
1. Post-Do
 Training I (vers. 20-07-2020 10:40)

1.1. Exer
ise 1 & �

Ex1) The aim of this first problem is to show that T = log(1 + x0)x1 is not in
Domloc(Li).

a) Give, for each length, the homogeneous component Tn = ∑|u|=n〈T | u〉u

b) Compute LiTn and show that it is Taylor developable for |z| < 1, give the
coefficients.

c) Is ∑n≥0 LiTn convergent (compactly in D<1) ?

d) Is it absolutely convergent ?

1.2. Exer
ise 2 & �

Ex2) The aim of this second problem is to understand better certain parts of your
two Ph. D.

a) Give the definition of a summable family of (noncommutative formal power)
series 1.

b) On tries to define the logarithm of a letter as log(x0)

i) Compute formally setting x0 = 1 + (x0 − 1), one should obtain a sum

∑n≥1 an(x0 − 1)n

ii) Explain why (an(x0 − 1)n)n≥1 is not summable.

c) Let X be an alphabet, R a Q-algebra and S ∈ R〈〈X〉〉 be a proper series (i.e.
such that 〈S | 1X∗〉 = 0, their set is usually denoted R+〈〈X〉〉).

i) Explain why, for each one-variable series ϕ = ∑n≥0 cn zn ∈ R[[z]], the
family (cn Sn)n≥0 is summable. One will note the result ϕ(S).

ii) Show carefully that exp(log(1X∗ + S)) = 1X∗ + S and log(exp(S)) = S

d) (From now on z ∈ C) What is the radius of convergence of log(1 + z) =

∑n≥1
(−1)n−1

n zn ?

e) Explain how to extend this function to Cr]− ∞, 0] (concretely)

f) (Difficult) Give the domains and images of the complex functions exp, log
and explain why they are not inverse one from the other, give the domain
of exp ◦ log and log ◦ exp.

Task (2) Blah 1

1In your Ph.D.(s) (C,26), in french sommable.
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1.3. Exer
ise 3 & � (Combinatorial ranking & use of asymptoti


expansions).

Ex3) Let q ≥ 1 be an integer, we form the sequence (vk)k≥1 by taking q odd numbers
in increasing order (starting from 1), then one even number, then the q following
odd numbers and the following even number and again and again and again ... For
example, with q = 3, it reads

1, 3, 5, 2, 7, 9, 11, 4, 13, 15, 17, 6, 19, . . . (1)

in general, it reads

1, . . . , 2q − 1, 2, 2q + 1, 2q + 3, . . . 4q − 1, 4, 4q + 1, . . . 6q − 1, 6, 6q + 1, . . . (2)

a) For each k, compute vk

(two cases k = m(q + 1) and k = m(q + 1) + r, 1 ≤ r ≤ q).

We set vk = σ(k)

b) Show that σ is a bijection N+ → N+ (here N+ = N≥1)
Hint: Buid a cadidate τ for the inverse of σ, for example, with q = 3, (τ(k))k≥1

reads
1, 4, 2, 8, 3, 12, 5, 16, 6, . . .

and show that σ ◦ τ = τ ◦ σ = IdN+ .

c) For q = 2, compute ∑k≥1
(−1)σ(k)−1

σ(k)

d) Compute ∑k≥1
(−1)σ(k)−1

σ(k)
for general q ≥ 1.

Hint:

• For partial sums, have a look here

https://en.wikipedia.org/wiki/Series_(mathemati
s)

• Evaluate N packets of (q + 1) terms SN = ∑
N(q+1)
k=1

(−1)σ(k)−1

σ(k)
.

Then use the original Euler expansion

https://en.wikipedia.org/wiki/Euler%E2%80%93Mas
heroni_
onstant

γ ∼ Hn − ln n − 1

2n
+

1

12n2
− 1

120n4
+ · · ·

• Not forget to mention that the general term tends to zero (think why)

e) (General, bisection method, warming) We consider a partition of N+ into two
infinite subsets i.e. N+ = U0 ⊔ V0 (see Comments & refs Section2.1, item
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1) and a (boolean choice) function h : N+ → {0, 1}. We construct a map
ϕ = ϕh : N+ → N+ by

U0 = U; V0 = V ; Init. Data

ϕ(k) =

{
min(Uk−1) if h(k) = 0
min(Vk−1) otherwise (h(k) = 1)

}
Rec. Function

Uk = Uk−1
r {ϕ(k)}; Vk = Vk−1

r {ϕ(k)} Rec. Data

For example, for U = {2k − 1}k≥1, V = {2k}k≥1 (odd and even numbers) and
with h the choice function (written as a string) of period 7

0001010︸ ︷︷ ︸
period

00010100001010000101000010100001010 . . . (3)

One has ϕ (also written as a string)

1, 3, 5, 2, 7, 4, 9︸ ︷︷ ︸
correspondingto
the f irstperiod

, 11, 13, 15, 6, 17, 8, 19︸ ︷︷ ︸, 21, 23, 25, 10, 27, 12, 29, . . . (4)

Explain the data and choice function h : N+ → {0, 1} used to construct the
bijection σ above.

f) Prove that ϕ is injective in all cases. Here is a training to (correct) proofs. A
proof of degree 3. (see below) is required.
The string to be used as reference expresses that ϕ is injective (or into). It reads

(∀m, n ∈ N+)((ϕ(m) = ϕ(n)) =⇒ (m = n)) (5)

g) Give a construct h for which ϕ is not surjective.

h) (Difficult) We suppose that h is not ultimately constant, i.e.

(∀n ∈ N+)(∃m > n)(h(n) 6= h(m)) (6)

prove that ϕ is surjective (onto).

i) Until the end of this training, we use the partition of N+ in odd and even
numbers (then U = {2k − 1}k≥1, V = {2k}k≥1) and, for p, q ≥ 1, ϕp,q(k) is
constructed such that we take

• p odd numbers

• q even numbers

• and again ...

for example, the list (ϕ3,2(k))k≥1 reads

1, 3, 5,2, 4,7, 9, 11,6, 8,13, 15, 17,10, 12, · · · (7)

give explicitely hp,q(k) and σp,q constructed with these data.

j) For ϕ = ϕp,q, prove that ∑
∞
k=1

(−1)σ(k)−1

σ(k)
is convergent and give its limit lp,q (use

Euler formula).
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1.4. Exer
ise 4 & � (Eilenberg-S
hützenberger quotients)

Ex4) For

• S ∈ R〈〈X〉〉 (R ring, X alphabet)

• u ∈ X∗

one defines u−1S (resp. Su−1)2 by

u−1S := ∑
w∈X∗

〈S | uw〉w and Su−1 := ∑
w∈X∗

〈S | wu〉w (8)

a) Show that, when S = w (a single word i.e. a noncommutative monomial), one
has

u−1w =

{
v if w = uv
0 otherwise.

}
and wu−1 =

{
v if w = vu
0 otherwise.

}

b) Prove that
u−1S := ∑

w∈X∗
〈S | w〉 u−1w and Su−1 := ∑

w∈X∗
〈S | w〉wu−1 (9)

c) (From now on, we suppose that R is a Q-algebra.)
Show that

πX(∑
k≥1

(−1)k−1

k
yk) = x−1

0

(
log(1 + x0)x1

)

d) Compute
(

log(1 + x0)x1

)
x−1

0 and deduce that the operators x−1
0 ? and ? x−1

0 are differ-
ent.

2Respectively known as left and right quotient by u.
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1.5. Exer
ise 5 & � (Understanding the wonderful identity)

Ex5) The aim of this exercise is to establish a “Holomorphic functional calculus”
[3] within the stuffle algebra, taking the proper series as arguments. Here, we set
Y = {yi}i≥1 and assume that the identity

(∑
i≥1

αi yi)
∗ (∑

j≥1

β j yj)
∗ = (∑

i≥1

αi yi + ∑
j≥1

β j yj + ∑
i,j≥1

αiβ j yi+j)
∗ (10)

has been proved elsewhere. As the alphabet is infinite we will use homogeneous
series of degree one as

∑
i≥1

αi yi (11)

this sum is not necessarily finite (it is, in general, a series) but can be so. Series like
(11) form a vector space (called by Pr. Schützenberger “the plane of letters”), noted

in our works Ĉ.Y.

a) (Warming: log-exp correspondence) Let S be a proper series3 and T = ∑n≥0 anzn ∈
C[[z]], prove that (anS n)n≥0 is summable (see below (2.2) and use the weight).

Definition 1. For T ∈ C[[z]] and S ∈ C+〈〈Y〉〉, we note

T (S) := ∑
n≥0

〈T | zn〉 S n (12)

b) For S ∈ C+〈〈Y〉〉, show that

log (1Y∗ + S) and exp (S)− 1Y∗ belong to C+〈〈Y〉〉

and prove carefully that

exp (log (1Y∗ + S)) = 1Y∗ + S and log (exp (S)) = S (13)

c) (Commutation and polynomial type coefficients) For S, T ∈ C+〈〈Y〉〉 and P(z) ∈
C[z], prove carefully that

exp (S + T) = exp (S) exp (T) ; exp (P(z).S) ∈ C[z]〈〈Y〉〉 (14)

and4

d(exp (P(z).S)) = (P′(z).S) exp (P(z).S) (16)

3i.e. such that 〈S | 1Y∗〉 = 0
4 An alphabet X being given, one can at once extend the derivation d

dz to a derivation of the algebra
C[z]〈〈X 〉〉 by

d(S) = ∑
w∈X∗

d

dz
(〈S | w〉)w . (15)

5



d) (Coding the plane by Umbral calculus, see below section (2.3)) Let x be a aux-
iliary letter. Show that the map

πUmbra
Y : ∑

n≥1

αn xn 7→ ∑
n≥1

αn yn (17)

from C+[[x]] to Ĉ.Y is linear and bijective. We will call πUmbra
x its inverse.

e) For S, T ∈ C+[[x]], show that

(πUmbra
Y (S))∗ (πUmbra

Y (T))∗ = (πUmbra
Y ((1 + S)(1 + T)− 1))∗ (18)

f) For z ∈ C and T ∈ C+[[x]], one sets

G(z) = (πUmbra
Y (ez.T − 1))∗ (19)

from (18) deduce that, for z1, z2 ∈ C, one has

G(z1 + z2) = G(z1) G(z2) ; G(0) = 1Y∗ (20)

(this is called a “stuffle one parameter group”).

g) Prove that
d

dz
(G(z)) = (πUmbra

Y (T)) G(z) (21)

and deduce that

G(z) = e
z.πUmbra

Y (T)
(22)

h) From what precedes, show that, for each P = ∑i≥1〈P | yi〉 yi ∈ Ĉ.Y

log (P∗) = πUmbra
Y (log(1 + πUmbra

x (P))) (23)

i) Using (23), show that

(tyk)
∗ = exp

(
∑
n≥1

(−1)n−1tnynk

n

)
(24)

and compute (2ty1 + t2y2)
∗ under the form of an exponential.

2. Q & A

2.1. Comments & refs

1. Bisections were introduced by Berstel and Perrin for the theory of codes [1]
and by Viennot for the theory of flips (bascules in french) [4] (to construct new
bases of the free Lie algebra by successive eliminations i.e. Lazard codes).
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Some referen
es here

[1] Jean Berstel and Dominique Perrin, Theory of codes, Pure and Applied Math-
ematics, 117, Academic Press, Inc., New York, 1985

[2] N. Bourbaki, Theory of sets, Springer-Verlag Berlin Heidelberg 2004

[3] https://en.wikipedia.org/wiki/Holomorphi
_fun
tional_
al
ulus

[4] Xavier Viennot, Factorisations des monoïdes libres, bascules et algèbres de Lie libres,
Séminaire Dubreil : Algèbre, 25e année, 1971/72, Fasc. 2 : Journées sur les
anneaux et les demi-groupes [1972. Paris], J5 | Numdam | MR 419649 | Zbl
0355.20059

[5] Jean Dieudonné, Infinitesimal calculus, Houghton Mifflin (1971)

[6] Christophe Reutenauer, Free Lie Algebras, Université du Québec a Montréal,
Clarendon Press, Oxford (1993)

2.2. Summable families

In [6] is given a very simple definition of summable families in the context of formal
ppower series. Let R be a ring and X an alphabet. We say that a family (Sj)j∈J is
summable if, for each word w ∈ X ∗, the function j 7→ 〈Sj | w〉 from J to R is finitely
supported. The sum ∑j∈J Sj is by definition the series

S = ∑
w∈X ∗

(∑
j∈J

〈Sj | w〉)w (25)

Let umn = 1/(m2 − n2) if m 6= n and umn = 0 if m = n.
Note that

π2

12
=

∞

∑
n=1

∞

∑
m=1,m 6=n

1

m2 − n2
6=

∞

∑
m=1

∞

∑
n=1,n 6=m

1

m2 − n2
= −π2

12
.

By anti-symmetry, the double sum changes sign with an interchange of indices.
To find the sum, use

∞

∑
m=1,m 6=n

1

m2 − n2
= lim

M→∞

1

2n

M

∑
m=1,m 6=n

(
1

m − n
− 1

m + n

)
(26)

= lim
M→∞

1

2n

(
M−n

∑
k=1

1

k
−

n−1

∑
k=1

1

k
−

M+n

∑
k=n+1

1

k

)
(27)

= lim
M→∞

1

2n

(
1

n
− 1

M − n + 1
− . . . − 1

M + n

)
(28)

=
1

2n2
(29)
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2.3. Umbral 
al
ulus

Technique used in combinatorics consisting in the substitution xn 7→ Bn (lowering
exponents). Have a look there

https://en.wikipedia.org/wiki/Umbral_
al
ulus

Here we use the coding xn 7→ yn.

2.4. Proofs by degree of se
urity

1. (the lowest and NOT a proof) Computer program (can detect errors however
and acts rather as a check), the highest order the best (that’s why, in Chiên’s
PhD, we mentioned that the computations were done “up to order twelve”).

2. Proofs in natural language (arguments: “then | thus | however | we have” &c.)
acts on the base of convincing, but not always sound (people can be swayed by
strong words or statements).

3. Formalized proofs of proofs based on formalized strings. High degree of secu-
rity. Formalized strings look like

(∀w ∈ X∗)(i 7→ 〈Si | w〉 is finitely supported)

or better (for logic)

(∀K ⊂compact Ω))(∀ǫ > 0)(∃α0 ∈ A)(∀α ≥ α0)(|| f − fα||K < ǫ)

4. Certified proofs (our future :), have a look at Thomas Fernique’s talk here

https://www-lipn.univ-paris13.fr/~du
hamp/Conferen
es/CAP6_2019.html

and the story of Thomas Hales here

https://en.wikipedia.org/wiki/Kepler_
onje
ture

5. Proofs certified by two or more independant programs.

2.5. Training to proofs

I begin in citing the introduction of [2] which gives a good glimpse of proof-checking.
If, as happens again and again, doubts arise as to the correctness of the text under consid-

eration, they concern ultimately the possibility of translating it unambiguously into such a
formalized language : either because the same word has been used in different senses accord-
ing to the context, or because the rules of syntax have been violated by the unconscious use
of modes of argument which they do not specifically authorize, or again because a material
error has been committed. Apart from this last possibility, the process of rectification, sooner
or later, invariably consists in the construction of texts which come closer and closer to a
formalized text until, in the general opinion of mathematicians, it would be superfluous to go
any further in this direction. In other words, the correctness of a mathematical text is verified
by comparing it, more or less explicitly, with the rules of a formalized language.
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2.6. Hamel basis

Every k-vector space W admits a basis. Even more, in ZFC (and many systems) every
k-free family (vi)i∈I can be completed to a (larger) family B = (vi)i∈J (I ⊂ J) such

that B is a basis of W. For example (1,
√

2) is Q-free in R (prove this by Euclid’s
argument or using continued fractions, it then exists a basis of R (as a Q-vector

space) B = (vi)i∈J and j1, j2 ∈ J such that vj1 = 1, vj2 =
√

2. So one can define
ϕ : R → R such that

(∀x, y ∈ R)(ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(1) = 0, ϕ(
√

2) = 1) (30)

this ϕ cannot be of the form f (x) = a · x. It is additive but not linear.

2.7. Statements Jig

Proposition 1. i) Let (Si)i∈I (resp. (Tj)j∈J be summable families5, then (Si Tj)(i,j)∈I×J is
summable and

∑
(i,j)∈I×J

Si Tj = (∑
i∈I

Si) (∑
j∈J

Tj) (31)

ii) We suppose now that I = J = N6, then (∑p+q=n Sp Tq)n≥0 is summable and

( ∑
p∈N

Sp) ( ∑
q∈N

Tq) = ∑
n≥0

( ∑
p+q=n

Sp Tq) (32)

Proposition 2. For S ∈ C〈〈Y〉〉, we define ̟(S) to be the least weight of the words in the
support.

̟(S) := min{(w)|w ∈ supp(S)} ∈ N ∪ {+∞}
i) For S, T ∈ C〈〈Y〉〉

̟(S T) ≥ ̟(S) + ̟(T)

where usual sum is extended as follows

+ p +∞

q p + q +∞

+∞ +∞ +∞

ii) Let S ∈ C+〈〈Y〉〉 (a proper series, then), (anS n)n≥0 is summable.

5Series not necessarily proper.
6and still that (Si)i∈N (resp. (Tj)j∈N are summable.
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2.8. Corre
tions

Of course, as you are (like everyone of us four) on an “improvement track”, the title
of this section means:

Corrections, examples and discussion

so never hesitate if you see something to improve or clarify.

Ex3 e) f) g) and h). —
e) The data are





U = {2k − 1}k≥1; V = {2k}k≥1 the odd and even numbers
h(k) = 0 if k 6= 0 mod q + 1
h(k) = 1 otherwise.

(U, V) is a partition as U ∩ V = ∅ and U ∪ V = N+.

f) Prove that ϕ is injective in all cases.

We will prove injectivity by the equivalent property (contraposition of the given
string)

(∀m, n ∈ N+)((m 6= n) =⇒ (ϕ(m) 6= ϕ(n))) (33)

We choose m, n ∈ N+ with m 6= n and have to prove that ϕ(m) 6= ϕ(n).
Suppose that m < n (the other case n < m being similar) then set
p = #{m, n} ∩ ϕ−1(U) we have three cases

• p = 0 then {m, n} ⊂ ϕ−1(V) and, by construction ϕ is strictly increasing on
ϕ−1(V) 7 (i.e. m is choosen strictly before n) then ϕ(m) < ϕ(n), this proves the
result (ϕ(m) 6= ϕ(n)) in this case.

• p = 1 then m, n are in separate blocks of the partition [ϕ−1(U), ϕ−1(V)] their
images are in separate blocks of [U, V].

• p = 2 similar to the case p = 0 replacing ϕ−1(V) by ϕ−1(U).

g) Give a construct h for which ϕ is not surjective.

It is the case if h is ultimately constant i.e. that it exists N > 0 from which h(n) =
h(N), formally

(∃N > 0)(∀n ≥ N)(h(n) = h(N)) (34)

as a string
h(1) . . . h(N)h(N)h(N)h(N)h(N)h(N) . . . (35)

set U = {uk}k≥1 (resp. V = {vk}k≥1) in strictly increasing order (this is possible
because U, V are both infinite). Suppose h(N) = 0 (the other case is similar), it exists
k0 > 0 such that ϕ(N) = uk0

and, by construction ϕ(N + r) = uk0+r (from rank N,

7and (separately) on ϕ−1(V)

10



all elements are choosen in U), then only a finite number of elements are choosen in
V, setting F = ϕ(N+) ∩ V (a finite set), the image of ϕ is ϕ(N+) = U ∪ F 6= N+.

h) In the case h is not ultimately constant, prove that ϕ is surjective (onto).

This is the case when h always changes i.e., written as a string, h is not of the
form w.0∞ or w.1∞ (w being an initial string). We again write U = {uk}k≥1 (resp.
V = {vk}k≥1) in strictly increasing order and prove that every element of U (resp.
V) is choosen. Let Uchoose = ϕ(N+) ∩ U, either Uchoose = U and we are done or
Uchoose ( U, in this last case, let

k0 = inf{k | uk /∈ Uchoose} (36)

(i.e. the first index for which uk would not be choosen). Then k0 = 1 is impossible
because if j0 is the first number j ∈ N+ for which h(j) = 0 (there is one because h
is not ultimately constant), we have, by construction, ϕ(j0) = u1, then k0 ≥ 2, but,
from the definition of k0 we have uk0−1 ∈ Uchoose and then uk0−1 = ϕ(m) for some
m (hence h(m) = 0) now, as h is not ultimately constant, there exist indices m′

> m
such that h(m′) = 0 again (otherwise h would finish by 1∞), let m′

0 be the least of
these m′ (m′

> m such that h(m′) = 0 again), then as (∀k ∈]m, m′[)(h(k) = 1) we
must have ϕ(k0) = uk0

, a contradiction. The reasoning is similar for V and then
ϕ(N+) ⊃ U ∪ V = N+.

i) Left to the reader, ranking exercise

j) For σ = σp,q, prove that ∑
∞
k=1

(−1)σ(k)−1

σ(k)
is convergent and give its limit lp,q.

We use the following lemma (summation by intervals)

Lemma 1. Let ∑n≥1 an some series of complex numbers and N > 0 (pack length), then
TFAE

1. ∑n≥1 an is convergent

2. ∑m≥0

(
∑

N
r=1 amN+r

)
is convergent and limn→∞ an = 0.

Here we take N = p + q and an = (−1)n−1

n , until the m-th pack ∑
N
r=1 a(m−1)N+r, we

have the odd numbers from rank 1 to mp i.e. 1, 3, . . . 2mp− 1 and thev even numbers
from rank 1 to mq i.e. 2, 4, . . . 2mq. Then

M−1

∑
m=0

( N

∑
r=1

amN+r

)
= (

Mp

∑
r=1

1

2r − 1
)− (

Mq

∑
r=1

1

2r
) = (

2Mp

∑
r=1

1

r
−

Mp

∑
r=1

1

2r
)− (

Mq

∑
r=1

1

2r
) =

(
2Mp

∑
r=1

1

r
)− 1

2
(

Mp

∑
r=1

1

r
)− 1

2
(

Mq

∑
r=1

1

r
) =

log(2Mp) + γ + ǫ1(n)−
1

2
(log(Mp) + γ + ǫ2(n)) −

1

2
(log(Mq) + γ + ǫ3(n)) =

log(2) +
1

2
(log(p)− log(q)) + ǫ4(n). (37)
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which proves (together with the fact that the general term tends to zero) that

∞

∑
k=1

(−1)σ(k)−1

σ(k)

is convergent and tends to log(2) + 1
2(log(p)− log(q)).

Do not forget to mention that the general term tends to zero otherwise the lemma
is false (think of ∑n≥1(−1)n with packs of length 2).

Ex5 c). —
c) We first prove (14) left part. Let us take S, T ∈ C+〈〈Y〉〉 and P(z) ∈ C[z]. Now, we
have

exp (S) exp (T) = ∑
p≥0

1

p!
S p ∑

q≥0

1

q!
T q = ∑

p≥0
∑
q≥0

1

p!q!
S p T q =

∑
n≥0

1

n!
( ∑

p+q=n

n!

p!q!
S p T q) = ∑

n≥0

1

n!
( ∑

p+q=n

(
n

p

)
S p T q) =

∑
n≥0

1

n!
(S + T) n = exp (S + T) (38)

For the right part, we have to prove that every coefficient of exp (P(z).S) is a
polynomial i.e. for all w ∈ Y∗, 〈exp (P(z).S) | w〉 ∈ C[z]. Then

〈exp (P(z).S) | w〉 = ∑
n≥0

1

n!
〈(P(z).S) n | w〉 = ∑

0≤n≤(w)

1

n!
P(z)n · 〈S n | w〉 (39)

because for n > (w), 〈(S) n | w〉 = 0. As the sum ∑0≤n≤(w)
1
n! P(z)

n · 〈S n | w〉 is

finite, this proves the polynomiality of the coefficient 〈exp (P(z).S) | w〉.
Now, we prove (16). We have

d(exp (P(z).S)) = d( ∑
w∈Y∗

∑
0≤n≤(w)

1

n!
P(z)n · 〈S n | w〉w)=(1)

∑
w∈Y∗

(
d

dz
( ∑

0≤n≤(w)

1

n!
P(z)n · 〈S n | w〉))w=(2) ∑

w∈Y∗
( ∑

1≤n≤(w)

1

n!

d

dz
(P(z)n) · 〈S n | w〉)w =

∑
w∈Y∗

( ∑
1≤n≤(w)

1

n!
nP(z)n−1P′(z) · 〈S n | w〉)w =

P′(z) ∑
w∈Y∗

( ∑
1≤n≤(w)

〈S 1

(n − 1)!
(P(z)n−1S n−1 | w〉)w =

P′(z) ∑
w∈Y∗

(〈S ∑
0≤m≤(w)−1

1

m!
(P(z)mS m | w〉)w=(3)

P′(z) ∑
w∈Y∗

(〈S ∑
0≤m

1

m!
(P(z)mS m | w〉)w = (P′(z).S) exp (P(z).S)
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=(1) is from the definition of d, =(2) because d
dz(P(z)

0) · 〈S 0 | w〉) = 0, =(3)

because, due to the presence of (S ?) all terms are zero for m > (w)− 1.

d) Hint. — For linearity just prove that the map is additive and homogeneous of
degree 1. For one-to-one just construct explicitely its inverse πUmbra

x .

e) Let S, T ∈ C+[[x]], one can write S = ∑p≥1 ap xp, T = ∑q≥1 bq xq. Then

(πUmbra
Y (S))∗ (πUmbra

Y (T))∗ = (∑
p≥1

ap yp)
∗ (∑

q≥1

bq yq)
∗=(1)

(∑
p≥1

ap yp + ∑
q≥1

bq yq + ∑
p,q≥1

apbq yp+q)
∗ = (πUmbra

Y (S + T + ST))∗

(πUmbra
Y ((1 + S)(1 + T)− 1))∗

=(1) is from (10).

f) We have G(0) = (0C〈〈Y〉〉)
∗ = 1Y∗ , now

G(z1) G(z2) = (πUmbra
Y (ez1 .T − 1))∗ (πUmbra

Y (ez2.T − 1))∗=(1)

(πUmbra
Y [(ez1 .T − 1 + 1)(ez2 .T − 1 + 1)− 1])∗ = (πUmbra

Y (e(z1+z2).T − 1))∗ = G(z1 + z2)

=(1) is from (18).

g) One can show that, for all z ∈ C,

d

dz
(G(z)) = lim

h→0

G(z + h)− G(z)

h
(pointwise convergence)

then

d

dz
(G(z)) = lim

h→0

G(z) (G(h) − 1)

h
=(1)G(z) lim

h→0

(G(h) − 1)

h
=

G(z) lim
h→0

((πUmbra
Y (eh.T − 1))∗ − 1)

h
= G(z) lim

h→0

πUmbra
Y (∑n≥1

1

n!
hnTn))+

h
=

G(z) (πUmbra
Y (T)) = (πUmbra

Y (T)) G(z)

Now G(z) and R(z) = e
z.πUmbra

Y (T)
satisfy the same differential equation with the

same initial condition which is

d

dz
( f (z)) = (πUmbra

Y (T)) f (z) with f (0) = 1Y∗

then we classically8 form F(z) = G(z) R(−z), then9

d

dz
(F(z)) =

d

dz
(G(z) R(−z)) =

d

dz
(G(z)) R(−z) + G(z)

d

dz
(R(−z)) =

(πUmbra
Y (T)) G(z) R(−z) + G(z) (πUmbra

Y (−T)) R(−z) = 0

8When one has linear differential equations, the product of one solution with the inverse of the
other is usually considered.

9One has to prove first that we are within a diifferential algebra (refs in your Ph. D.s).
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From this, we deduce that G(z)) R(−z) is constant and equal to its value at z = 0

10 then G(z)) R(−z) = 1Y∗ and then, for all z, G(z) = R(z) = e
z.πUmbra

Y (T)
.

10One has to prove first that the constants are C · 1Y∗ (todo).
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