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1. Introdution

To be done after interactions

2. Binary trees

In this first part, we deal with so-called full binary trees1.

2.1. De�nition

A binary tree t is

- Either an isolated node t = ● (the number of leaves leaves(t) is = 1), or

- The composition t = (tle f t, tright) of two previously defined trees.

in the second case, we have leaves(t) = leaves(tle f t) + leaves(tright)
The set T of binary trees is more formally described by the following grammar,
called Gbtrees

●
T = ● + Ò Ó (Gbtrees)

T T

As such, it comes graded by the number of leaves, we define

Tn = {t ∈ T ∣ leaves(t) = n} (1)

We have then, by definition, T = ⊔n≥1Tn.
Below the set T4

1There is a lot of species of binary trees: BST, unordered, complete, almost complete, infinite com-
plete, have a look, at [9]
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1) a) Give the number cn = #Tn for n = 1⋯5.
b) Using the grammar (Gbtrees), prove that

c1 = 1 ; cn = ∑
p+q=n

cp ⋅ cq (2)

c) Set T = ∑n≥1 cnyn and, using (Gbtrees), show that, in C[[y]], we have

T = y + T2 .

Solving this equation in C[[y]] (please justify as much as possible your computations2,
each step must be legal), prove that

T =
1−
√

1− 4y

2
(3)

d) Give the numbers cn = #Tn for n = 1⋯15. Control the results in Sloane

https://oeis.org/

2) For a given set X, we built the set T (X) of binary trees with leaves in X, by the
grammar

●

T = ● + Ò Ó (Gbtrees)
T (X) T (X)

and define the grading T (X)n as previously.
a) For a finite alphabet X, give the number cn(X) of trees with n leaves as a function
of cn and #X.
b) (X is finite and #X = k. Give the generating series T(X) = ∑n≥1 cn(X)yn as in (3).

3) Application: Construction of the free magma over X.

For a given set X (finite or infinite), we define j ∶ X ↪ T (X) as the canonical embed-
ding (because T (X)1 = X).

2Have a look at section “Notes”.
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C ∣ D

X M

T (X)
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j f̂

Figure 1: Universal property from Sets to Magma

a) Let C be the class of sets and D be the class of magmas. The definition can be
found there (just a set equipped with a binary operation, no condition required). A
morphism between two magmas is a map compatible with the operations (definition
as well in the following link)

https://en.wikipedia.org/wiki/Magma_(algebra)

Show that T(X) equipped with the operation “append” (i.e. the composition send-
ing the pair (t1, t2) to the new tree (root, t1 , t2)) is a magma.
b) Show that for all (set-theoretical) mapping f ∶ X → M, where M is a magma, it ex-

ists a unique morphism of magmas f̂ ∈ homD(T (X), M) such that “set-theoretically”

f = f̂ ○ j. c) Compare what has been done with construction [3], Ch 1 §7.1. Proposi-
tion 1.
d) Read the following

https://mathoverflow.net/questions/39862/free-ommutative-magma-over-a-set\\

3. Words

3.1. Free monoid: Warming

Let X be an alphabet (a set), (X∗, conc, 1X∗) be the monoid of words built over X and
set j ↪ X∗ be the canonical embedding.
1) a) Show that we have an analogue of Figure 1 for C (resp. D) the category of sets
(resp. of monoids), i.e.
For all set-theoretical map f ∶ X → M, where (M,∗, 1M) is a monoid, it exists

a unique morphism of monoids f̂ ∈ homD(T (X), M) such that “set-theoretically”

f = f̂ ○ j (see Figure 2).
b) Compare what has been done with construction [3], Ch 1 §7.2 (where X∗ is called
Mo(X)) Proposition 3 and [6] Prop 1.1.1.
c) Read the following

https://en.wikipedia.org/wiki/Free_monoid
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Sets ∣ Monoids
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Figure 2: Universal property from Sets to Monoid

3.2. Lexiographi ordering and Lyndon words

3.2.1. Preamble on relations and graphs

In general, a small graph is a set G ⊂ E × F (E, F being sets). When E = F, we speak
of an endograph (or simply a graph when the context is clear as below). The set of
these graphs is 2E×E.
On 2E×E, there is a binary law called the compostion of graphs, given by

R1 ○R2 = {(x, z)∣(∃y ∈ E)((x, y) ∈ R1 and (y, z) ∈ R2)} (4)

we also need the diagonal ∆ = ∆E = {(x, x)}x∈E.
1) Show that (2E×E, ○, ∆) is a monoid.
2) As an application show that

M1 = {R ∈ 2E×E ∣ ∆ ⊂ R}
is a submonoid of 2E×E.
Write the multiplication table ofM1 for E = {1, 2}.
A relation R ⊂ E × E is said

1. reflexive if ∆ ⊂ R

2. irreflexive if ∆ ∩R = ∅

3. transitive if R ○ R ⊂ R

4. symmetric if s(R) ⊂ R (where s ∶ E × E → E × E is the canonicaal symmetry
s(x, y) = (y, x)

A strict order relation (on E) is a relation which is irreflexive and transitive, an order
relation is a relation which is reflexive, antisymmetric and transitive. The set of order
relations (rep. strict order relations) will be called OR(E) (resp. SOR(E)).
3) Show that R → R̃ = R∪∆ is a bijection SOR(E) →OR(E).
4) Show that ∆E ∈ OR(E) and that, if R ∈ OR(E) (resp. R ∈ SOR(E)) then s(R) ∈
OR(E) (resp. s(R) ∈ SOR(E)); s(R) is then called the oposite order (resp. strict
order).
5) Use (4) to enumerate all strict order relations within E = {a, b} (3 solutions) and
within E = {a, b, c}.
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3.2.2. Lexiographi ordering

Let X be an alphabet (i.e. a set, finite or infinite)3 and < a total ordering4 on X.
We define the (strict) lexicographic ordering between words by

(LO) u ≺lex v ⇐⇒ { v = us with s /= 1X∗ (LO1)
u = pxs1 v = pys2 with x, y ∈ X and x < y (LO2) (5)

LO1) expresses that u is a (strict) prefix of v and (LO2) expresses that, at the first
position where they differ the comparison is made at this position. As a convenient,
we will note these relations, respectively, ≺1, ≺2.

3.2.3. Preparation one: The Finite ase

1) We suppose that the alphabet X is finite and numbered X = {a1, a2,⋯, aN}, let
B = N + 1 and send every word w = ai1 ai2⋯aik

to jB(w) = ∑1≤s≤k is ⋅ B−s. In numeral
notation this number is

jB(w) = 0.i1i2⋯ik
B

a) Show that jB is into, what is its image ?
b) Show that

u ≺ v⇐⇒ jB(u) < jB(v) (6)

c) Deduce that ≺lex is a (strict) total ordering on the words (i.e. X∗).

3.2.4. Two: The in�nite (arbitrary) ase

d) Prove the following lemma

Lemma 1. Let (S, R) be a set endowed with a binary relation R.
We suppose that for every subset set P = {a, b, c} ⊂ S, it exists an injective map j to a totally
ordered set (T,<) such that for all x, y ∈ P

R(x, y)⇐⇒ j(x) < j(y) (7)

Then R is a total (strict) order on S.

e) Apply lemma (7) and section (3.2.3) to show that ≺ is a strict total order on X∗.
Hint: X being still totally ordered by <, for any subset P = {u, v, w} ⊂ X∗ consider the finite
alphabet A = alph(u) ∪ alph(v) ∪ alph(w) (note that A can have any cardinality, but is
finite nevertheless) A = {a1 < a2 < ⋯ < aN} ⊂ X is totally ordered by the order inherited
from X. Then, with B = #A + 1 construct jB ∶ A∗ → [0, 1[ and apply lemma (7) and section

3Its elements of X will be called letters.
4The possibility of constructing a total order on a set is linked to the system of axioms. In particular,

have a look at [2] or https://en.wikipedia.org/wiki/Well-order. In combinatorics, we are in
ZFC, so this is not a problem here.
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(3.2.3).
The associated order (with eq.) will be noted ⪯lex or simply ⪯ when the context is
clear.
The maps to numbers was just a probing tool and will no longer be used in the sequel.
f) (Compatibility with left translations and cancellations) Prove that, for u, v, w ∈ X∗

v ≺ w⇐⇒ uv ≺ uw

a principle which can be abstracted as (with all words in X∗)

2 ≺ 3 ⇐⇒ 1 2 ≺ 1 3 (8)

g) Show that, if u ≺ v and if u is not a prefix of v, then for all s1, s2 ∈ X, we have
us1 ≺ vs2. A principle which can be abstracted as (with all words in X∗, but remark
that u ≺2 v implies u, v ∈ X+)

1 ≺2 2 Ô⇒ 1 3 ≺2 2 4 (9)

h) Show that the result of (c) is not true in general (give a counterexample), even if
s1 = s2, if we suppose only u ≺ v (no compatibility on the right, in case LO1).
i) Show that

1 ≺ 2 ≺ 1 3 Ô⇒ 1 ≺1 2 and 2 = 1 4 with 4 ≺ 3 (10)

3.2.5. Preamble: Conjugay lasses and Lyndon words

For a word w the conjugacy class (with multiplicities) is the multiset5 {{vu}}w=uv.
For example, the conjugacy classes of aabab and abab are

CClass(aabab) = {{aabab, baaba, abaab, babaa, ababa}} ; CClass(abab) = {{abab, baba, abab, baba}}
A Lyndon word is a word which is the strict minimum (for ⪯lex, hence the alphabet
must have been totally ordered) of its conjugacy class. In an equivalent way we set
the definition

Definition 1. A word w ∈ X+ is said Lyndon iff

w = ps with p, s ∈ X+ Ô⇒ w ≺ sp (11)

Their set will be noted Lyn(X).
Remark 1. i) A factorization w = ps with p, s ∈ X+ is called a proper fatorization and, in
this case p (resp. s) is a proper pre�x (resp. proper su�x) of w. As letters have no proper
factorization, we have X ⊂ Lyn(X).
ii) For example CClass(abab) has no word in Lyn(X) and
CClass(aabab) ∩Lyn(X) = {aabab}.

5Read https://en.wikipedia.org/wiki/Multiset. Here in order not to confuse with
sets, we will note the multiset with double curly brackets, as in the french page
https://fr.wikipedia.org/wiki/Multiensemble.
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In order to give an equivalent criterium for a word to be Lyndon, we will need the
following lemma

Lemma 2 ([6] Prop. 1.3.4. p8). Let u, v, c ∈ X+ be related by the equation

uc = cv (12)

then it exists x, y ∈ X+, t ∈N s.t. u = xy, v = yx, c = (xy)tx.

We now have (physicists would say “We now have an equivalent definition”)

Proposition 1. A word w is Lyndon iff it is less than its proper suffixes.

In other words

w ∈ Lyn(X)⇐⇒ [w = ps with p, s ∈ X+ Ô⇒ w ≺ s] (13)

For the convenience of the reader, I reproduce here the proof here where I call here
criterium the property

w = ps with p, s ∈ X+ Ô⇒ w ≺ s .

Proof.
criterium Ô⇒ w ∈ Lyn(X)] If w = ps is a proper factorization of w, then, by the
criterium w ≺ s and, as w cannot be a prefix of s (because ∣w∣ > ∣s∣) and then by
question (c) above [principle (9)] w ≺ sp.
w ∈ Lyn(X) Ô⇒ criterium] Let us consider s, a proper suffix of w. We have then
w = ps with p, s ∈ X+, as w ∈ Lyn(X) we get w ≺ sp.
Let us first establish that s cannot be a prefix of w. If it were so, we had ps = w = st
and then, by Lemma (2), it exists x, y ∈ X+, t ∈N such that p = xy, t = yx, s = (xy)tx,
then w = ps ≺ sp reads

(xy)txyx = xy(xy)tx ≺ s = (xy)txxy (14)

by question (b) above [principle (8)], we can simplify and get yx ≺ xy which have the
same length ∣x∣+ ∣y∣. Therefore, we cannot be in the case (L01) (yx cannot be a prefix
of xy) then we can multiply on the right by arbitrary factors obtaining

(yx)t+1x ≺ (xy)t+1x = w

but the first word (yx)t+1x is a conjugate of w, a contradiction.

3.2.6. Questions

a) Prove that, if u, v ∈ Lyn(X) and u ≺ v, then uv ∈ Lyn(X) and u ≺ uv ≺ v.

For any word ∣w∣ ≥ 2 we define σ(w) = (u, v) such that w = uv and v is the smallest
proper suffix of w.
b) With σ(w) = (u, v), show that v ∈ Lyn(X) and

w ∈ Lyn(X)⇐⇒ (u ∈ Lyn(X) and u < v) (15)
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Hint: For the hardest part (w ∈ Lyn(X)Ô⇒ u ∈ Lyn(X)), take a proper suffix of u, say s, if
we had s < u (to disprove), show that s < u < uv < v < sv (give the reason of each inequality).
Apply principle (10) to s < v < sv concluding that v = st with t < v and remember that
v ∈ Lyn(X).
c) In the case when w ∈ Lyn(X)≥2, σ(w) = (u, v) and ∣u∣ ≥ 2, set σ(u) = (u1, u2), show
that u2 ⪰ v

4. Trials

The quick brown fox jumps over the lazy dog .

5. Notes

N1) About equations of the second degree in a ring (here the ring is C[[y]]).
(that’s why I asked to justify because, in a ring, ∆ may have no root (look at y − 1 in
the ring is R[[y]]) or an infinity of such. For example in a C-algebra, you can have
two non-null and distinct elements e, f with

f 2 /= 0 ; e f = f e = 0 ; e2 = 0 (16)

then f 2 admits as square roots, at least, the family of elements ( f +λ ⋅ e)λ∈C.

Xtra-exerises (notes)

Ex-N1) Give two 3× 3 complex matrices which fulfill the relations(16).
Ex-N2) Let R be a commutative ring where 2 has an inverse (which will be noted, as
usual, 1/2). We consider the equation

X2
+ bX + c = 0 (17)

We set ∆ = b2 − 4c.
a) Firstly, let us suppose that ∆ has a square root which will be noted δ as in

https://en.wikipedia.org/wiki/Quadrati_equation

Show that equation (17) has a root r (Hint: Take r = 1
2(−b + δ)).

b) Conversely, we suppose that (17) has a root, say r, show that

X2
+ bX + c = (X − r)(X + r + b) (18)

deduce that c = −r(r + b) and find a square root for ∆.
c) Show that, if R has no zero divisors equation (17) has

• two roots if ∆ /= 0 and is a square (i.e. has a square root δ)
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• one root if ∆ = 0

• no root if ∆ and is not a square

d) Application.

Let R =Z /3Z (a field).
d1) What are the squares in R ? (two solutions)
d2) What are the quadratic equations ((17)) which have roots ? (9 possibilities out of
which only a few have roots).
d3) Solve them and give their roots. e) Returning to the matrices of (Ex-N1), show
that the equation X2 − f = 0 has infinitely many solutions.

By the way, some referenes here
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