Post-Doc Training II : Computation with infinite sums and products. (vers. 20-07-2020 10:40)

1. Preamble

An infinite¹ sum (resp. product) is a *symbolic expression* 2 of the form

$$\sum_{i\in I} a_i; \prod_{\in I} b_i; \sum_{n\geq 1} \frac{(-1)^n}{n}; \prod_{\in I}^{\leftarrow} a_i; \prod_{\in I}^{\rightarrow} a_i; \prod_{\in I}^{\searrow} a_i; \qquad (1)$$

save for the two first, the evaluation/computation is directed (and *I* has to be ordered).

2. Monoids, polynomials and series

2.1. Binary laws

2.1.1.

A *monoid* $(M, *, 1_M)$ is a set endowed with a binary law *, associative with neutral. 1) Prove that, in $\mathcal{M}(n, \mathbb{C})$ (the set of *n* by *n* complex matrices), the laws given by

$$S \oplus T = S + T + I_{n \times n}$$
; $S * T := S + T + ST$

are associative.

2) Do they have a neutral ? if yes, which one ?

3) Prove that * is distributive over \oplus .

4) Could you explain why?

5) Read the following question (and the answer which got a bounty)

https://math.stackexchange.com/questions/1055259/ binary-operation-commutative-associative-and-distributive-over-multiplication

6) Have look at the questions tagged [semigroups-and-monoids] there.

7) For the free commutative monoid, have a look here

https://mathoverflow.net/questions/316732/ generating-totally-ordered-free-commutative-monoids/354834#354834

¹In fact, *I* can be finite as well but the wording of this domain is to stress the fact that *I* can be infinite and the limiting process of these expressions should coincide with the finite version when *I*, the indexing set, is finite).

²Symbolic expressions are semistructured data in human-readable text form.

2.1.2. Expansion of question 5 above

The aim of this exercise is to classify completely the binary laws over \mathbb{Q} which are commutative and distributive over multiplication. Please follow the questions step-by-step. In the following * stands for any binary law $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ which is distributive over multiplication. All harvested cases will be frameboxed. 1) Prove that $1 * 1 \in \{0, 1\}$.

1.a) In case 1 * 1 = 0 prove that the law is the null law.

1.b) Prove that the null law satisfies distributivity. $x * y \equiv 0$

Hint [Why 1.b ?]: For a classification, you must prove (even if it is obvious) that all properties **implied** lead to satisfaction of the conditions because sometimes the "tree of discussion" leads to dead ends.

```
From now on, we assume that 1 * 1 = 1.
```

2) Prove that $1 * (-1) \in \{-1, 1\}$.

2.1) Prove that 1 * (-1) = -1 is impossible.

From now on, we assume that 1 * (-1) = (-1) * 1 = 1.

2.2) Prove that $(-1) * (-1) \in \{\overline{-1,1}\}$.

From now on, we set u = (-1) * (-1) and $\mathbb{Q}^*_+ := \{r \in \mathbb{Q} \mid z > 0\}$. 3)