Post-Doc Training III : Trees, words and diagrams. (vers. 20-07-2020 10:49)

1. Introduction

To be done after interactions

2. Binary trees

In this first part, we deal with so-called *full binary trees*¹.

2.1. Definition

A binary tree *t* is

- Either an isolated node $t = \bullet$ (the number of leaves leaves(t) is = 1), or
- The composition $t = (t_{left}, t_{right})$ of two previously defined trees.

in the second case, we have $leaves(t) = leaves(t_{left}) + leaves(t_{right})$ The set T of binary trees is more formally described by the following grammar, called G_{btrees}

As such, it comes graded by the number of leaves, we define

$$\mathcal{T}_n = \{ t \in \mathcal{T} \mid leaves(t) = n \}$$
(1)

We have then, by definition, $\mathcal{T} = \sqcup_{n \ge 1} \mathcal{T}_n$. Below the set \mathcal{T}_4

¹There is a lot of species of binary trees: BST, unordered, complete, almost complete, infinite complete, have a look, at [9]

1) a) Give the number $c_n = #\mathcal{T}_n$ for n = 1...5. b) Using the grammar (G_{btrees}), prove that

$$c_1 = 1$$
; $c_n = \sum_{p+q=n} c_p \cdot c_q$ (2)

c) Set $T = \sum_{n \ge 1} c_n y^n$ and, using (G_{btrees}) , show that, in $\mathbb{C}[[y]]$, we have

 $T = y + T^2 \; .$

Solving this equation in $\mathbb{C}[[y]]$ (please justify *as much as possible* your computations², each step must be legal), prove that

$$T = \frac{1 - \sqrt{1 - 4y}}{2} \tag{3}$$

d) Give the numbers $c_n = #T_n$ for $n = 1 \cdots 15$. Control the results in Sloane

https://oeis.org/

2) For a given set *X*, we built the set T(X) of binary trees with leaves in *X*, by the grammar

and define the grading $\mathcal{T}(X)_n$ as previously.

a) For a finite alphabet X, give the number $c_n(X)$ of trees with *n* leaves as a function of c_n and #X.

b) (X is finite and #X = k. Give the generating series $T(X) = \sum_{n \ge 1} c_n(X)y^n$ as in (3).

3) Application: Construction of the free magma over X.

For a given set *X* (finite or infinite), we define $j : X \hookrightarrow \mathcal{T}(X)$ as the canonical embedding (because $\mathcal{T}(X)_1 = X$).

²Have a look at section "Notes".

Figure 1: Universal property from Sets to Magma

a) Let C be the class of sets and D be the class of magmas. The definition can be found there (just a set equipped with a binary operation, no condition required). A morphism between two magmas is a map compatible with the operations (definition as well in the following link)

https://en.wikipedia.org/wiki/Magma_(algebra)

Show that T(X) equipped with the operation "append" (i.e. the composition sending the pair (t_1, t_2) to the new tree $(root, t_1, t_2)$) is a magma.

b) Show that for all (set-theoretical) mapping $f : X \to M$, where M is a magma, it exists a unique morphism of magmas $\hat{f} \in \hom_{\mathcal{D}}(\mathcal{T}(X), M)$ such that "set-theoretically" $f = \hat{f} \circ j$. c) Compare what has been done with construction [3], Ch 1 §7.1. Proposition 1.

d) Read the following

https://mathoverflow.net/questions/39862/free-commutative-magma-over-a-set/\

3. Words

3.1. Free monoid: Warming

Let *X* be an alphabet (a set), $(X^*, conc, 1_{X^*})$ be the monoid of words built over *X* and set $j \hookrightarrow X^*$ be the canonical embedding.

1) a) Show that we have an analogue of Figure 1 for C (resp. D) the category of sets (resp. of monoids), i.e.

For all set-theoretical map $f : X \to M$, where $(M, *, 1_M)$ is a monoid, it exists a unique morphism of monoids $\hat{f} \in \hom_{\mathcal{D}}(\mathcal{T}(X), M)$ such that "set-theoretically" $f = \hat{f} \circ j$ (see Figure 2).

b) Compare what has been done with construction [3], Ch 1 §7.2 (where X^* is called Mo(X)) Proposition 3 and [6] Prop 1.1.1.

c) Read the following

https://en.wikipedia.org/wiki/Free_monoid

Figure 2: Universal property from Sets to Monoid

3.2. Lexicographic ordering and Lyndon words

3.2.1. Preamble on relations and graphs

In general, a *small* graph is a set $G \subset E \times F$ (*E*, *F* being sets). When E = F, we speak of an endograph (or simply a graph when the context is clear as below). The set of these graphs is $2^{E \times E}$.

On $2^{E \times E}$, there is a binary law called the composition of graphs, given by

$$R_1 \circ R_2 = \left\{ (x, z) | (\exists y \in E) \Big((x, y) \in R_1 \text{ and } (y, z) \in R_2 \Big) \right\}$$
(4)

we also need the diagonal $\Delta = \Delta_E = \{(x, x)\}_{x \in E}$.

1) Show that $(2^{E \times E}, \circ, \Delta)$ is a monoid.

2) As an application show that

$$\mathcal{M}_1 = \{ R \in 2^{E \times E} \mid \Delta \subset R \}$$

is a submonoid of $2^{E \times E}$. Write the multiplication table of \mathcal{M}_1 for $E = \{1, 2\}$. A relation $R \subset E \times E$ is said

- 1. *reflexive* if $\Delta \subset R$
- 2. *irreflexive* if $\Delta \cap R = \emptyset$
- 3. *transitive* if $R \circ R \subset R$
- 4. *symmetric* if $s(R) \subset R$ (where $s : E \times E \rightarrow E \times E$ is the canonicaal symmetry s(x,y) = (y,x)

A strict order relation (on *E*) is a relation which is *irreflexive* and *transitive*, an order relation is a relation which is *reflexive*, *antisymmetric* and *transitive*. The set of order relations (rep. strict order relations) will be called OR(E) (resp. SOR(E)).

3) Show that $R \to \widetilde{R} = R \cup \Delta$ is a bijection $SOR(E) \to OR(E)$.

4) Show that $\Delta_E \in OR(E)$ and that, if $R \in OR(E)$ (resp. $R \in SOR(E)$) then $s(R) \in OR(E)$ (resp. $s(R) \in SOR(E)$); s(R) is then called the oposite order (resp. strict order).

5) Use (4) to enumerate all strict order relations within $E = \{a, b\}$ (3 solutions) and within $E = \{a, b, c\}$.

3.2.2. Lexicographic ordering

Let X be an alphabet (i.e. a set, finite or infinite)³ and < a total ordering⁴ on X. We define the (strict) lexicographic ordering between words by

$$(LO) \qquad u \prec_{lex} v \iff \begin{cases} v = us \text{ with } s \neq 1_{X^*} & (LO_1) \\ u = pxs_1 v = pys_2 \text{ with } x, y \in X \text{ and } x < y & (LO_2) \end{cases}$$
(5)

 LO_1) expresses that *u* is a (strict) prefix of *v* and (LO_2) expresses that, at the first position where they differ the comparison is made at this position. As a convenient, we will note these relations, respectively, $<_1$, $<_2$.

3.2.3. Preparation one: The Finite case

1) We suppose that the alphabet X is finite and numbered $X = \{a_1, a_2, \dots, a_N\}$, let B = N + 1 and send every word $w = a_{i_1}a_{i_2}\cdots a_{i_k}$ to $j_B(w) = \sum_{1 \le s \le k} i_s \cdot B^{-s}$. In numeral notation this number is

$$j_B(w) = \overline{0.i_1i_2\cdots i_k}$$

a) Show that j_B is into, what is its image ?

b) Show that

$$u < v \Longleftrightarrow j_B(u) < j_B(v) \tag{6}$$

c) Deduce that \prec_{lex} is a (strict) total ordering on the words (i.e. X^*).

3.2.4. Two: The infinite (arbitrary) case

d) Prove the following lemma

Lemma 1. Let (S, R) be a set endowed with a binary relation R. We suppose that for every subset set $P = \{a, b, c\} \subset S$, it exists an injective map j to a totally ordered set (T, <) such that for all $x, y \in P$

$$R(x,y) \Longleftrightarrow j(x) < j(y) \tag{7}$$

Then R is a total (strict) order on S.

e) Apply lemma (7) and section (3.2.3) to show that \prec is a strict total order on X^* . **Hint:** *X* being still totally ordered by \prec , for any subset $P = \{u, v, w\} \subset X^*$ consider the finite alphabet $A = alph(u) \cup alph(v) \cup alph(w)$ (note that A can have any cardinality, but is finite nevertheless) $A = \{a_1 < a_2 < \cdots < a_N\} \subset X$ is totally ordered by the order inherited from X. Then, with B = #A + 1 construct $j_B : A^* \rightarrow [0, 1[$ and apply lemma (7) and section

³Its elements of *X* will be called letters.

⁴The possibility of constructing a total order on a set is linked to the system of axioms. In particular, have a look at [2] or https://en.wikipedia.org/wiki/Well-order. In combinatorics, we are in ZFC, so this is not a problem here.

(3.2.3).

The associated order (with eq.) will be noted \leq_{lex} or simply \leq when the context is clear.

The maps to numbers was just a probing tool and will no longer be used in the sequel. f) (Compatibility with left translations and cancellations) Prove that, for $u, v, w \in X^*$

$$v \prec w \iff uv \prec uw$$

a principle which can be abstracted as (with all words in X^*)

$$2 < 3 \iff 1 2 < 1 3 \tag{8}$$

g) Show that, if u < v and if u is not a prefix of v, then for all $s_1, s_2 \in X$, we have $us_1 < vs_2$. A principle which can be abstracted as (with all words in X^* , but remark that $u <_2 v$ implies $u, v \in X^+$)

$$1 \prec_2 2 \Longrightarrow 1 3 \prec_2 2 4 \tag{9}$$

h) Show that the result of (c) is not true in general (give a counterexample), even if $s_1 = s_2$, if we suppose only u < v (no compatibility on the right, in case LO_1). i) Show that

$$1 < 2 < 1 3 \implies 1 <_1 2 \text{ and } 2 = 1 4 \text{ with } 4 < 3$$
(10)

3.2.5. Preamble: Conjugacy classes and Lyndon words

For a word *w* the conjugacy class (with multiplicities) is the multiset⁵ $\{\{vu\}\}_{w=uv}$. For example, the conjugacy classes of *aabab* and *abab* are

 $CClass(aabab) = \{\{aabab, baaba, abaab, babaa, ababa\}\}; CClass(abab) = \{\{abab, baba, abab, baba\}\}$

A Lyndon word is a word which is the strict minimum (for \leq_{lex} , hence the alphabet must have been totally ordered) of its conjugacy class. In an equivalent way we set the definition

Definition 1. A word $w \in X^+$ is said Lyndon iff

$$w = ps \text{ with } p, s \in X^+ \Longrightarrow w \prec sp \tag{11}$$

Their set will be noted $\mathcal{Lyn}(X)$.

Remark 1. *i*) A factorization w = ps with $p, s \in X^+$ is called a proper factorization and, in this case p (resp. s) is a proper prefix (resp. proper suffix) of w. As letters have no proper factorization, we have $X \subset Lyn(X)$.

ii) For example CClass(abab) has no word in Lyn(X) and CClass(aabab) $\cap Lyn(X) = \{aabab\}.$

⁵Read https://en.wikipedia.org/wiki/Multiset. Here in order not to confuse with sets, we will note the multiset with double curly brackets, as in the french page https://fr.wikipedia.org/wiki/Multiensemble.

In order to give an equivalent criterium for a word to be Lyndon, we will need the following lemma

Lemma 2 ([6] Prop. 1.3.4. p8). Let $u, v, c \in X^+$ be related by the equation

$$uc = cv \tag{12}$$

then it exists $x, y \in X^+$, $t \in \mathbb{N}$ s.t. $u = xy, v = yx, c = (xy)^t x$.

We now have (physicists would say "We now have an equivalent definition")

Proposition 1. A word w is Lyndon iff it is less than its proper suffixes.

In other words

$$w \in \mathcal{L}yn(X) \iff [w = ps \text{ with } p, s \in X^+ \Longrightarrow w < s]$$
(13)

For the convenience of the reader, I reproduce here the proof here where I call here *criterium* the property

$$w = ps$$
 with $p, s \in X^+ \Longrightarrow w \prec s$.

Proof.

criterium $\implies w \in Lyn(X)$] If w = ps is a proper factorization of w, then, by the criterium w < s and, as w cannot be a prefix of s (because |w| > |s|) and then by question (c) above [principle (9)] w < sp.

 $w \in \mathcal{Lyn}(X) \Longrightarrow criterium$] Let us consider *s*, a proper suffix of *w*. We have then w = ps with $p, s \in X^+$, as $w \in \mathcal{Lyn}(X)$ we get w < sp.

Let us first establish that *s* cannot be a prefix of *w*. If it were so, we had ps = w = st and then, by Lemma (2), it exists $x, y \in X^+$, $t \in \mathbb{N}$ such that p = xy, t = yx, $s = (xy)^t x$, then w = ps < sp reads

$$(xy)^t xyx = xy(xy)^t x < s = (xy)^t xxy$$
(14)

by question (b) above [principle (8)], we can simplify and get yx < xy which have the same length |x| + |y|. Therefore, we cannot be in the case ($L0_1$) (yx cannot be a prefix of xy) then we can multiply on the right by arbitrary factors obtaining

$$(yx)^{t+1}x \prec (xy)^{t+1}x = w$$

but the first word $(yx)^{t+1}x$ is a conjugate of *w*, a contradiction.

3.2.6 Questions

a) Prove that, if $u, v \in \mathcal{L}yn(X)$ and u < v, then $uv \in \mathcal{L}yn(X)$ and u < uv < v.

For any word $|w| \ge 2$ we define $\sigma(w) = (u, v)$ such that w = uv and v is the smallest proper suffix of w.

b) With $\sigma(w) = (u, v)$, show that $v \in \mathcal{L}yn(X)$ and

$$w \in \mathcal{L}yn(X) \iff (u \in \mathcal{L}yn(X) \text{ and } u < v)$$
 (15)

Hint: For the hardest part ($w \in Lyn(X) \implies u \in Lyn(X)$), take a proper suffix of u, say s, if we had s < u (to disprove), show that s < u < uv < v < sv (give the reason of each inequality). Apply principle (10) to s < v < sv concluding that v = st with t < v and remember that $v \in Lyn(X)$.

c) In the case when $w \in \mathcal{Lyn}(X)^{\geq 2}$, $\sigma(w) = (u, v)$ and $|u| \geq 2$, set $\sigma(u) = (u_1, u_2)$, show that $u_2 \geq v$

4. Trials

The quick brown fox jumps over the lazy dog

5. Notes

N1) About equations of the second degree in a ring (here the ring is $\mathbb{C}[[y]]$). (that's why I asked to justify because, in a ring, Δ may have no root (look at y - 1 in the ring is $\mathbb{R}[[y]]$) or an infinity of such. For example in a \mathbb{C} -algebra, you can have two non-null and distinct elements e, f with

$$f^2 \neq 0$$
; $ef = fe = 0$; $e^2 = 0$ (16)

then f^2 admits as square roots, at least, the family of elements $(f + \lambda \cdot e)_{\lambda \in \mathbb{C}}$.

Xtra-exercises (notes)

Ex-N1) Give two 3×3 complex matrices which fulfill the relations(16). Ex-N2) Let *R* be a commutative ring where 2 has an inverse (which will be noted, as usual, 1/2). We consider the equation

$$X^2 + bX + c = 0 (17)$$

We set $\Delta = b^2 - 4c$.

a) Firstly, let us suppose that Δ has a square root which will be noted δ as in

https://en.wikipedia.org/wiki/Quadratic_equation

Show that equation (17) has a root *r* (**Hint**: Take $r = \frac{1}{2}(-b + \delta)$). b) Conversely, we suppose that (17) has a root, say *r*, show that

$$X^{2} + bX + c = (X - r)(X + r + b)$$
(18)

deduce that c = -r(r+b) and find a square root for Δ . c) Show that, if *R* has no zero divisors equation (17) has

• two roots if $\Delta \neq 0$ and is a square (i.e. has a square root δ)

- one root if $\Delta = 0$
- no root if Δ and is not a square

d) Application.

Let $R = \mathbb{Z}/3\mathbb{Z}$ (a field).

d1) What are the squares in *R* ? (two solutions)

d2) What are the quadratic equations ((17)) which have roots ? (9 possibilities out of which only a few have roots).

d3) Solve them and give their roots. e) Returning to the matrices of (Ex-N1), show that the equation $X^2 - f = 0$ has infinitely many solutions.

By the way, some references here

- [1] Jean Berstel and Dominique Perrin, *Theory of codes*, Pure and Applied Mathematics, **117**, Academic Press, Inc., New York, 1985
- [2] N. Bourbaki, Theory of sets, Springer-Verlag Berlin Heidelberg 2004
- [3] N. Bourbaki.– *Algebra*, Springer-Verlag Berlin and Heidelberg GmbH & Co. K; (2nd printing 1989)
- [4] Jean Dieudonné, Infinitesimal calculus, Houghton Mifflin (1971)
- [5] https://en.wikipedia.org/wiki/Holomorphic_functional_calculus
- [6] M. Lothaire.– *Combinatorics on words*, Cambridge University Press (1997)
- [7] Christophe Reutenauer, *Free Lie Algebras*, Université du Québec a Montréal, Clarendon Press, Oxford (1993)
- [8] Xavier Viennot, Factorisations des monoïdes libres, bascules et algèbres de Lie libres, Séminaire Dubreil : Algèbre, 25e année, 1971/72, Fasc. 2 : Journées sur les anneaux et les demi-groupes [1972. Paris], J5 | Numdam | MR 419649 | Zbl 0355.20059
- [9] Wikipedia: Binary tree.- https://en.wikipedia.org/wiki/Binary_tree