the large algebra [4] of M with
coefficients in H). Let M be a locally finite monoid [?] and V be a set (where the variable
z stands) and H ⊂ CV , an algebra of fonctions. Every series S ∈ H〈〈M〉〉 can be written

S :=
∑

m∈M

〈S|m〉m (17)
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(as the family (〈S|m〉m)m∈M is summable). Thus, one can consider the series of H〈〈M〉〉
as functions on V (with values in C〈〈M〉〉) and specialize them by

S(z0) :=
∑

m∈M

(

〈S|m〉
)∣

∣

∣

z=z0

m . (18)

Moreover, if d is a derivation in H, its extension to H〈〈M〉〉 “coefficient by coefficient”
given as

d(S) :=
∑

m∈M

d(〈S|m〉)m (19)

is a derivation of H〈〈M〉〉. Let us show, on an example, how the proof of theorem à

faire ?? below works on an example.
The data are

1. X = {x0, x1}

2. V is a connected and simply connected subset of C

3. H = Cω(V,C) which does not contain {0, 1}, eendowed with the derivation d
dz

4. M = x0

z
+ x1

1−z

5. Statement : If S is any solution of

d(S) = MS ; 〈S|1〉 = 1 (20)

then the functions (〈S|w〉)w∈X∗ are linearly independant over the field of rational
functions i.e. if

fi =
pi
qi
, i = 1 · · ·N ; pi, qi ∈ C[z] (21)

and wi ∈ X∗ are such that
N
∑

i=1

fi(z)〈S|wi〉 = 0 (22)

on some open (non void) set (which does not contain the opes of the fi) then

(∀i ∈ [1 · · ·N ])(fi ≡ 0) . (23)

6. An example for the recursion Order X by x0 < x1 and use ≺glex, the graded
lexicographic ordering on X∗. For each non-trivial relation (Rel) (if there are such)

N
∑

i=1

fi(z)〈S|wi〉 = 0 (24)

we consider the leading monomial lead(Rel) = sup{wi|fi 6≡ 0} . If there were
nontrivial relatons, we could take one with the least possible leading monomial and
the relation itself.
Assumption 1 Suppose that the set of its monomials be {x0, x1, x1x0, x

2
0x1} with

lead(Rel) = x2
0x1. One has

fx0
(z)〈S|x0〉+ fx1

(z)〈S|x1〉+ fx1x0
(z)〈S|x1x0〉+ fx2

0
x1
(z)〈S|x2

0x1〉 = 0 . (25)
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which is defined on U intersection of the domains U0 = dom(fwi
).

At the cost of restricting the relation to U1 = U0 \ Of
x2
0
x1

one has also

gx0
(z)〈S|x0〉+ gx1

(z)〈S|x1〉+ gx1x0
(z)〈S|x1x0〉+ 〈S|x2

0x1〉 = 0 (26)

with gi =
fi

f
x2
0
x1

. Differentiating (26), we get

g′x0
(z)〈S|x0〉+ gx0

(z)〈S ′|x0〉+ g′x1
(z)〈S|x1〉+ gx1

(z)〈S ′|x1〉+
g′x1x0

(z)〈S|x1x0〉++gx1x0
(z)〈S ′|x1x0〉+ 〈S ′|x2

0x1〉 = 0 . (27)

As S ′ = MS, we have

〈S ′|x0u〉 = 〈MS|x0u〉 =
1

z
〈S|u〉 and

〈S ′|x1u〉 = 〈MS|x1u〉 =
1

1− z
〈S|u〉 . (28)

With this in hand (29) becomes

g′x0
(z)〈S|x0〉+ gx0

(z)
1

z
〈S|1〉+ g′x1

(z)〈S|x1〉+ gx1
(z)

1

1− z
〈S|1〉+

g′x1x0
(z)〈S|x1x0〉++gx1x0

(z)
1

1− z
〈S|x0〉+

1

z
〈S|x0x1〉 = 0 . (29)

which is of rank strictly less than (25) and then should be trivial. A contradiction
as 1

z
is zero in no non-void open subset ; “Assumption 1” must be false and we

are done.
�

3.3 Non commutative differential equations (abstract setting).

The ground field k is supposed commutative and of characteristic zero. We suppose given a
commutative differential k-algebra (A, d) that is a k-algebra (associative and commutative
with unit) A endowed with an element d ∈ Der(A). We will suppose that the ring of
constants ker(d) is exactly k.

An alphabet X being given, one can at once extend the derivation d to the algebra
A〈〈X〉〉, as in (15) by

d(S) =
∑

w∈X∗

d(〈S|w〉)w . (30)

Theorem 3.1 Let (A, d) be a k-commutative associative differential algebra with unit
(ch(k) = 0) and C be a differential subfield of A (i.e. d(C) ⊂ C). We suppose that
S ∈ A〈〈X〉〉 is a solution of the differential equation

d(S) = MS ; 〈S|1〉 = 1 (31)

where the multiplier M =
∑

x∈X uxx ∈ C〈〈X〉〉 is an homogeneus series (a polynomial in
case X is finite) of degree 1.
The following condition are equivalent :
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i) The family (〈S|w〉)w∈X∗ of coefficients of S is free over C.
ii) The family of coefficients (〈S|y〉)y∈X∪{1X∗} is free over C.
iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f) =
∑

x∈X

αxux =⇒ (∀x ∈ X)(αx = 0) . (32)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(

(ux)x∈X

)

= {0} . (33)

Proof — (i)=⇒(ii) Obvious.
(ii)=⇒(iii)
Suppose that the family (〈S|y〉)y∈X∪{1X∗} (coefficients taken at letters and the emty word)
of coefficients of S is free over C and let us consider a relation as eq. (32)

d(f) =
∑

x∈X

αxux . (34)

We form the polynomial P = −f1X∗ +
∑

x∈X αxx. One has d(P ) = −d(f)1X∗ and

d(〈S|P 〉) = 〈d(S)|P 〉+〈S|d(P )〉 = 〈MS|P 〉−d(f)〈S|1X∗〉 = (
∑

x∈X

αxux)−d(f) = 0 (35)

and, then 〈S|P 〉 must be a constant, say λ ∈ k. For Q = P − λ.1X∗ , we have

supp(Q) ⊂ X ∪ {1X∗} and 〈S|Q〉 = 〈S|P 〉 − λ〈S|1X∗〉 = 〈S|P 〉 − λ = 0 .

This implies that Q = 0 and, as Q = −(f +λ)1X∗ +
∑

x∈X αxx, one has, in particular, all
the αx = 0.
(iii)⇐⇒(iv)
Obvious, (iv) being a geometric reformulation of (iii).
(iii)⇐⇒(i)
Let K be the kernel of P 7→ 〈S|P 〉 (a linear form C〈X〉 → C) i.e.

K = {P ∈ C〈X〉|〈S|P 〉 = 0} . (36)

If K = {0}, we are done. Otherwise, let us adop the following strategy.
First, we order X by some well-ordering < ([3] III.2.1) and X∗ by the graded lexicographic
ordering ≺ defined by

u ≺ v ⇐⇒ |u| < |v| or (u = pxs1 , v = pys2 and x < y) (37)

it is easy to check that ≺ is also a well-ordering relation. For each nonzero polynomial
P , we note lead(P ) its leading monomial i.e. the greatest element of its support supp(P )
(for ≺).
Now, as R = K − {0} is not empty, let w0 be the minimmal element of lead(R) and
choose a P ∈ R such that lead(P ) = w0. We write

P = fw0 +
∑

u≺w0

〈P |u〉u ; f ∈ C − {0} . (38)
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the polynomial Q = 1
f
P is also in R with the same leading monomial, but the leading

coefficient is now 1 and Q reads

Q = w0 +
∑

u≺w0

〈Q|u〉u . (39)

Differentiating 〈S|Q〉 = 0, one gets

0 = 〈d(S)|Q〉+ 〈S|d(Q)〉 = 〈MS|Q〉+ 〈S|d(Q)〉 =
〈S|M †Q〉+ 〈S|d(Q)〉 = 〈S|M †Q+ d(Q)〉 (40)

with
M †Q+ d(Q) =

∑

x∈X

ux(x
†Q) +

∑

u≺w0

d(〈Q|u〉)u ∈ C〈X〉 . (41)

It is impossible that M †Q + d(Q) ∈ R because it would be of leading monomial strictly
less than w0, hence M †Q+ d(Q) = 0. This is equivalent to the recursion

d(〈Q|u〉) = −
∑

x∈X

ux〈Q|xu〉 ; for x ∈ X , v ∈ X∗ (42)

From this last relation, we derive that 〈Q|w〉 ∈ k for every w of length deg(Q) and,
because 〈S|1〉 = 1, one must have deg(Q) > 0. Then, write w0 = x0v and compute the
coefficient at v

d(〈Q|v〉) = −
∑

x∈X

ux〈Q|xv〉 =
∑

x∈X

αxux (43)

with coefficients αx = −〈Q|xv〉 ∈ k as |xv| = deg(Q) for all x ∈ X. Condition PI implies
that all coefficients 〈Q|xu〉 are zero, in particular, as 〈Q|x0u〉 = 1, we get a contradiction.
This proves that K = {0}.
�

4 Applications of the main theorem.

4.1 Independance of the polylogarithms.

Let V be a connected and simply connected analytic variety of dimension 1 (for example,
the doubly cut plane C − (] −∞, 0] ∪ [1,+∞[), or the universal covering of C − {0, 1}),
A = Cω(V ;C) be the space of analytic fonctions on V endowed with the derivative d = d

dz
.

Let X = {x0, x1} and X∗ be the free monoid on X. It is locally finite [?] and we note
A〈〈X〉〉 its large algebra [4] (with coefficients in A).

5 Réserve à ordonner

We will use three types of differential equations.
a) Left-sided equation

d

dz
S(z) = M(z)S(z) (44)
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b) Right-sided equation
d

dz
S(z) = S(z)M(z) (45)

c) Two-sided equation

d

dz
S(z) = M1(z)S(z) + S(z)M2(z) (46)

with M,Mi ∈ H≥1〈〈M〉〉. One first give the resolution of equations of type (46) as their
properties specialize, with M2 = 0 (resp. M1 = 0) to the type (44) (resp. (45)).

Theorem 5.1 With the preceding assumptions.
i) Equation (46) has solutions all of the form

S = (Hz
z0
)∗S0 (47)

where Hz
z0

is the operator

G 7→

∫ z

z0

(

M1(s)G(s) +G(s)M2(s)
)

ds (48)

and S0 = S(z0) is a constant series.
ii) Two solutions which coincide at a point do coincide everywhere.
iii) Let ∆ be a closable comultiplication with constant coefficients and suppose that M1,M2

in (46) are primitive elements for ∆ i.e.

∆(Mi) = Mi ⊗ 1 + 1⊗Mi ; i = 1, 2 .

Then if S, a solution of (46), is group-like at a point of V , it is group-like everywhere in
V .
iv) The constant term of S is contant on V (and is that of S0), in particular, if a solution
is invertible at a point, it is so everywhere (these solutions will be called regular).
v) Let S be a regular solution of an equation of type (44) with primitive multiplier. Let
F be a filter on V (neighbourhoods of 0, of 1, of infinity etc.) and one supposes that S is
asymtotically equivalent to G (w.r.t. F i.e. limF(G

−1S) = 1). Then S is group-like.

5.0.1 Proof of theorem (5.1)

i) The integrator H = Hz
z0
∈ End(H〈〈M〉〉) satisfies

Hn(H〈〈M〉〉) ⊂ H≥n〈〈M〉〉

for all n ∈ N. This implies that (Hn)n≥0 is summable for the M-adic topology of

Endfiltr(H≥1〈〈M〉〉) given by the ideal M of operators φ such that φ
(

H〈〈M〉〉
)

⊂

H≥1〈〈M〉〉. Let H∗ =
∑

n≥0 H
n be its sum. For S0 a constant series, one has

d

dz
(H∗[S0]) =

d

dz
(I +HH∗)[S0] =

d

dz
(S0) +

d

dz
(HH∗)[S0] = M1H

∗[S0] +H∗[S0]M2 (49)
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Conversely, if S is a solution of (44), then S0 = (I −H)[S] is a constant series as

d

dz
(S0) =

d

dz
(I −H)[S] =

d

dz
S −

d

dz
(H)[S] = M1S + SM2 − (M1S + SM2) = 0 .

Moreover S = (I −H)−1[S0] = H∗[S0] and then S0 = S(α).
ii) If two solutions S1, S2 coincide at z1 ∈ V , one can construct the operator H with
formula (48) and α = z1. One has then S1 = H∗(S1(z1)) = H∗(S2(z1)) = S2.
iii) A comultiplication with constant coefficients permute with the derivation operator
hence, if S is a solution of (46), one has

d

dz
(∆(S)) = ∆(

d

dz
(S)) = ∆(M1S + SM2) =

∆(M1)∆(S) + ∆(S)∆(M2) (50)

this proves that ∆(S) satifies a two sided differential equation. On the other hand, S⊗S
satisfies

d

dz
(S ⊗ S) =

d

dz
(S)⊗ S + S ⊗

d

dz
(S) =

(M1S + SM2)⊗ S + S ⊗ (M1S + SM2) =
(M1 ⊗ 1 + 1⊗M1)(S ⊗ S) + (S ⊗ S)(M1 ⊗ 1 + 1⊗M1) (51)

which proves that, ifM1 andM2 are primitive, ∆(S) and S⊗S satisfy the same differential
equation. By virtue of (ii), if S is group-like at a point, it is so everywhere. In particular
(and this will be used in (v)), if S is an invertible solution of an equation of type (46),
with M1 and M2 primitive, then, for z0 ∈ V , S(z)S(z0)

−1 is group-like.
iv) Indeed

〈S|1X∗〉 = 〈H∗[S0]|1X∗〉 = 〈(I +HH∗)[S0]|1X∗〉 =
〈S0|1X∗〉+ 〈HH∗[S0]|1X∗〉 = 〈S0|1X∗〉 . (52)

v) For z0 ∈ V , one defines

R(z, z0) = S(z)S(z0)
−1G(z0)G(z)−1 = S(z)

(

G(z0)
−1S(z0)

)−1

G(z)−1 .

R = R(z, z0) is the product of two group-like series (S(z)S(z0)
−1 and G(z0)G(z)−1). Thus,

z being fixed, one has
(

S(z)⊗ S(z)
)(

G(z)−1 ⊗G(z)−1
)

= (S(z)G(z)−1)⊗ (S(z)G(z)−1) =

limz0:FR(z, z0)⊗R(z, z0) = limz0:F∆(R(z, z0)) =
∆(limz0:F(R(z, z0)) = ∆(S(z)G(z)−1) = ∆(S(z))∆(G(z)−1) =

∆(S(z))
(

G(z)−1 ⊗G(z)−1
)

(53)

and, finally ∆(S) = S ⊗ S. �

Remark 5.2 The proof of the theorem provides an integrator

H(G) =
∑

w∈M

(

∑

uv=w

∫ z

z0

(

〈M1|u〉(s)〈G|v〉(s) + 〈G|u〉(s)〈M2|v〉(s)
)

ds
)

w

10



but any similar operator H such that d
dz
(H(G)) = M1G+GM2 would do. In particular, one

can construct operators with varied lower integration bounds. For example, the operator

H(G) =
∑

w∈M

(

∑

uv=w

(

∫ z

a(u)

〈M1|u〉(s)〈G|v〉(s) +

∫ z

b(v)

〈G|u〉(s)〈M2|v〉(s)
)

ds
)

w (54)

is fairly admissible. We will see in Paragraph (6.2) an application of such a principle.

6 Coordinates of group-like elements.

6.1 Through the looking glass: passing from right to left.

Let S ∈ H〈〈X〉〉, we call F(S) the C-vector space generated by the coefficients of S, one
has

F(S) = {〈S|P 〉}P∈C〈X〉 . (55)

We will use the following increasing filtrations

F≤α(S) = {〈S|P 〉}P∈C≤α〈X〉 . (56)

or
F≤n(S) = {〈S|P 〉}P∈C≤n〈X〉 . (57)

Proposition 6.1 We have the following properties :
i) If T ∈ C〈〈X〉〉 then F(ST ) ⊂ F(S) and one has equality if T is invertible.
ii) If S is group-like, then F(S) is a unital sub-algebra of H, which is filtered w.r.t. (56)
and (57) i.e.

F≤α(S)F≤β(S) ⊂ F≤α+β(S) (58)

Proof — (i) The space F(ST ) is spanned by the

〈ST |w〉 =
∑

uv=w

〈S|u〉〈T |v〉 ∈ F(S)

if T is invertible one has F(S) = F(STT−1) ⊂ F(ST ) which proves the equality.
ii) If S is group-like, one has

〈S|u〉〈S|v〉 = 〈S ⊗ S|u⊗ v〉 = 〈∆(S)|u⊗ v〉 = 〈S|u v〉 (59)

In the case when all functions 〈S|w〉 are C-linearly independant, one has a correspon-
dence between the Differential Galois group of a differential equation of type (44) (acting
on the right) and the group of automorphisms of F(S) compatible with the preceding
filtration (they turn out to be unipotent).

Proposition 6.2 Let S be a group-like series. The following conditions are equivalent:
i) For every x ∈ X, kerC(S) ⊂ kerC(Sx).
ii) For every x ∈ X, there is a derivation δx ∈ Der(F(S)) such that

δx(S) = Sx (60)
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iii) For every x ∈ X, there is a one-paramater group of automorphisms φt
x ∈ Aut(F(S)); t ∈

R such that
φt
x(S) = Setx (61)

iv) For every C ∈ LieC〈〈X〉〉, there is δ ∈ Der(F(S)) such that

δ(S) = SC (62)

v) For every C ∈ LieC〈〈X〉〉, there is φ ∈ Aut(F(S)) such that

φ(S) = SeC (63)

vi) The functions (〈S|w〉)w∈X∗ are C-linearly independant.

Proof — i) =⇒ ii) From the inclusion, we derive that, for all x ∈ X there exists a
C-linear mapping φ ∈ End(F(S)) such that for all w ∈ M, φ(〈S|w〉) = 〈Sx|w〉. It must
be a derivation of F(S) as

φ(〈S|u〉〈S|v〉) = φ(〈S|u v〉) = 〈Sx|u v〉 = 〈S|(u v)x−1〉 =
〈S|(ux−1 v) + (u vx−1)〉 = 〈S|(ux−1 v)〉〈S|(u vx−1)〉 =

〈Sx|u〉〈S|v〉+ 〈S|u〉〈Sx|v〉 = φ(〈S|u〉)〈S|v〉+ 〈S|u〉φ(〈S|v〉) (64)

from the fact that (〈S|w〉)w∈X∗ spans F(S).
ii) =⇒ iv) As (〈S|w〉)w∈X∗ spans F(S), the derivation φ is uniquely defined. Let us note it
δx and notice that, doing so, we have constructed a mapping Φ : X → Der(F(S)) (which
is Lie algebra. Therefore, there is a unique extension of this mapping as a morphism
LieC〈X〉 → Der(F(S)). This correspondence, which we will note P → δ(P ) is (uniquely)
recursively defined by

δ(x) = δx ; δ([P,Q]) = [δ(P ), δ(Q)] . (65)

For C =
∑

n≥0 Cn ∈ LieC〈〈X〉〉 with Cn ∈ LieC〈X〉n, we remark that the sequence
〈S

∑

0≤n≤N Cn|w〉 is stable (for large N). Set δ≤N := δ(
∑

0≤n≤N Cn). We see that δ≤N is
stable (for large N) on every Fα and we note δ(C) its limit. It is clear that this limit is
a derivation and that it corresponds to C.
iv) =⇒ v) For evey C =

∑

n≥0 Cn ∈ LieC〈〈X〉〉, the exponential eC defines a mapping

φ ∈ End(F(S)) as indeed eδ≤N is stationnary. It is easily checked that this mapping is an
automorphism of algebra of F(S).
v) =⇒ iii) For Ci ∈ LieC〈〈X〉〉; ı = 1, 2 which commute we have

SeC1eC2 = φC1
(S)eC2 = φC1

(SeC2) = φC1
φC2

(S) (66)

this proves the existence, for a C ∈ LieC〈〈X〉〉 of a one-parameter (rational) group φt
C in

Aut(F(S)) such that SetC = φt
C(S). This one-parameter (rational) group can be extended

to R as continuity is easily checked by taking the scalar products 〈φt
C(S)|w〉 = 〈SetC |w〉

and it suffices to specialize the result to C = x.
iii) =⇒ ii) By stationary limits one has

〈Sx|w〉 = lim
t→0

1

t
(〈Setx|w〉 − 〈S|w〉) = lim

t→0

1

t
(〈φt

x(S)|w〉 − 〈S|w〉) (67)
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v) =⇒ i) Let x ∈ X, t ∈ R, we take C = tx and φt ∈ Aut(F(S)) s.t. φt(S) = Setx. It
there is P ∈ C〈X〉 such that 〈S|P 〉 = 0 one has

0 = 〈S|P 〉 = φt(〈S|P 〉) = 〈φt(S)|P 〉 = 〈Setx|P 〉 =

deg(P )
∑

n=0

tn

n!
〈Sxn|P 〉 (68)

and then, for all z ∈ V , the polynomial

deg(P )
∑

n=0

tn

n!
〈S(z)xn|P 〉 (69)

is identically zero over R hence so are all of its coeefficients in particular 〈S(z)x|P 〉 for
all z ∈ V . This proves the claim.
i) =⇒ vi) Let P ∈ kerC(S) if P 6= 0 take it of minimal degree with this property.
For all x ∈ X, one has P ∈ kerC(Sx) which means 〈Sx|P 〉 = 0 and then Px† = 0 as
deg(Px†) = deg(P )− 1. The reconstruction lemma implies that

P = 〈P |1〉+
∑

x∈X

(Px†)x = 〈P |1〉 (70)

Then, one has 0 = 〈S|P 〉 = 〈S|1〉〈P |1〉 = 〈P |1〉 which shows that kerC(S) = {0}. This is
equivalent to the statement (vi).
vi) =⇒ i) Is obvious as kerC(S) = {0}.
�

It is possible to enlarge somehow the range of proposition (6.1) to coefficients that are
analytic functions f : dom(f) → C.

Definition 6.3 We call here differential field of germs w.r.t. a filter basis B of open
connected subsets of V , a map C defined on B such that for every U ∈ B, C[U ] is a
subring of Cω(U,C) and

1. C is compatible with restrictions i.e. if U, V ∈ B and V ⊂ U , one has

resV U(C[U ]) ⊂ C[V ]

2. if f ∈ C[U ] \ {0} then there exists V ∈ B s.t. V ⊂ U −Of and f−1 (defined on V )
is in C[V ] .

For any U ∈ B, we note C[U ] the ring of functions in C defined on U and restricted
to this set.

There are important cases when the conditions (6.1) are satified as shows the following
theorem.

Theorem 6.4 Let V be a simply connected non-void open subset of C − {a0, · · · an}
({a0, · · · an} are distinct points), M =

∑n

i=0
λixi

z−ai
be a multiplier on X = {x0, · · · xn}

with all λi 6= 0 and S be any regular solution of

d

dz
S = MS . (71)
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Then, let C be a differential field of functions defined on V which do not contain linear
combinations of logarithms on any domain but which contains z and the constants (as,
for example the rational functions).
If U is a non-void domain of C and P ∈ C[U ]〈X〉, one has

〈S|P 〉 = 0 =⇒ P = 0 (72)

Proof — Let U ∈ B. For every non-zero Q ∈ C[U ]〈X〉, we note lead(Q) the greatest
word in the support of Q for the graded lexicographic ordering ≺ (we have endowed X
with any linear ordering) and call Q monic if the leading coefficient 〈Q|lead(Q)〉 is 1. A
monic polynomial then reads

Q = w +
∑

u≺w

〈Q|u〉u . (73)

Suppose now that it is possible to find U and P ∈ C[U ]〈X〉 (not necessarily monic) such
that 〈S|P 〉 = 0, we choose P with lead(P ) minimal for ≺.

Then
P = f(z)w +

∑

u≺w

〈P |u〉u (74)

with f 6≡ 0. Thus U1 = U \ Of ∈ B and Q = 1
f(z)

P ∈ C[U1]〈X〉 is monic and satisfies

〈S|Q〉 = 0 . (75)

Differentiating eq. (75), we get

0 = 〈S ′|Q〉+ 〈S|Q′〉 = 〈MS|Q〉+ 〈S|Q′〉 = 〈S|Q′ +M †Q〉 . (76)

Remark that one has
Q′ +M †Q ∈ C[U1]〈X〉 (77)

If Q′+M †Q 6= 0, one has lead(Q′+M †Q) ≺ lead(Q) and this is not possible because of the
minimality hypothesis of lead(Q) = lead(P ). Hence, one must have R = Q′ +M †Q = 0.
With |w| = n, write now

Q = Qn +
∑

|u|<n

〈Q|u〉u . (78)

where Qn =
∑

|u|=n〈Q|u〉u is the dominant homogeneous component of Q. For every

|u| = n we have
(〈Q|u〉)′ = −〈M †Q|u〉 = −〈Q|Mu〉 = 0 (79)

thus all the coefficients of Qn are constant.

If n = 0, Q 6= 0 is constant which is impossible by eq. (75) and because S is regular.
If n > 0, for any word |v| = n− 1, we have

(〈Q|v〉)′ = −〈M †Q|v〉 = −〈Q|Mv〉 = −

n
∑

i=0

λi

z − ai
〈Q|xiv〉 = −

n
∑

i=0

λi

z − ai
〈Qn|xiv〉 (80)

Because all xiv are of length n.
Then

〈Q|v〉 = −
n

∑

i=0

〈Qn|xiv〉

∫ z

α

λi

s− ai
ds+ const (81)
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But all the functions
∫ z

α
λi

s−ai
ds are linearly independant over C and not all the scalars

〈Qn|xiv〉 are zero (write w = xkv and choose v such). This contradicts the fact that
Q ∈ C[U1]〈X〉 as C does contain no linear combination of logarithms. �

Remark 6.5 i) If a series satifies the equivalent conditions of the theorem (6.2), then
every SeC so does.
ii) Series as the one of polylogarithms and all the exponential solutions of equation

d

dz
(S) = (

x0

z
+

x1

1− z
)S (82)

satisfy conditions of the theorem (6.2) as shows theorem (6.4).
iii) One could ask oneself what happens when these conditions are not satisfied. In fact the
set of Lie series C ∈ LieC〈〈X〉〉 such that it exists a φ ∈ End(F(S)) (then a derivation)
s.t. SC = φ(S) is a closed Lie subalgebra of LieC〈〈X〉〉 which we will note LieS. For
example

• for X = {x0, x1} and S = ezx0 one has x0 ∈ LieS ; x1 /∈ LieS

• for X = {x0, x1} and S = ez(x0+x1), one has x0, x1 /∈ LieS but (x0 + x1) ∈ LieS.

6.2 Polylogarithms and related functions

Here X is still the finite alphabet {x0, x1} equipped with the order x0 < x1 and let C be
the ring C[z, z−1, (1− z)−1].

The iterated integral over ω0, ω1 associated to w = xi1 · · · xik over X and along the
integration path z0  z is the following multiple integral defined by

∫

z0 z

ωi1 · · ·ωik =

∫ z

z0

ωi1(t1)

∫ t1

z0

ωi2(t2) . . .

∫ tr−2

z0

ωir(tr−1)

∫ tr−1

z0

ωir(tr), (83)

where t1 · · · tr−1 is a subdivision of the path z0  z. In a shortened notation, we denote
this integral by αz

z0
(w) and1 αz

z0
(1X∗) = 1. One can check that the polylogarithm Lis1,...,sr

is also the value of the iterated integral over ω0, ω1 and along the integration path 0 z
[?, ?] :

Liw(z) = αz
0(x

s1−1
0 x1 . . . x

sr−1
0 x1). (84)

The definition of polylogarithms is extended over the words w ∈ X∗ by putting Lix0
(z) :=

log z. The {Liw}w∈X∗ are C-linearly independent [?, ?]. In order to, define L =
∑

w∈X∗ Liww,
one also can use an integrator with variable lower integration bounds as one described by
(54) with M2 = 0, a(u) = 1 for u ∈ x∗

0 and a(u) = 0 for u ∈ X∗x1X
∗.

Indeed, L is group-like but, to show this one cannot use Thm 5.1 (iii) because the lower
bounds of the integrals are different. So one first shows that

limz→0 exp(−x0 log z)L(z) = limz→0L(z) exp(−x0 log z) = 1 (85)

1Here, 1X∗ stands for the empty word over X.
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which can be done as follows. One first remarks that, in case w contains at least ons x1

(i.e. |w|x1
≥ 1) and for every k

limz→0 log(z)
k〈L(z)|w〉 = 0 (86)

then, setting L+(z) =
∑

|w|x1≥1〈L(z)|w〉w, one has

limz→0 exp(−x0 log z)L
+(z) = L+(z) exp(−x0 log z) = 0 (87)

and as
L(z) = L+(z) +

∑

w∈(x0)∗

〈L(z)|w〉w = L+(z) + exp(x0 log z) (88)

the result follows.

The following functions

∀w ∈ X∗, Pw(z) = (1− z)−1Liw(z), (89)

are also C-linearly independent, as C is an integral domain, by the following lemma easy
to check

Lemma 6.6 Let A be an integral domain and M an A-module. If (xi)i∈I is a linearly
independant family and b 6= 0 in A, then (bxi)i∈I is linearly independant.

Since, for any w ∈ Y ∗,Pw is the ordinary generating function of the sequence {Hw(N)}N≥0 :

Pw(z) =
∑

N≥0

Hw(N) zN (90)

then, as a consequence of the classical isomorphism between convergent Taylor series and
their associated sums, the harmonic sums {Hw}w∈Y ∗ are C-linearly independent. Firstly,
ker P = {0} and kerH = {0}, and secondly, P is a morphism transporting the stuffle to
the Hadamard product :

Pu(z)⊙ Pv(z) =
∑

N≥0

Hu(N)Hv(N)zN =
∑

N≥0

Hu v(N)zN = Pu v(z). (91)

7 Conclusion

To sum up what has been done in this paper? we can state that the deformed algebra
LDIAG(qc, qs), which originates from a special quantum field theory [?], is free and its
law can be constructed from very general procedures: it is a shifted twisted law. Before
shifting, one can observe that the law is, in fact, dual to a comultiplication on a free
algebra. This comultiplication is a perturbation, with qs (the superposition parameter) of
the shuffle comultiplication on this free algebra. The parameter qs is obtained by addition
of a perturbating factor which is just dual to a (diagonally) deformed law of a semigroup
whereas the crossing parameter qc is obtained by extending to the tensor structure (i.e.
to words) a colour factor of an algebra.
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