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1. Introduction

To be done after interactions

2. Binary trees

In this first part, we deal with so-called full binary treedl.

2.1. Definition

A binary tree t is
- Either an isolated node t = e (the number of leaves leaves(t) is = 1), or
- The composition t = (.1, t,ignt) 0f two previously defined trees.

in the second case, we have leaves(t) = leaves(t.r;) + leaves(t,ignt )
The set 7 of binary trees is more formally described by the following grammar,
called Gpyepes

T = e+ 4 N (Gbtrees)
T T

As such, it comes graded by the number of leaves, we define
Tn=A{teT |leaves(t) =n} (1)

We have then, by definition, 7 = uj,51 7.
Below the set 74

IThere is a lot of species of binary trees: BST, unordered, complete, almost complete, infinite com-
plete, have a look, at [9]
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1) a) Give the number ¢, = #7,, for n =1---5.
b) Using the grammar (Gyyy,,s), prove that

c1=1;cn= ) cp-cq (2)
p+q=n
c) Set T = Y,,51 cuy™ and, using (Gprees), show that, in C[[y]], we have
T=y+T2.

Solving this equation in C[[y]] (please justify as much as possible your computations@,
each step must be legal), prove that

T:1—~/21—4y o

d) Give the numbers ¢, = #7,, for n = 1---15. Control the results in Sloane
https://oeis.org/

2) For a given set X, we built the set 7(X) of binary trees with leaves in X, by the
grammar

T = e+ 4 N (Gbtrees)
T(X) T(X)

and define the grading 7 (X), as previously.

a) For a finite alphabet X, give the number c,(X) of trees with n leaves as a function
of ¢, and #X.

b) (X is finite and #X = k. Give the generating series T(X) = 3,51 cx(X)y" as in (3).

3) Application: Construction of the free magma over X.

For a given set X (finite or infinite), we define j: X < 7 (X) as the canonical embed-
ding (because 7 (X); = X).

2Have a look at section “Notes”.
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Figure 1: Universal property from Sets to Magma

a) Let C be the class of sets and D be the class of magmas. The definition can be
found there (just a set equipped with a binary operation, no condition required). A
morphism between two magmas is a map compatible with the operations (definition
as well in the following link)

https://en.wikipedia.org/wiki/Magma_(algebra)

Show that T(X) equipped with the operation “append” (i.e. the composition send-
ing the pair (#1,t;) to the new tree (root, t,t,)) is a magma.

b) Show that for all (set-theoretical) mapping f : X - M, where M is a magma, it ex-
ists a unique morphism of magmas f € homp(7(X), M) such that “set-theoretically”
f = foj. c) Compare what has been done with construction [3], Ch 1 §7.1. Proposi-
tion 1.

d) Read the following

https://mathoverflow.net/questions/39862/free-commutative-magma-over-a-set\\

3. Words

3.1. Free monoid: Warming

Let X be an alphabet (a set), (X*, conc,1x+ ) be the monoid of words built over X and
set j = X* be the canonical embedding.

1) a) Show that we have an analogue of for C (resp. D) the category of sets
(resp. of monoids), i.e.

For all set-theoretical map f : X — M, where (M, *,1)) is a monoid, it exists

A

a unique morphism of monoids f € homp(7(X), M) such that “set-theoretically”
f = f o] (see[Figure 2).

b) Compare what has been done with construction [3], Ch 1 §7.2 (where X* is called
Mo(X)) Proposition 3 and [6] Prop 1.1.1.

c) Read the following

https://en.wikipedia.org/wiki/Free_monoid
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Figure 2: Universal property from Sets to Monoid

3.2. Lexicographic ordering and Lyndon words
3.2.1. Preamble on relations and graphs

In general, a small graph is a set G c E x F (E, F being sets). When E = F, we speak
of an endograph (or simply a graph when the context is clear as below). The set of
these graphs is 2E<E.

On 2E*E there is a binary law called the compostion of graphs, given by

RyoRy ={(x,2)|(3y € E)((xy) € Ry and (y,2) ¢ Ra) } @)

we also need the diagonal A = Ar = {(x, x) }xeE.
1) Show that (2E%E 0, A) is a monoid.
2) As an application show that

My ={Re2FE| AcR}

is a submonoid of 2E*E,
Write the multiplication table of M for E = {1,2}.
A relation R c E x E is said

1. reflexive if A c R
2. irreflexive if AnR = &
3. transitive if RoRc R

4. symmetric if s(R) ¢ R (where s : ExE - E xE is the canonicaal symmetry
s(x,y) = (y,x)

A strict order relation (on E) is a relation which is irreflexive and transitive, an order
relation is a relation which is reflexive, antisymmetric and transitive. The set of order
relations (rep. strict order relations) will be called OR(E) (resp. SOR(E)).

3) Show that R - R = RUA is a bijection SOR(E) - OR(E).

4) Show that Ar € OR(E) and that, if R € OR(E) (resp. R € SOR(E)) then s(R) «
OR(E) (resp. s(R) € SOR(E)); s(R) is then called the oposite order (resp. strict
order).

5) Use (4) to enumerate all strict order relations within E = {a,b} (3 solutions) and
within E = {a,b, c}.




3.2.2. Lexicographic ordering

Let X be an alphabet (i.e. a set, finite or infiniteﬁ and < a total orderin£ on X.
We define the (strict) lexicographic ordering between words by

v =us with s # 1x» (LO1)

u=pxsyv=pysy withx,ye Xand x<y (LO,) ®)

(LO) U<jpy D <= {

LO1) expresses that u is a (strict) prefix of v and (LO;) expresses that, at the first
position where they differ the comparison is made at this position. As a convenient,
we will note these relations, respectively, <;, <.

3.2.3. Preparation one: The Finite case

1) We suppose that the alphabet X is finite and numbered X = {ay,a;,---,an}, let
B = N +1 and send every word w = a; a;,-a; to jp(w) = Yi<s<kis- B~*. In numeral
notation this number is 5
]B(ZU) = OlllZZk
a) Show that jp is into, what is its image ?
b) Show that
u<v<=jg(u)<jp(v) (6)

c) Deduce that <, is a (strict) total ordering on the words (i.e. X*).

3.2.4. Two: The infinite (arbitrary) case

d) Prove the following lemma

Lemma 1. Let (S, R) be a set endowed with a binary relation R.
We suppose that for every subset set P = {a,b,c} c S, it exists an injective map j to a totally
ordered set (T, <) such that for all x,y € P

R(x,y) <= j(x) <j(y) (7)
Then R is a total (strict) order on S.

e) Apply lemma (7) and section (3.2.3) to show that < is a strict total order on X*.

Hint: X being still totally ordered by <, for any subset P = {u,v,w} c X* consider the finite
alphabet A = alph(u) ualph(v) ualph(w) (note that A can have any cardinality, but is
finite nevertheless) A = {a1 < ap < - < an} c X is totally ordered by the order inherited
from X. Then, with B = #A + 1 construct jg : A* — [0, 1[ and apply lemma () and section

3Tts elements of X will be called letters.

4The possibility of constructing a total order on a set is linked to the system of axioms. In particular,
have a look at [2] or https://en.wikipedia.org/wiki/Well-order. In combinatorics, we are in
ZFC, so this is not a problem here.



https://en.wikipedia.org/wiki/Well-order

B2.3).

The associated order (with eq.) will be noted <., or simply < when the context is
clear.

The maps to numbers was just a probing tool and will no longer be used in the sequel.

f) (Compatibility with left translations and cancellations) Prove that, for u,v, w € X*

O<W<—UD<UWw

a principle which can be abstracted as (with all words in X*)

|2 ]<[3]=|1]2]<[1]3] 8)

g) Show that, if u < v and if u is not a prefix of v, then for all 51,5, € X, we have
usy < vsy. A principle which can be abstracted as (with all words in X*, but remark
that u < v implies u,v € X™)

|1]<|2|=1]3]<|2]4] )

h) Show that the result of (c) is not true in general (give a counterexample), even if
s1 = sy, if we suppose only u < v (no compatibility on the right, in case LOy).
i) Show that

|1 ]<|2]<]1]3|=|1]|<i|2]|and|2]|=]1]4|with|4]|<]|3] (0)

3.2.5. Preamble: Conjugacy classes and Lyndon words

For a word w the conjugacy class (with multiplicities) is the multisetd {{v1} }epeo-
For example, the conjugacy classes of aabab and abab are

CClass(aabab) = {{aabab,baaba,abaab,babaa,ababa}} ; CClass(abab) = {{abab,baba,abab,baba}}

A Lyndon word is a word which is the strict minimum (for <;,,, hence the alphabet
must have been totally ordered) of its conjugacy class. In an equivalent way we set
the definition

Definition 1. A word w € X* is said Lyndon iff
w=ps with p,s e X" = w <sp (11)
Their set will be noted Lyn(X).

Remark 1. i) A factorization w = ps with p,s € X* is called a proper factorization and, in
this case p (resp. s) is a proper prefix (resp. proper suffix) of w. As letters have no proper
factorization, we have X c Lyn(X).

ii) For example CClass(abab) has no word in Lyn(X) and

CClass(aabab) n Lyn(X) = {aabab}.

SRead https://en.wikipedia.org/wiki/Multiset Here in order not to confuse with
sets, we will note the multiset with double curly brackets, as in the french page
https://fr.wikipedia.org/wiki/Multiensemble,



https://en.wikipedia.org/wiki/Multiset
https://fr.wikipedia.org/wiki/Multiensemble

In order to give an equivalent criterium for a word to be Lyndon, we will need the
following lemma

Lemma 2 ([6] Prop. 1.3.4. p8). Let u,v,c € X* be related by the equation

uc = cv (12)
then it exists x,y € X*, t e N s.t. u = xy,v = yx,c = (xy)tx.
We now have (physicists would say “We now have an equivalent definition”)
Proposition 1. A word w is Lyndon iff it is less than its proper suffixes.

In other words
we Lyn(X) <= [w = ps with p,s e X* = w < 5] (13)

For the convenience of the reader, I reproduce here the proof here where I call here
criterium the property
w=pswithp,se X" = w<s.

Proof.

criterium = w € Lyn(X)] If w = ps is a proper factorization of w, then, by the
criterium w < s and, as w cannot be a prefix of s (because |w| > |s|) and then by
question (c) above [principle (9)] w < sp.

w e Lyn(X) == criterium] Let us consider s, a proper suffix of w. We have then
w = ps with p,s € X*, as w € Lyn(X) we get w < sp.

Let us first establish that s cannot be a prefix of w. If it were so, we had ps = w = st
and then, by Lemma (2), it exists x,y € X*, t e N such that p=xy, t=yx, s = (xy)tx,
then w = ps < sp reads

(xy)xyx = xy(xy)'x <s = (xy) xxy (14)

by question (b) above [principle (8)], we can simplify and get yx < xy which have the
same length |x| +|y|. Therefore, we cannot be in the case (L0;) (yx cannot be a prefix
of xy) then we can multiply on the right by arbitrary factors obtaining

)t+1 )t+1

x<(xy)Tx=w

(yx

but the first word (yx)"*lx is a conjugate of w, a contradiction. O

3.2.6. Questions

a) Prove that, if u,v € Lyn(X) and u < v, then uv € Lyn(X) and u < uv < v.

For any word |w| > 2 we define o(w) = (1,v) such that w = uv and v is the smallest
proper suffix of w.
b) With o(w) = (u,v), show that v € Lyn(X) and

we Lyn(X) <= (u e Lyn(X) and u <) (15)




Hint: For the hardest part (w € Lyn(X) = u € Lyn(X)), take a proper suffix of u, say s, if
we had s < u (to disprove), show that s < u < uv < v < sv (give the reason of each inequality).
Apply principle (1Q) to s < v < sv concluding that v = st with t < v and remember that
ve Lyn(X).

c) In the case when w € Lyn(X)>2, o(w) = (u,v) and |u| > 2, set o(u) = (u1,u3), show
that ur > v

4. Trials

The quick | brown || fox |[ jumps over the lazy dog |

5. Notes

N1) About equations of the second degree in a ring (here the ring is C[[y]]).

(that’s why I asked to justify because, in a ring, A may have no root (look at y -1 in
the ring is R[[y]]) or an infinity of such. For example in a C-algebra, you can have
two non-null and distinct elements ¢, f with

f2#0;6f=fe=0;62=0 (16)

then f? admits as square roots, at least, the family of elements (f +A-e),c.

Xtra-exercises (notes)

Ex-N1) Give two 3 x 3 complex matrices which fulfill the relations(16).
Ex-N2) Let R be a commutative ring where 2 has an inverse (which will be noted, as
usual, 1/2). We consider the equation

X?+bX+c=0 (17)

We set A = b? - 4c.
a) Firstly, let us suppose that A has a square root which will be noted ¢ as in

https://en.wikipedia.org/wiki/Quadratic_equation

Show that equation (I7) has a root r (Hint: Take r = %(—b +9)).
b) Conversely, we suppose that (I7) has a root, say r, show that

X2+bX+c=(X-r)(X+r+b) (18)

deduce that c = -r(r + b) and find a square root for A.
c) Show that, if R has no zero divisors equation (I7) has

e two roots if A # 0 and is a square (i.e. has a square root J)




* onerootif A=0
* no root if A and is not a square

d) Application.

Let R =Z /37 (a field).

d1) What are the squares in R ? (two solutions)

d2) What are the quadratic equations ((I7)) which have roots ? (9 possibilities out of
which only a few have roots).

d3) Solve them and give their roots. e) Returning to the matrices of (Ex-N1), show
that the equation X? - f = 0 has infinitely many solutions.
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