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ON A THEOREM OF R. JUNGEN 

M. P. SCHUTZENBERGER 

Let us recall the following elementary result in the theory of ana- 
lytic functions in one variable. 

THEOREM (R. JUNGEN [7]). If a is rational and b algebraic their 
IHadamard product c is algebraic; if, further, b is rational, c also is ra- 
tional. 

For several variables, Jungen's proof shows that the theorem is 
still true for the Bochner-Martin [2] Hadamard product. It does not 
hold for the Cameron-Martin [3] and for the Haslam-Jones [6] 
Hadamard products. In this note we give a version of Jungen's theo- 
rem which is valid for a restricted interpretation of the notions in- 
volved when a and b are formal power series in a finite number of 
noncommuting variables. 

1. Notations. Let R be a fixed not necessarily commutative ring 
with unit 1. For any finite set Z, F(Z) is the free monoid generated by 
Z and Rp01(Z) is the free module on F(Z) over R. An element a of 
R,ol(Z) will usually be written in the form a = { (a, f) f: f E F(Z) } 
where the coefficients (a, f) are in R; Rpo0(Z) is graded in the usual 
manner and 7rna = Z{(a, f).f:fEF(Z), degf?n}. We identify R 
with w7roRp,(Z). Rpo0(Z) is also a ring with product aa' 
= I (a, f') (a', f") *f: f, f', f" E F(Z), f =f'f" }. 

It is well known (cf., e.g., [4; 3]) that these notions extend to the 
ring R(Z) of the formal power series (with coefficients in R) in the 
noncommuting variables zGZ; R(Z) is topologized in the same man- 
ner as a ring of commutative formal power-series and aa' 
=limn,nt,-(wrna)(7rna'). Any beR*(Z) = {aGR(Z):7roa=0} has a 
quasi-inverse (-b)*=limn. En <n (-b)n'. If a is invertible, 
a-1 = (1 +b*) (roa-1) where b =-(roa-1) (a- roa) CR*(Z). We shall 
say that S*CR*(Z) is rationally closed if r, r'ER, b, b'CS* imply 
rb+b'r', bb', b*CS*. If this is so, the set of those elements a of R(Z) 
such that a -roaES* is a ring containing the inverses of its invertible 
elements. 

DEFINITION 1. R*t(X) is the least rationally closed subset (of 
R(X)) containing X. 

Now let Y= { y, } be a set of a finite number M of new variables 
and RM(XU Y) (resp. Rm (XU Y)) the cartesian product of M copies 
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of the R-module R(X U Y) (resp. RMop(X U Y)). For each 
q = (ql, * * , q,) E RM(X U Y), 7rnq = (rnqi, * * *, Trnqm). If 

qER*M(X`UY) (i.e., if wroq=O) let Xq be the homomorphism of the 
monoid F(XU Y) into the multiplicative monoid structure of 
R(XUJY) that is induced by Xqx=x if xEX and Xqyj=qj if yjEY. 
Since roq =0, Xq can be extended to an endomorphism of the R- 
module R(XUJY) by Xqa= ,{ (a, f)Xj:fC F(XUJY)}; also, Xqp 
= (Xqpi, * * *, Xqpm) for any peRM (XU Y). 

We shall say that pER* m(XU Y) is a proper system if (pj, j,) = 0 
for all j, j'<M. Then, if qER*M(X), XqpGR*M(X) and 7rn+iXqp 

=7Wn+1xrnqp for all n. Consider now the infinite sequence p(O) =0, 
p(l) = Xp(o)p, * X , p(m + 1) = Xp(m)p, * 

- - 
. Trivially, w7mrp(m') 

-7rm,p(m'+m")ER*M(X) for m'=O and all m". If these relations 
hold for m'< m they still hold for m+1 because 

7rm+ip(M + 1) = 7rm+lXp(m)p = 7rm+1Xrmp(m)P = lTm+l1Xrmp(m+m")P 

= 7rm+lXp(m+m")P = 7rm+lp(m + 1 + min). 

Hence, p(oo)=limm.p(m) exists and it satisfies p(oo)CR*M(X), 
wrop( o ) = 0, p( ??) =Xp(.)p In fact, p( X ) is the only element to satisfy 
these equations because if wrop' = 0 and p' =Xp,,p, any relation 7rmp( ??) 
= 7rmp' implies 7Fm+lp' = 7m+lXwrnp' P = 7rm+lXrmp(co)p = 7rm+lp( oo). For 
this reason we call p( oo ) the solution of p. 

DEFINITION 2. R*g(X) is the least subset (of R*(X)) that contains 
every coordinate of the solution of any proper system having its 
coordinates in R* 1(XU Y). 

(REMARK. It can easily be shown that R*,g(X) is rationally closed 
and that it contains every coordinate of the solution of any proper 
system having its coordinates in Ra*g(XU Y).) 

DEFINITION 3. For any 

a, b E R(X), a Ob= (a, f)(b, f) f: f C F(X)}. 

2. Main result. 
Property 2.1. The element a of R*(X) belongs to R,*,t(X) if and 

only if there exists a finite integer N_ 2 and a homomorphism ,u of 
F(X) into the multiplicative monoid of RNXN (the ring of the NXN 
matrices with entries in R) such that a = l{ fi,y Xf: f: C F(X) } 
(abbreviated as EUfl,N f). 

PROOF. (1) The condition is necessary. This is trivial if a=7ria. 
Hence it suffices to show that for any r, r'CR, a= ZMfi,N-f and 
a'= Dt'fl,N' -f one can construct suitable homomorphisms giving 
ra+a'r', aa' and a*. This is done below, defining the homomorphisms 
by their restriction to X. 
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Addition. Let N"=N+N'+2 and "xeRN"XN" defined for each 
xEX by 

A//xi j= "XN",i = 0 for 1 ? i ? N"; 

Au" xj,i+1 = r7xj,j and ,.u"Xi+1,N" = lXi,N for 1 ? i ? N; 

A/ X1,i+N+? = 1A xi,j and /"Xi+N+?1,N = AIXi,N' *r for 1 < i < N'; 

A"xXit= the direct sum of ux and Au'x for 2? i, i' < N"-1; 

/.t X1,NIy = r/Xl,N + A.XlV,N'r'. 

The verification is trivial. 
Product. Let N" = N+N' and define vf E RN"XN" for each fE F(X) 

by Vfi,il = Afi,N if f , 1 < i < N, i'=N+ 1; vfi,v = O, otherwise. Then, 
if ,u"x=,ux+vx where ,ux is the direct sum of Aux and A'x, one has for 
eachf= x(1)x(2) ... x(8), u"f = pf + Zlpf'vx(i)Af : f'(i)f" f} 
Since vfx(i) = ,ufvx(i) and (Vf/"/'f")1N"T = 0 when f" =1, one has 

A'f71N" = E { (AfiMN) ('f1'N,): f'f" =f }. Hence, JM"flf,y" f = aa'. 

Quasi-inverse. Let N" = N and define vfERNXN for each fC F(X) 
by Vfi,i'=gfi,N if ff 1, 1 _i<N, i'==1; vfixi =0, otherwise. Then 
A "x = ,utx + vx and since Mfvx = vfx identically one has A"f 
= EZvf(1) vf(2) . . . vf(k),uf(k+l) where the summation is over all the 
factorisations f =f(l)f(2) ... f(ki ) of f in an arbitrary number of fac- 
tors. The (1, N) entry of any of these products is zero unless all its 
factors are different from 1 and under this condition, it is equal to 
Uf(1) lAf.(2) 

.. **Af(k 
p 

1) Hence, Dt"fl,N *f = En>o an= a* and the first 
part of the proof is completed. 

(2) The condition is sufficient. We say that the proper system p is 
linear if for each j < M, pi= qj,o+ Ej, qj,j,yj, where all the q's belong 
to R* t(X) and we verify that all coordinates of the solution of such 
a system belong to R* t(X). 

This is trivial if M= 1 because p( oo) = (1 -ql,)-lql,o( = (1 +q* 1)qj,o). 
If it is true for M' < M it is still true for M. Indeed, because p( oo)m 
= (1 -qM,M)-(qM,o+ Ej<M qM,j'p( oo)j), the proper linear system p' 
defined by pf = pj - qj,MyM + qj,MpM for j < M and pM 
=(1-qM,M)'1(pM - qM,MyM) is such that p(omo)=p'(om). Since its 
first M- 1 coordinates do not involve YM the result follows from the 
induction hypothesis. 

Now, given a homomorphism ,u of F(X) into RMXM, the M ele- 
ments aj= ,{-fi,M f:f F(X), f#?1} are such that (aj, xf) 
= Ejr uxjij, (aj,, f). Hence (a,, * * , am) is the solution of the linear 
proper system such that qj,o = E{Ixj,M.m:x: X}, qj,j' 
= xjr, j yx: xCXI for each j, j' and 2.1 is proved. 
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We now consider two subrings R' and R" of R that commute 
element-wise. 

Property 2.2. If a = Z'fi,N .fER'*(X) where y' is a homomor- 
phism into R'NXN and if b = p( oo)1CR` (X) where the proper system 
p has its coordinates in Rp"to(XUJY), then a 0 bCR*lg(X). If, fur- 
ther, bCR"t(X) then a (D bC-R* t(X). 

PROOF. We verify first the case of bCR` (X), i.e., of b = ZW'flN" *f 
for some N" and ,". Then a o b= Z(M'?p!')f1,NN'Nf where the 
kroneckerian product 4' 0t" is a homomorphism of F(X) inlto 
RNN"XNN" because R' and R" commute and the result is proved. 

For the general case we denote by K(Z) for any set Z the ring of 
the NXN matrices with entries in R(Z). We shall have to consider 
several homomorphisms of module o: RM(Z') -->KM(Z") where Z' and 
Z" are two finite sets. In each case cr is defined by a mapping 
Z'->K(Z") which is extended in a natural fashion to a homomor- 
phism of the monoid F(Z') into the multiplicative structure of K(Z"). 
Then for each 

a = (al, * * *, aM) E RM(Z'), o-a- {(ah, g).o g: g E F(Z')} 

and ca =(caa, * * *, caM). 
More specifically, ,: RM(X)-*KM(X) is induced by a mapping 

,u: X--*K(X) such that the entries of each ,llx belong to R'*(X). 
For each qCR//*M(X), X,q: R(XU Y) *KM(X) is induced by X,qf 

=-f if fCF(X) and X,,yj=lqj if yjECY. Hence, since R' and R" 
commute element-wise, IALXqg=X,,qg for each gCF(XUY) (with Xq 
as previously defined). Consequently, /AX qp = X,pqp for any 
p R"M(X(U Y). 

Let now Z zj, ,,(1_j<M; 1<i i'< N), a set of MXXNXN 
new variables and v: Rm(XU Y) -*KM(XUZ) induced by vf=lif if 
fEF(X), vyj=the NXN matrix with entries zj,i,, if yjEY. Also 
X,q: R(XUZ)-*R(X) is induced by Xvqf =f if f E F(X) and X,qZj,ij,i 
= (vqj) ,j, if zj,i,i,CZ. We extend Xvq to a homomorphism KM(XUZ) 
--)KM(X) by defining Xvqm for any mCK(XUZ) as the NXN 
matrix with entries X,q(mj,j'). 

Because R' and R" commute, X,Lqg\vq'Vg for each gGF(XUY) 
and, consequently, X,,qp=Xqjvp for each pER"*M(XUY). Hence, 
if p is a proper M-dimensional system with coordinates in R"*(XU Y) 
we have ,p( oo) =/A()p =X,p(c)p. Since y and v coincide on R"*m(X), 
we have also up( oo ) = vp( oo ) = XcP(C0)p = xvp(c)Vp. 

However, the MXNXN elements Pi = (jvpj) ,ij all belong to 
R*(XUZ) and they constitute a proper system p' of dimension MN2. 
Thus, by construction, (yp( o)j)i,i,=p'(oo)j,,i,' identically. If, fur- 
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ther, pCR"*M(XU Y) all the entries appearing in vp belong to 
R* 1(XUZ) and then finally (MPp(oo)j)j,j,, R*g(X). 

This completes the proof because 

a D b = { (b, f)Ifi,N f :f E F(X)} 

= , { (b, f)fi,N: f E F(X) } = ubl,N 

where for each xCX, A is defined by Ax,,i' =M'xjii' x. 
REMARK 1. Definitions 1, 2, and 3 and the computations of this 

section used only the structure of monoid of the additive groups con- 
sidered. Hence, the results are still valid when an arbitrary semi- 
ring S is taken in place of R. For S consisting of two Boolean elements, 
Jungen's theorem and its special case for b rational have been ob- 
tained in a different form by Y. Bar-Hillel, M. Perles and E. Shamir 
[1] (also by S. Ginsburg and G. F. Rose [5]) and by S. Kleene [8] 
respectively as by-products of more sophisticated theories. 

REMARK 2. Let R= C, the field of complex numbers; and p a 
proper system of dimension M. Introducing 4M new symbols zj and 
replacing each yj by Z4j +iZ4j+l - Z4j+2 - iZ4j+3 in the pjs we can deduce 
from p a new system of dimension 4M in which all the coefficients are 
non-negative real numbers and whose solution is simply related to 

P(X). 
Assume now that pE C*M(XU Y) has only real non-negative coeffi- 

cients and denote bv a a homomorphism of Cpo0(XU Y) into C. Be- 
cause of the assumption that (pj, yj,) = (pj, 1) =0, identically, we 
can find an E>0 such that I apjI <e for all j when IaxI <?E and 

ayjI ?2E for all x EX and yGCY. Since the sequence ap(O), ap(1), 
. * oap(n), is monotonically increasing it converges to a finite 

solution (cf., e.g., [10]). 
Hence, the canonical epimorphism of Cpo0(XU Y) onto the ring of 

the ordinary (commutative) polynomials can be extended to an epi- 
morphism of Calg(X) onto the ring of the Taylor series of the alge- 
braic functions. 

Acknowledgment. Acknowledgment is made to the Commonwealth 
Fund for the grant in support of the visiting professorship of bio- 
mathematics in the Department of Preventive Medicine at Harvard 
Medical School. 
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