
Independence of hyperlogarithms over function fields via

algebraic combinatorics.

M. Deneufchâtel, G. H. E. Duchamp,
Hoang Ngoc Minh ⋆

and Allan I. Solomon ⋆⋆

1 Institut Galilée
2 Open University

1

Abstract. We obtain a necessary and sufficient condition for the linear independence of solutions of
differential equations for hyperlogarithms. The key fact is that the multiplier (i.e. the factorM in the
differential equation dS = MS) has only singularities of first order (Fuchsian-type equations) and
this implies that they freely span a space which contains no primitive. We give direct applications
were we extend the property of linear independence to the largest known ring of coefficients.

1 Introduction

In his 1928 study of the solutions of linear differential equations following Poincaré, Lappo-Danilevski
introduced the so-called hyperlogarithmic functions of order m, functions of iterated integrals of the
following form with logarithmic poles [12] :

L(a0, . . . , an|z, z0) =

∫ z

z0

∫ sn

z0

. . .

∫ s1

z0

ds0
s0 − a0

. . .
dsn

sn − an
, (1)

where z0 is a fixed point. It suffices that z0 6= a0 for this iterated integral to converge. The classical
polylogarithm Lin is a particular case of these integrals [13] :

Lin(z) =

∫ z

0

∫ sn

0

. . .

∫ s2

0

ds1
1− s1

ds2
s2

. . .
dsn
sn

= −L(1, 0, . . . , 0
︸ ︷︷ ︸

n−1 times

|z, 0). (2)

These iterated integrals also appear in quantum electrodynamics (see [8, 15] for example). Chen [6] studied
them systematically and provided a noncommutative algebraic context in which to treat them. Fliess [10,
11] encoded these iterated integrals by words over a finite alphabet and extended them to a symbolic
calculus2 for nonlinear differential equations of the following form, in the context of noncommutative
formal power series :







y(z) = f(q(z)),

q̇(z) =

m∑

i=0

Ai(q)

z − ai
,

q(z0) = q0,

(3)

where the state q = (q1, . . . , qn) belongs to a complex analytic manifold of dimension N , q0 denotes the
initial state, the observable f belongs to C

cv[[q1, . . . , qN ]], {Ai}i=0,n is the polysystem defined as follows

Ai(q) =
n∑

j=1

Aj
i (q)

∂

∂qj
, (4)
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2 M. Deneufchâtel, G. H. E. Duchamp, Hoang Ngoc Minh and Allan I. Solomon

with, for any j = 1, . . . , n, Aj
i (q) ∈ C

cv[[q1, . . . , qN ]].
By introducing the encoding alphabet X = {x0, . . . , xm}, the method of Fliess consists in exhibiting two
formal power series over the monoid X∗ :

F :=
∑

w∈X∗

A(w) ◦ f|q0 w and C :=
∑

w∈X∗

αz
z0
(w) w (5)

in order to comput the output y. These series are subjected to convergence conditions (precisely speaking,
the convergence of a duality pairing), as follows

y(z) = 〈F ||C〉 :=
∑

w∈X∗

A(w) ◦ f|q0 αz
z0
(w), (6)

where

– A is a morphism of algebras from C〈〈X〉〉 to the algebra generated by the polysystem {Ai}i=0,n :

A(1X∗) = identity, (7)

∀w = vxi, xi ∈ X, v ∈ X∗, A(w) = A(v)Ai. (8)

– αz
z0

is a shuffle algebra morphism from (C〈〈X〉〉, ) to some differential field C :

αz
z0
(1X∗) = 1, (9)

∀w = vxi, xi ∈ X, v ∈ X∗, αz
z0
(w) =

∫ z

z0

αs
z0
(v)

s− ai
. (10)

Formula (6) states also that the iterated integrals over the rational functions

ui(z) =
1

z − ai
, i = 0, .., n, (11)

spans the vector space C.

As for the linear differential equations, the essential difficulty is to construct the fundamental system
of solutions, or the Picard-Vessiot extension, to describe the space of solutions of the differential system
(3) algorithmically [18]. For that, one needs to prove the linear independence of the iterated integrals in
order to obtain the universal Picard-Vessiot extension. The C-linear independence has already been shown
by Wechsung [19]. His method consists of a recurrence based on the total degree. However this method
cannot be used with variable coefficients. Another proof was given in [16] based on monodromy. In this
note we describe a general theorem on differential computational algebra and show that, at the cost of
using variable domains (which is the realm of germ spaces), and replacing the recurrence on total degree
by a recursion on the words (with the graded lexicographic ordering), one can encompass the previous
results mentioned above and obtain much larger rings of coefficients and configuration alphabets (even
infinite of continuum cardinality).

2 Non commutative differential equations.

We recall here the Dirac-Schützenberger notation as in [2, 7, 17]. Let X be an alphabet and R be a
commutative ring with unit. The algebra of noncommutative polynomials is the algebra R[X∗] of the
free monoid X∗. As an R-module, R(X∗) is the set of finitely supported R-valued function on X∗ and,
as such, it is in natural duality with the algebra of all functions on X∗ (the large algebra of X∗ [4]),
RX∗

= R〈〈X〉〉, the duality being given, for f ∈ R〈〈X〉〉 and g ∈ R[X∗] by

〈f |g〉 =
∑

w∈X∗

f(w)g(w) . (12)

The rôle of the ring is played here by a commutative differential k-algebra (A, d); that is, a k-algebra
(associative and commutative with unit) A endowed with a distinguished derivation d ∈ Der(A) (the
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ground field k is supposed commutative and of characteristic zero). We assume that the ring of constants
ker(d) is exactly k.

An alphabet X being given, one can at once extend the derivation d to a derivation of the algebra
A〈〈X〉〉 by

d(S) =
∑

w∈X∗

d(〈S|w〉)w . (13)

Let us acte this derivation d on the power series C given in (5). Then we get :

d(C) =

( m∑

i=1

uixi

)

C . (14)

We are now in a position to state the main theorem which resolves many important questions, as we
shall see some in the applications.

Theorem 1. Let (A, d) be a k-commutative associative differential algebra with unit (ch(k) = 0) and C
be a differential subfield of A (i.e. d(C) ⊂ C). We suppose that S ∈ A〈〈X〉〉 is a solution of the differential
equation

d(S) = MS ; 〈S|1〉 = 1 (15)

where the multiplier M is a homogeneous series (a polynomial in the case of finite X) of degree 1, i.e.

M =
∑

x∈X

uxx ∈ C〈〈X〉〉 . (16)

The following condition are equivalent :

i) The family (〈S|w〉)w∈X∗ of coefficients of S is free over C.
ii) The family of coefficients (〈S|y〉)y∈X∪{1X∗} is free over C.
iii) The family (ux)x∈X is such that, for f ∈ C and αx ∈ k

d(f) =
∑

x∈X

αxux =⇒ (∀x ∈ X)(αx = 0) . (17)

iv) The family (ux)x∈X is free over k and

d(C) ∩ spank

(

(ux)x∈X

)

= {0} . (18)

Proof — (i)=⇒(ii) Obvious.
(ii)=⇒(iii)
Suppose that the family (〈S|y〉)y∈X∪{1X∗} (coefficients taken at letters and the empty word) of coefficients
of S is free over C and let us consider a relation as in eq. (17)

d(f) =
∑

x∈X

αxux . (19)

We form the polynomial P = −f1X∗ +
∑

x∈X αxx. One has d(P ) = −d(f)1X∗ and

d(〈S|P 〉) = 〈d(S)|P 〉+ 〈S|d(P )〉 = 〈MS|P 〉 − d(f)〈S|1X∗〉 = (
∑

x∈X

αxux)− d(f) = 0 (20)

whence 〈S|P 〉 must be a constant, say λ ∈ k. For Q = P − λ.1X∗ , we have

supp(Q) ⊂ X ∪ {1X∗} and 〈S|Q〉 = 〈S|P 〉 − λ〈S|1X∗〉 = 〈S|P 〉 − λ = 0 .

This implies that Q = 0 and, as Q = −(f + λ)1X∗ +
∑

x∈X αxx, one has, in particular, all the αx = 0.
(iii)⇐⇒(iv)
Obvious, (iv) being a geometric reformulation of (iii).
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(iii)⇐⇒(i)
Let K be the kernel of P 7→ 〈S|P 〉 (a linear form C〈X〉 → C) i.e.

K = {P ∈ C〈X〉|〈S|P 〉 = 0} . (21)

If K = {0}, we are done. Otherwise, let us adopt the following strategy.
First, we order X by some well-ordering < ([3] III.2.1) and X∗ by the graded lexicographic ordering ≺
defined by

u ≺ v ⇐⇒ |u| < |v| or (u = pxs1 , v = pys2 and x < y). (22)

It is easy to check that ≺ is also a well-ordering relation. For each nonzero polynomial P , we denote by
lead(P ) its leading monomial; i.e. the greatest element of its support supp(P ) (for ≺).
Now, as R = K − {0} is not empty, let w0 be the minimal element of lead(R) and choose a P ∈ R such
that lead(P ) = w0. We write

P = fw0 +
∑

u≺w0

〈P |u〉u ; f ∈ C − {0} . (23)

The polynomial Q = 1
f
P is also in R with the same leading monomial, but the leading coefficient is now

1 and Q is given by

Q = w0 +
∑

u≺w0

〈Q|u〉u . (24)

Differentiating 〈S|Q〉 = 0, one gets

0 = 〈d(S)|Q〉+ 〈S|d(Q)〉 = 〈MS|Q〉+ 〈S|d(Q)〉 = 〈S|M†Q〉+ 〈S|d(Q)〉 = 〈S|M†Q+ d(Q)〉 (25)

with

M†Q+ d(Q) =
∑

x∈X

ux(x
†Q) +

∑

u≺w0

d(〈Q|u〉)u ∈ C〈X〉 . (26)

It is impossible that M†Q + d(Q) ∈ R because it would be of leading monomial strictly less than w0,
hence M†Q+ d(Q) = 0. This is equivalent to the recursion

d(〈Q|u〉) = −
∑

x∈X

ux〈Q|xu〉 ; for x ∈ X , v ∈ X∗. (27)

From this last relation, we deduce that 〈Q|w〉 ∈ k for every w of length deg(Q) and, because 〈S|1〉 = 1,
one must have deg(Q) > 0. Then, we write w0 = x0v and compute the coefficient at v

d(〈Q|v〉) = −
∑

x∈X

ux〈Q|xv〉 =
∑

x∈X

αxux (28)

with coefficients αx = −〈Q|xv〉 ∈ k as |xv| = deg(Q) for all x ∈ X. Condition PI implies that all
coefficients 〈Q|xu〉 are zero; in particular, as 〈Q|x0u〉 = 1, we get a contradiction. This proves that
K = {0}.
�

3 Applications

Let V be a connected and simply connected analytic variety (for example, the doubly cut plane
C−(]−∞, 0[∪]1,+∞[), the Riemann sphere or the universal covering of C−{0, 1}), and let H = Cω(V,C)
be the space of analytic functions on V .

It is possible to enlarge the range of scalars to coefficients that are analytic functions with variable
domains f : dom(f) → C.

Definition 1. We define a differential field of germs as the data of a filter basis B of open connected
subsets of V , and a map C defined on B such that for every U ∈ B, C[U ] is a subring of Cω(U,C) and
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1. C is compatible with restrictions i.e. if U, V ∈ B and V ⊂ U , one has

resV U (C[U ]) ⊂ C[V ]

2. if f ∈ C[U ] \ {0} then there exists V ∈ B s.t. V ⊂ U −Of and f−1 (defined on V ) is in C[V ] .

There are important cases where the conditions (2) are satisfied as shown by the following theorem.

Theorem 2. Let V be a simply connected non-void open subset of C − {a1, · · · an} ({a1, · · · an} are
distinct points), M =

∑n
i=1

λixi

z−ai
be a multiplier on X = {x1, · · ·xn} with all λi 6= 0 and S be any regular

solution of
d

dz
S = MS . (29)

Then, let C be a differential field of functions defined on V which does not contain linear combinations of
logarithms on any domain but which contains z and the constants (as, for example the rational functions).
If U ∈ B (i.e. U is a domain of C) and P ∈ C[U ]〈X〉, one has

〈S|P 〉 = 0 =⇒ P = 0 (30)

Proof — Let U ∈ B. For every non-zero Q ∈ C[U ]〈X〉, we denote by lead(Q) the greatest word in the
support of Q for the graded lexicographic ordering ≺. We endow X with an arbitrary linear ordering,
and call Q monic if the leading coefficient 〈Q|lead(Q)〉 is 1. A monic polynomial is then given by

Q = w +
∑

u≺w

〈Q|u〉u . (31)

Now suppose that it is possible to find U and P ∈ C[U ]〈X〉 (not necessarily monic) such that 〈S|P 〉 = 0;
we choose P with lead(P ) minimal for ≺.

Then
P = f(z)w +

∑

u≺w

〈P |u〉u (32)

with f 6≡ 0. Thus U1 = U \ Of ∈ B and Q = 1
f(z)P ∈ C[U1]〈X〉 is monic and satisfies

〈S|Q〉 = 0 . (33)

Differentiating eq. (33), we get

0 = 〈S′|Q〉+ 〈S|Q′〉 = 〈MS|Q〉+ 〈S|Q′〉 = 〈S|Q′ +M†Q〉 . (34)

Remark that one has
Q′ +M†Q ∈ C[U1]〈X〉 (35)

If Q′ +M†Q 6= 0, one has lead(Q′ +M†Q) ≺ lead(Q) and this is not possible because of the minimality
hypothesis of lead(Q) = lead(P ). Hence, one must have R = Q′ +M†Q = 0. With |w| = n, we now write

Q = Qn +
∑

|u|<n

〈Q|u〉u (36)

where Qn =
∑

|u|=n〈Q|u〉u is the dominant homogeneous component of Q. For every |u| = n we have

(〈Q|u〉)′ = −〈M†Q|u〉 = −〈Q|Mu〉 = 0 (37)

thus all the coefficients of Qn are constant.

If n = 0, Q 6= 0 is constant which is impossible by eq. (33) and because S is regular. If n > 0, for any
word |v| = n− 1, we have

(〈Q|v〉)′ = −〈M†Q|v〉 = −〈Q|Mv〉 = −

n∑

i=0

λi

z − ai
〈Q|xiv〉 = −

n∑

i=0

λi

z − ai
〈Qn|xiv〉 (38)
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bcause all xiv are of length n.
Then

〈Q|v〉 = −

n∑

i=0

〈Qn|xiv〉

∫ z

α

λi

s− ai
ds+ const (39)

But all the functions
∫ z

α
λi

s−ai
ds are linearly independent over C and not all the scalars 〈Qn|xiv〉 are zero

(write w = xkv and choose v accordingly). This contradicts the fact that Q ∈ C[U1]〈X〉 as C contains no
linear combination of logarithms. �

Corollary 1 Let V be as above and R be the ring of functions which can be alalytically extended to
some V ∪ Ua1

∪ Ua2
∪ · · ·Uan

where Uai
are open neighborhoods of ai, i = 1 · · ·n and have non-essential

singularities at these points. Then, the set of hyperlogarithms (〈S|w〉)w∈X∗ are linearly independent over
R.

Remark 1. i) If a series S =
∑

w∈X∗〈S|w〉w is a regular solution of (29) and satisfies the equivalent
conditions of the theorem (2), then every SeC (with C ∈ LieC〈〈X〉〉) does.

ii) Series such as that of polylogarithms and all the exponential solutions of equation

d

dz
(S) = (

x0

z
+

x1

1− z
)S (40)

satisfy the conditions of the theorem (2) as shown by theorem (2).

iii) Call F(S) the vector space generated by the coefficients of the series S. One may ask what happens
when the conditions for independence are not satisfied.
In fact, the set of Lie series C ∈ LieC〈〈X〉〉 such that there exists a φ ∈ End(F(S)) (then a derivation)
such that SC = φ(S), is a closed Lie subalgebra of LieC〈〈X〉〉 which we will denote by LieS . For
example

– for X = {x0, x1} and S = ezx0 one has x0 ∈ LieS ; x1 /∈ LieS
– for X = {x0, x1} and S = ez(x0+x1), one has x0, x1 /∈ LieS but (x0 + x1) ∈ LieS .

iv) Theorem (2) holds mutatis mutandis when the multiplier is infinite i.e.

M =
∑

i∈I

λixi

z − ai

even if I is continuum infinite (say I = R, singularities being all the reals).

v) Theorem (2) does no longer hold with singularities of higher order (i.e. not fuchsian). For example,
with

M =
x0

z2
+

x1

(1− z)2
. (41)

Firstly, the differential field C generated by

u0 =
1

z2
, u1 =

1

(1− z)2
(42)

contains
d

dz
(

1

2u0
) = z (43)

and hence C = C(z) the field of rational functions over C. Condition (ii) of Theorem (2) is not fulfilled
(as z2u0 − (1− z)2u1 = 0). Moreover, one has also Z-dependance relations as

〈S|x1x0〉+ 〈S|x0x1〉+ 〈S|x1〉 − 〈S|x0〉 = 0 . (44)
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3.1 Through the looking glass: passing from right to left.

We are still in the context of anlytic function as above. A series S ∈ H〈〈X〉〉 is said to be group-like if

∆(S) = S ⊗ S (45)

where ∆ is the dual of the shuffle product [17] defined on series by ∆(S) =
∑

w∈X∗〈S|w〉∆(w) and on
the words by the recursion (x ∈ X,u ∈ X∗)

∆(1X∗) = 1X∗ ⊗ 1X∗ ; ∆(xu) = (x⊗ 1X∗ + 1X∗ ⊗ x)∆(u) (46)

Let S ∈ H〈〈X〉〉, we call F(S) the C-vector space generated by the coefficients of S, one has

F(S) = {〈S|P 〉}P∈C〈X〉 . (47)

We will use the following increasing filtrations

F≤α(S) = {〈S|P 〉}P∈C≤α〈X〉 . (48)

or
F≤n(S) = {〈S|P 〉}P∈C≤n〈X〉 . (49)

Proposition 1. We have the following properties :
i) If T ∈ C〈〈X〉〉 then F(ST ) ⊂ F(S) and one has equality if T is invertible.
ii) If S is group-like, then F(S) is a unital sub-algebra of H, which is filtered w.r.t. (48) and (49) i.e.

F≤α(S)F≤β(S) ⊂ F≤α+β(S) (50)

Proof — (i) The space F(ST ) is spanned by the

〈ST |w〉 =
∑

uv=w

〈S|u〉〈T |v〉 ∈ F(S)

if T is invertible one has F(S) = F(STT−1) ⊂ F(ST ) which proves the equality.
ii) If S is group-like, one has

〈S|u〉〈S|v〉 = 〈S ⊗ S|u⊗ v〉 = 〈∆(S)|u⊗ v〉 = 〈S|u v〉 (51)

In the case when all functions 〈S|w〉 are C-linearly independant, one has a correspondence between
the Differential Galois group of a differential equation of type (??) (acting on the right) and the group
of automorphisms of F(S) compatible with the preceding filtration (they turn out to be unipotent).

Proposition 2. Let S be a group-like series. The following conditions are equivalent:
i) For every x ∈ X, kerC(S) ⊂ kerC(Sx).
ii) For every x ∈ X, there is a derivation δx ∈ Der(F(S)) such that

δx(S) = Sx (52)

iii) For every x ∈ X, there is a one-parameter group of automorphisms φt
x ∈ Aut(F(S)); t ∈ R such that

φt
x(S) = Setx (53)

iv) For every C ∈ LieC〈〈X〉〉, there is δ ∈ Der(F(S)) such that

δ(S) = SC (54)

v) For every C ∈ LieC〈〈X〉〉, there is φ ∈ Aut(F(S)) such that

φ(S) = SeC (55)

vi) The functions (〈S|w〉)w∈X∗ are C-linearly independant.
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Proof — i) =⇒ ii) From the inclusion, we derive that, for all x ∈ X there exists a C-linear mapping
φ ∈ End(F(S)) such that for all w ∈ M, φ(〈S|w〉) = 〈Sx|w〉. It must be a derivation of F(S) as

φ(〈S|u〉〈S|v〉) = φ(〈S|u v〉) = 〈Sx|u v〉 = 〈S|(u v)x−1〉 =
〈S|(ux−1 v) + (u vx−1)〉 = 〈S|(ux−1 v)〉〈S|(u vx−1)〉 =
〈Sx|u〉〈S|v〉+ 〈S|u〉〈Sx|v〉 = φ(〈S|u〉)〈S|v〉+ 〈S|u〉φ(〈S|v〉) (56)

from the fact that (〈S|w〉)w∈X∗ spans F(S).
ii) =⇒ iv) As (〈S|w〉)w∈X∗ spans F(S), the derivation φ is uniquely defined. Let us note it δx and notice
that, doing so, we have constructed a mapping Φ : X → Der(F(S)) (which is Lie algebra. Therefore,
there is a unique extension of this mapping as a morphism LieC〈X〉 → Der(F(S)). This correspondence,
which we will note P → δ(P ) is (uniquely) recursively defined by

δ(x) = δx ; δ([P,Q]) = [δ(P ), δ(Q)] . (57)

For C =
∑

n≥0 Cn ∈ LieC〈〈X〉〉 with Cn ∈ LieC〈X〉n, we remark that the sequence 〈S
∑

0≤n≤N Cn|w〉 is
stable (for large N). Set δ≤N := δ(

∑

0≤n≤N Cn). We see that δ≤N is stable (for large N) on every Fα

and we note δ(C) its limit. It is clear that this limit is a derivation and that it corresponds to C.
iv) =⇒ v) For evey C =

∑

n≥0 Cn ∈ LieC〈〈X〉〉, the exponential eC defines a mapping φ ∈ End(F(S)) as

indeed eδ≤N is stationnary. It is easily checked that this mapping is an automorphism of algebra of F(S).
v) =⇒ iii) For Ci ∈ LieC〈〈X〉〉; ı = 1, 2 which commute we have

SeC1eC2 = φC1
(S)eC2 = φC1

(SeC2) = φC1
φC2

(S) (58)

this proves the existence, for a C ∈ LieC〈〈X〉〉 of a one-parameter (rational) group φt
C in Aut(F(S)) such

that SetC = φt
C(S). This one-parameter (rational) group can be extended to R as continuity is easily

checked by taking the scalar products 〈φt
C(S)|w〉 = 〈SetC |w〉 and it suffices to specialize the result to

C = x.
iii) =⇒ ii) By stationary limits one has

〈Sx|w〉 = lim
t→0

1

t
(〈Setx|w〉 − 〈S|w〉) = lim

t→0

1

t
(〈φt

x(S)|w〉 − 〈S|w〉) (59)

v) =⇒ i) Let x ∈ X, t ∈ R, we take C = tx and φt ∈ Aut(F(S)) s.t. φt(S) = Setx. It there is P ∈ C〈X〉
such that 〈S|P 〉 = 0 one has

0 = 〈S|P 〉 = φt(〈S|P 〉) = 〈φt(S)|P 〉 = 〈Setx|P 〉 =

deg(P )
∑

n=0

tn

n!
〈Sxn|P 〉 (60)

and then, for all z ∈ V , the polynomial

deg(P )
∑

n=0

tn

n!
〈S(z)xn|P 〉 (61)

is identically zero over R hence so are all of its coeefficients in particular 〈S(z)x|P 〉 for all z ∈ V . This
proves the claim.
i) =⇒ vi) Let P ∈ kerC(S) if P 6= 0 take it of minimal degree with this property. For all x ∈ X, one has
P ∈ kerC(Sx) which means 〈Sx|P 〉 = 0 and then Px† = 0 as deg(Px†) = deg(P )− 1. The reconstruction
lemma implies that

P = 〈P |1〉+
∑

x∈X

(Px†)x = 〈P |1〉 (62)

Then, one has 0 = 〈S|P 〉 = 〈S|1〉〈P |1〉 = 〈P |1〉 which shows that kerC(S) = {0}. This is equivalent to
the statement (vi).
vi) =⇒ i) Is obvious as kerC(S) = {0}.
�
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4 Conclusion

In this paper we showed that by using fields of germs, some difficult results can be considerably simplified
and extended. We believe that this procedure is not only of theoretical importance, but can be taken into
account at the very computational level because every formula (especially analytic) carries with it its
domain of validity. As a matter of fact, having at hand the linear independance of coordinate functions
over large rings allows to express uniquely solutions of systems like (3) in the basis of hyperlogarithms.
A nice perspective would be to determine the asymptotic expansion at infinity of the Taylor coefficients
of the y(z) as given in (6) for the general case which has already been done for only singularities at {0, 1}
and for different purposes (see arXiv:1011.0523v2 and http://fr.arxiv.org/abs/0910.1932).
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