Post-Doc Training III: Trees, words and diagrams. (vers. 20-07-2020 10:49)

1. Introduction

To be done after interactions

2. Binary trees

In this first part, we deal with so-called *full binary trees*[1](#page-0-0) .

2.1. Definition

A binary tree *t* is

- Either an isolated node *t* = (the number of leaves *leaves*(*t*) is = 1), or
- The composition $t = (t_{left}, t_{right})$ of two previously defined trees.

in the second case, we have $leaves(t) = leaves(t_{left}) + leaves(t_{right})$ The set T of binary trees is more formally described by the following grammar, called *Gbtrees*

$$
\mathcal{T} = \bullet + \qquad \qquad \mathcal{T} \qquad \qquad \mathcal{T} \qquad (G_{btrees})
$$

As such, it comes graded by the number of leaves, we define

$$
\mathcal{T}_n = \{ t \in \mathcal{T} \mid leaves(t) = n \}
$$
 (1)

We have then, by definition, $T = \sqcup_{n \geq 1} T_n$. Below the set \mathcal{T}_4

¹There is a lot of species of binary trees: BST, unordered, complete, almost complete, infinite complete, have a look, at [\[9\]](#page-8-0)

1) a) Give the number $c_n = #T_n$ for $n = 1 \cdots 5$. b) Using the grammar (*Gbtrees*), prove that

$$
c_1 = 1 \; ; \; c_n = \sum_{p+q=n} c_p \cdot c_q \tag{2}
$$

c) Set $T = \sum_{n \geq 1} c_n y^n$ and, using (G_{btrees}), show that, in $\mathbb{C}[[y]]$, we have

 $T = y + T^2$.

Solving this equation in **C**[[*y*]] (please justify *as much as possible* your computations[2](#page-1-0) , each step must be legal), prove that

$$
T = \frac{1 - \sqrt{1 - 4y}}{2}
$$
 (3)

d) Give the numbers $c_n = #T_n$ for $n = 1 \cdots 15$. Control the results in Sloane

https://oeis.org/

2) For a given set *X*, we built the set $\mathcal{T}(X)$ of binary trees with leaves in *X*, by the grammar

$$
\tau = \bullet + \qquad \qquad \nearrow \qquad \searrow \qquad \qquad (G_{btrees})
$$

and define the grading $T(X)_n$ as previously.

a) For a finite alphabet *X*, give the number $c_n(X)$ of trees with *n* leaves as a function of c_n and $\#X$.

b) (*X* is finite and $#X = k$. Give the generating series $T(X) = \sum_{n \geq 1} c_n(X) y^n$ as in [\(3\)](#page-1-1).

3) Application: Construction of the free magma over *X*.

For a given set *X* (finite or infinite), we define $j: X \rightarrow \mathcal{T}(X)$ as the canonical embedding (because $\mathcal{T}(X)_1 = X$).

²Have a look at section "Notes".

Figure 1: Universal property from Sets to Magma

a) Let C be the class of sets and D be the class of magmas. The definition can be found there (just a set equipped with a binary operation, no condition required). A morphism between two magmas is a map compatible with the operations (definition as well in the following link)

https://en.wikipedia.org/wiki/Magma_(algebra)

Show that $T(X)$ equipped with the operation "append" (i.e. the composition sending the pair (t_1, t_2) to the new tree $(root, t_1, t_2)$ is a magma.

b) Show that for all (set-theoretical) mapping $f : X \rightarrow M$, where *M* is a magma, it exists a unique morphism of magmas $\hat{f} \in \text{hom}_{\mathcal{D}}(\mathcal{T}(X), M)$ such that "set-theoretically" $f = \hat{f} \circ j$. c) Compare what has been done with construction [\[3\]](#page-8-1), Ch 1 §7.1. Proposition 1.

d) Read the following

https://mathoverflow.net/questions/39862/freeommutative-magma-over-a-set\\

3.1. Free monoid: Warming

Let *X* be an alphabet (a set), $(X^*, \text{conc}, 1_{X^*})$ be the monoid of words built over *X* and set $j \rightarrow X^*$ be the canonical embedding.

1) a) Show that we have an analogue of [Figure 1](#page-2-0) for C (resp. D) the category of sets (resp. of monoids), i.e.

For all set-theoretical map $f : X \rightarrow M$, where $(M, *, 1_M)$ is a monoid, it exists a unique morphism of monoids $\hat{f} \in \text{hom}_{\mathcal{D}}(\mathcal{T}(X), M)$ such that "set-theoretically" $f = \hat{f} \circ j$ (see [Figure 2\)](#page-3-0).

b) Compare what has been done with construction [\[3\]](#page-8-1), Ch 1 §7.2 (where *X*[∗] is called *Mo*(*X*)) Proposition 3 and [\[6\]](#page-8-2) Prop 1.1.1.

c) Read the following

https://en.wikipedia.org/wiki/Free_monoid

Figure 2: Universal property from Sets to Monoid

3.2. Lexicographic ordering and Lyndon words

3.2.1. Preamble on relations and graphs

In general, a *small* graph is a set $G \subset E \times F$ (*E*, *F* being sets). When $E = F$, we speak of an endograph (or simply a graph when the context is clear as below). The set of these graphs is $2^{E \times E}$.

On $2^{E\times E}$, there is a binary law called the compostion of graphs, given by

$$
R_1 \circ R_2 = \{(x, z) | (\exists y \in E) \big((x, y) \in R_1 \text{ and } (y, z) \in R_2 \big) \}
$$
 (4)

we also need the diagonal $\Delta = \Delta_E = \{(x, x)\}_{x \in E}$.

1) Show that $(2^{E \times E}, \circ, \Delta)$ is a monoid.

2) As an application show that

$$
\mathcal{M}_1=\big\{R\in 2^{E\times E}\ \big|\ \Delta\subset R\big\}
$$

is a submonoid of $2^{E \times E}$. Write the multiplication table of \mathcal{M}_1 for $E = \{1, 2\}$. A relation *R* ⊂ *E* × *E* is said

- 1. *reflexive* if ∆ ⊂ *R*
- 2. *irreflexive* if $\Delta \cap R = \emptyset$
- 3. *transitive* if $R \circ R \subset R$
- 4. *symmetric* if *s*(*R*) ⊂ *R* (where *s* ∶ *E* × *E* → *E* × *E* is the canonicaal symmetry $s(x, y) = (y, x)$

A *strict order relation* (on *E*) is a relation which is *irreflexive* and *transitive*, an *order relation* is a relation which is *reflexive*, *antisymmetric* and *transitive*. The set of order relations (rep. strict order relations) will be called *OR*(*E*) (resp. *SOR*(*E*)).

3) Show that $R \to \widetilde{R} = R \cup \Delta$ is a bijection $SOR(E) \to OR(E)$.

4) Show that Δ ^E ∈ *OR*(*E*) and that, if *R* ∈ *OR*(*E*) (resp. *R* ∈ *SOR*(*E*)) then *s*(*R*) ∈ *OR*(*E*) (resp. *s*(*R*) \in *SOR*(*E*)); *s*(*R*) is then called the oposite order (resp. strict order).

5) Use (4) to enumerate all strict order relations within $E = \{a, b\}$ (3 solutions) and within $E = \{a, b, c\}.$

3.2.2. Lexicographic ordering

Let *X* be an alphabet (i.e. a set, finite or infinite)^{[3](#page-4-0)} and < a total ordering^{[4](#page-4-1)} on *X*. We define the (strict) lexicographic ordering between words by

$$
(LO) \t u \prec_{lex} v \iff \begin{cases} \t v = us \text{ with } s \neq 1_{X^*} & (LO_1) \\ u = pxs_1 \ v = pys_2 \text{ with } x, y \in X \text{ and } x < y & (LO_2) \end{cases} \tag{5}
$$

 LO_1) expresses that *u* is a (strict) prefix of *v* and (LO_2) expresses that, at the first position where they differ the comparison is made at this position. As a convenient, we will note these relations, respectively, \prec_1 , \prec_2 .

3.2.3. Preparation one: The Finite ase

1) We suppose that the alphabet *X* is finite and numbered *X* = { a_1 , a_2 ,…, a_N }, let $B = N + 1$ and send every word $w = a_{i_1} a_{i_2} \cdots a_{i_k}$ to $j_B(w) = \sum_{1 \le s \le k} i_s \cdot B^{-s}$. In numeral notation this number is *B*

$$
j_B(w)=\overline{0.i_1i_2\cdots i_k}
$$

a) Show that j_B is into, what is its image ?

b) Show that

$$
u < v \Longleftrightarrow j_B(u) < j_B(v)
$$
 (6)

c) Deduce that [≺]*lex* is a (strict) total ordering on the words (i.e. *^X*∗).

3.2.4. Two: The infinite (arbitrary) case

d) Prove the following lemma

Lemma 1. *Let* (*S*, *R*) *be a set endowed with a binary relation R. We suppose that for every subset set* $P = \{a, b, c\} \subset S$, *it exists an injective map j to a totally ordered set* $(T, <)$ *such that for all* $x, y \in P$

$$
R(x, y) \Longleftrightarrow j(x) < j(y) \tag{7}
$$

Then R is a total (strict) order on S.

e) Apply lemma [\(7\)](#page-4-2) and section [\(3.2.3\)](#page-4-3) to show that [≺] is a strict total order on *^X*∗. **Hint:** *X* being still totally ordered by <, for any subset $P = \{u, v, w\} \subset X^*$ consider the finite *alphabet* $A = \text{alph}(u) ∪ \text{alph}(v) ∪ \text{alph}(w)$ *(note that* A *can have any cardinality, but is finite nevertheless)* $A = \{a_1 < a_2 < \cdots < a_N\} \subset X$ *is totally ordered by the order inherited from X. Then, with B* = $#A + 1$ *construct* $j_B : A^* \to [0,1]$ *and apply lemma* [\(7\)](#page-4-2) *and section*

³ Its elements of *X* will be called letters.

⁴The possibility of constructing a total order on a set is linked to the system of axioms. In particular, have a look at [\[2\]](#page-8-3) or <https://en.wikipedia.org/wiki/Well-order>. In combinatorics, we are in ZFC, so this is not a problem here.

[\(3.2.3\)](#page-4-3)*.*

The associated order (with eq.) will be noted \leq_{lex} or simply \leq when the context is clear.

The maps to numbers was just a probing tool and will no longer be used in the sequel.

f) (Compatibility with left translations and cancellations) Prove that, for *u*, *v*, *w* ∈ *X*[∗]

$$
v < w \Longleftrightarrow uv < uw
$$

a principle which can be abstracted as (with all words in *X*∗)

$$
\boxed{2} < \boxed{3} \Longleftrightarrow \boxed{1} \boxed{2} < \boxed{1} \boxed{3} \tag{8}
$$

g) Show that, if $u \lt v$ and if u is not a prefix of v , then for all $s_1, s_2 \in X$, we have $u s_1 < v s_2$. A principle which can be abstracted as (with all words in X^* , but remark that $u \prec_2 v$ implies $u, v \in X^+$)

$$
\boxed{1} \prec_2 \boxed{2} \Longrightarrow \boxed{1} \boxed{3} \prec_2 \boxed{2} \boxed{4} \tag{9}
$$

h) Show that the result of (c) is not true in general (give a counterexample), even if *s*₁ = *s*₂, if we suppose only *u* < *v* (no compatibility on the right, in case *LO*₁). i) Show that

$$
\boxed{1} < \boxed{2} < \boxed{1} & \boxed{3} \implies \boxed{1} <_1 \boxed{2} \text{ and } \boxed{2} = \boxed{1} & \boxed{4} \text{ with } \boxed{4} < \boxed{3} \tag{10}
$$

3.2.5. Preamble: Conjugacy classes and Lyndon words

For a word *w* the conjugacy class (with multiplicities) is the multiset^{[5](#page-5-0)} $\{\{vu\}\}_{w=uv}$. For example, the conjugacy classes of *aabab* and *abab* are

CClass(*aabab*) = {{*aabab*, *baaba*, *abaab*, *babaa*, *ababa*}} ; *CClass*(*abab*) = {{*abab*, *baba*, *abab*, *baba*}}

A Lyndon word is a word which is the strict minimum (for \leq_{lex} , hence the alphabet must have been totally ordered) of its conjugacy class. In an equivalent way we set the definition

Definition 1. *A word w* \in *X*⁺ *is said* Lyndon *iff*

$$
w = ps \ with \ p, s \in X^+ \Longrightarrow w \prec sp \tag{11}
$$

Their set will be noted $\mathcal{L}yn(X)$ *.*

Remark 1. *i)* A factorization $w = ps$ with $p, s \in X^+$ is called a proper factorization and, in *this case p (resp. s) is a proper prefix (resp. proper suffix) of w. As letters have no proper factorization, we have* $X \subset \mathcal{L}yn(X)$.

ii) For example CClass(*abab*) *has no word in* L*yn*(*X*) *and* $CClass(aabab) \cap Lyn(X) = \{aabab\}.$

⁵Read <https://en.wikipedia.org/wiki/Multiset>. Here in order not to confuse with sets, we will note the multiset with double curly brackets, as in the french page <https://fr.wikipedia.org/wiki/Multiensemble>.

In order to give an equivalent criterium for a word to be Lyndon, we will need the following lemma

Lemma 2 ([\[6\]](#page-8-2) Prop. 1.3.4. p8). Let $u, v, c \in X^+$ be related by the equation

$$
uc = cv \tag{12}
$$

then it exists $x, y \in X^+$, $t \in \mathbb{N}$ *s.t.* $u = xy, v = yx, c = (xy)^t x$.

We now have (physicists would say "We now have an equivalent definition")

Proposition 1. *A word w is Lyndon iff it is less than its proper suffixes.*

In other words

$$
w \in \mathcal{L}yn(X) \Longleftrightarrow [w = ps \text{ with } p, s \in X^+ \Longrightarrow w < s] \tag{13}
$$

For the convenience of the reader, I reproduce here the proof here where I call here *criterium* the property

$$
w = ps
$$
 with $p, s \in X^+ \Longrightarrow w \prec s$.

Proof.

criterium $\implies w \in \mathcal{L}yn(X)$ If $w = ps$ is a proper factorization of w, then, by the criterium $w \lt s$ and, as w cannot be a prefix of s (because $|w| > |s|$) and then by question (c) above [principle [\(9\)](#page-5-1)] $w \lt sp$.

 $w \in \mathcal{L}yn(X) \Longrightarrow$ *criterium*] Let us consider *s*, a proper suffix of *w*. We have then $w = p\tilde{s}$ with $p, s \in X^+$, as $w \in \mathcal{L}yn(X)$ we get $w \prec sp$.

Let us first establish that *s* cannot be a prefix of *w*. If it were so, we had $ps = w = st$ and then, by Lemma [\(2\)](#page-6-0), it exists $x, y \in \overline{X}^+$, $t \in \mathbb{N}$ such that $p = xy$, $t = yx$, $s = (xy)^tx$, then $w = ps < sp$ reads

$$
(xy)^t xyz = xy(xy)^t x \lt s = (xy)^t xxy \tag{14}
$$

by question (b) above [principle [\(8\)](#page-5-2)], we can simplify and get *yx* ≺ *xy* which have the same length $|x| + |y|$. Therefore, we cannot be in the case $(L0₁)$ (yx cannot be a prefix of *xy*) then we can multiply on the right by arbitrary factors obtaining

$$
(yx)^{t+1}x \prec (xy)^{t+1}x = w
$$

but the first word $(yx)^{t+1}x$ is a conjugate of w , a contradiction.

3.2.6. Questions

a) Prove that, if $u, v \in \mathcal{L}yn(X)$ and $u \prec v$, then $uv \in \mathcal{L}yn(X)$ and $u \prec uv \prec v$.

For any word $|w| \ge 2$ we define $\sigma(w) = (u, v)$ such that $w = uv$ and v is the smallest proper suffix of *w*.

b) With $\sigma(w) = (u, v)$, show that $v \in \mathcal{L}yn(X)$ and

$$
w \in \mathcal{L}yn(X) \Longleftrightarrow (u \in \mathcal{L}yn(X) \text{ and } u < v) \tag{15}
$$

 \Box

Hint: *For the hardest part* ($w \in \mathcal{L}yn(X) \Longrightarrow u \in \mathcal{L}yn(X)$), take a proper suffix of u, say s, if *we had s* < *u (to disprove), show that s* < *u* < *uv* < *v* < *sv (give the reason of each inequality). Apply principle* [\(10\)](#page-5-3) *to s* < *v* < *sv concluding that v* = *st with t* < *v and remember that* $v \in \mathcal{L}$ *yn*(*X*).

c) In the case when $w \in \mathcal{L}yn(X)^{\geq 2}$, $\sigma(w) = (u, v)$ and $|u| \geq 2$, set $\sigma(u) = (u_1, u_2)$, show that $u_2 \geq v$

$\overline{4}$ **Trials**

The quick $\left\| \right\|$ brown $\left\| \right\|$ fox $\left\| \right\|$ jumps over the lazy dog

Notes $5₁$

N1) About equations of the second degree in a ring (here the ring is **C**[[*y*]]). (that's why I asked to justify because, in a ring, ∆ may have no root (look at *y* − 1 in the ring is **R**[[*y*]]) or an infinity of such. For example in a **C**-algebra, you can have two non-null and distinct elements *e*, *f* with

$$
f^2 \neq 0 \; ; \; ef = fe = 0 \; ; \; e^2 = 0 \tag{16}
$$

then f^2 admits as square roots, at least, the family of elements $(f + \lambda \cdot e)_{\lambda \in \mathbb{C}}$.

Xtra-exer
ises (notes)

Ex-N1) Give two 3×3 complex matrices which fulfill the relations[\(16\)](#page-7-0). Ex-N2) Let *R* be a commutative ring where 2 has an inverse (which will be noted, as usual, 1/2). We consider the equation

$$
X^2 + bX + c = 0 \tag{17}
$$

We set $\Delta = b^2 - 4c$.

a) Firstly, let us suppose that ∆ has a square root which will be noted *δ* as in

https://en.wikipedia.org/wiki/Quadratic_equation

Show that equation [\(17\)](#page-7-1) has a root *r* (**Hint**: Take $r = \frac{1}{2}$ $\frac{1}{2}(-b+\delta)).$ b) Conversely, we suppose that [\(17\)](#page-7-1) has a root, say *r*, show that

$$
X^2 + bX + c = (X - r)(X + r + b)
$$
 (18)

deduce that $c = -r(r + b)$ and find a square root for Δ . c) Show that, if *R* has no zero divisors equation [\(17\)](#page-7-1) has

• two roots if $\Delta \neq 0$ and is a square (i.e. has a square root δ)

- one root if $\Delta = 0$
- no root if Δ and is not a square

d) Application.

Let $R = \mathbb{Z}/3\mathbb{Z}$ (a field).

d1) What are the squares in *R* ? (two solutions)

d2) What are the quadratic equations ([\(17\)](#page-7-1)) which have roots ? (9 possibilities out of which only a few have roots).

d3) Solve them and give their roots. e) Returning to the matrices of (Ex-N1), show that the equation $X^2 - f = 0$ has infinitely many solutions.

By the way, some references here

- [1] Jean Berstel and Dominique Perrin, *Theory of codes*, Pure and Applied Mathematics, **117**, Academic Press, Inc., New York, 1985
- [2] N. Bourbaki, *Theory of sets*, Springer-Verlag Berlin Heidelberg 2004
- [3] N. Bourbaki.– *Algebra*, Springer-Verlag Berlin and Heidelberg GmbH & Co. K; (2nd printing 1989)
- [4] Jean Dieudonné, *Infinitesimal calculus*, Houghton Mifflin (1971)
- [5] https://en.wikipedia.org/wiki/Holomorphic_functional_calculus
- [6] M. Lothaire.– *Combinatorics on words*, Cambridge University Press (1997)
- [7] Christophe Reutenauer, *Free Lie Algebras*, Université du Québec a Montréal, Clarendon Press, Oxford (1993)
- [8] Xavier Viennot, *Factorisations des monoïdes libres, bascules et algèbres de Lie libres*, Séminaire Dubreil : Algèbre, 25e année, 1971/72, Fasc. 2 : Journées sur les anneaux et les demi-groupes [1972. Paris], **J5** | Numdam | MR 419649 | Zbl 0355.20059
- [9] Wikipedia: Binary tree.– https://en.wikipedia.org/wiki/Binary_tree