
Post-Do
 Training IV: Universal problems

(Linear and algebrai
 dependen
es, Equivalen
e

relations, Lo
alization)

1. Introdu
tion

https://en.wikipedia.org/wiki/Universal_property

If someone wants to know “where all this goes”, one can read [2] IV §3 which is
less categorical but is a good preparation to categories and, of course, our papers.
Today, we will deal with some kinds of universal problems i.e. factorization of
arrows, linked with our current research i.e. Linear and algebraic independences,
Equivalence relations, Localization.

1.1. Ex1. � Linear independen
e.

We will consider k, a field which will serve as “rings of coefficients” (and, in fact, all
what will be said and seen there holds true for k being a ring and, therefore, within
the category of modules).
Let X be a set1, the vector space kX is the set of all functions (i.e. families (αx)x∈X )
from X → k. The structure of k-vector space is given as usual, but we recall it here

1. Addition: For all (alphax)x∈X , (βx)x∈X ∈ kX

(alphax)x∈X + (βx)x∈X ∶= (αx + βx)x∈X (1)

2. Multiplication (external): For all λ ∈ k and (alphax)x∈X ∈ kX

λ ⋅ (alphax)x∈X ∶= (λ.αx)x∈X (2)

The support of a family (alphax)x∈X ∈ kX is given by

supp((alphax)x∈X ) ∶= {x ∈ X ∣αx /= 0} (3)

a) We define k(X) as the set of finitely supported families of kX . Prove that k(X) is a
vector subspace of kX and make precise the embedding j1 ∶ X ↪ k(X)

b) Let V be a k-vector space and f ∶ X → V be any set-theoretical2 map. Show that

there exists a unique linear mapping f̂ ∶ k(X) → V such that the following triangle
Fig. 1 commutes.
c) In case X ⊂ V and f is the canonical embedding, show that

1. X is k-free iff f̂ is into

2. X is k-generating iff f̂ is onto

3. X is a basis of V iff f̂ is one-to-one
1Think of an alphabet, finite (like X) or infinite (like Y) or, indeed, any set.
2 Do not forget that X is only a set with no particular structure.
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Figure 1: Universal property from Sets to k-Vect

1.2. Ex2. � Algebrai
 independen
e

This time, instead of k-vector spaces, we will deal with commutative k-AAU3.

Let A be a commutative k-AAU. For fixed X , we consider the algebra of commuta-
tive polynomials k[X ].
a) For α ∈ N(X) explain what is the monomial X α (multiindex notation) and detail
the multiplicative law in k[X ] (i.e., what is the value of X α.X β ?) and make precise
the embedding j2 ∶ X ↪ k[X ].
b) Let A be a commutative k-AAU and f ∶ X → A be any set-theoretical map.

Show that there exists a unique morphism of commutative k-AAU f̂ ∶ k[X ] → A
such that the following triangle Fig. 2 commutes.
Hint: Use the fact that (X α)α∈N(X) is a basis of k[X ].
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Figure 2: Universal property from Sets to k-CAAU

c) (Definitions here, nothing to prove) In a similar way that in case of linear inde-
pendence (see section 1.1 c.), when X ⊂⊂ A and f is the canonical embedding, we
say that

1. X is algebraically free iff f̂ is into

2. X is algebraically generating subset iff f̂ is onto

3. X is a transcendence basis (formerly called algebraic basis) of A iff f̂ is one-to-
one

Application 1. —
d1) Let us suppose k to be of characteristic zero (hence Q ↪ k) and take
A = (k⟨X ⟩, ⊔⊔ , 1X ∗).
Using the duality between (Pw)w∈X ∗ and (Sw)w∈X ∗ , show that (Sl)l∈Lyn(X) is an alge-
braic basis of A. Can we deduce that (l)l∈Lyn(X) is an algebraic basis of A ? How ?

3Associative Algebra with Unit.
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(Radford’s theorem).
d2) Show that, in case k is of characteristic p (a prime number), the result does not
hold (Hint: For a ∈ X , ap is not in the shuffle algebra generated by the Lyndon
words.). Prove that the family (l)l∈Lyn(X) remains algebraically free (hard).

Application 2. — Let S be the sphere in R3 and x(M), y(M), z(M) be the three co-
ordinates functions S → R (to a point M ∈ S associates its coordinates). The ambiant
algebra is that of functions S →R with the ordinary pointwise product (i.e. A = RS).
Show that X1 = {x(M), y(M)} ⊂ A is algebraically free, but not
X2 = {x(M), y(M), z(M)} ⊂ A.
Application 3 (Ex 1-2). — What is a free singleton ?
A3-1) In the context of Ex 1 and with x ∈ V, a vector space, prove

{x} is linearly k-free ⇐⇒ x /= 0V

A3-2) In the context of Ex 2 and with x ∈ A, a k-CAAU, prove

{x} is algebraically k-free ⇐⇒ (∀P ∈ k[t])(P(x) = 0Ô⇒ P = 0k[t])

In this case, we say that x is transcendent “w.r.t. k and within A”.
A3-3) Let X be a set and A be the algebra kX (all functions X → k) prove that for
f ∈ A

f is transcendent within A wrt k⇐⇒ f (X) is infinite (4)

Rq. — An element is not transcendent per se (i.e. in itself) but with respect to some
coefficients and within a precise algebra (this can be, and is often, understated when
the context is clear). https://en.wikipedia.org/wiki/Trans
enden
e_degree

1.3. Ex3. � Non
ommutative polynomials

This time, instead of k-CAAU, we will deal with (commutative or not) k-AAU.

Let A be a k-AAU. For fixed X , we consider the free monoid X ∗ and its algebra4

k[X ∗] = k⟨X ⟩.
a) What is the multiplication law in (k⟨X⟩, conc, 1X ∗ ) (recall it in detail). Make pre-
cise the embedding j3 ∶ X ↪ k⟨X ⟩.
b) Let A be a k-AAU and f ∶ X → A be any set-theoretical map.

Show that there exists a unique morphism of k-AAU f̂ ∶ k⟨X ⟩ → A such that the
following triangle Fig. 3 commutes.
Hint: Use the fact that (X ∗ is a basis of k⟨X⟩.

4Mind: in algebra the notation k[?] is a polymorphism. If ? is a set it stands for “the algebra of
(commutative) polynomials with variables in ?, If ? is a monoid (resp. a semigroup), k[?] is the
algebra of the monoid (resp. the semigroup).
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Figure 3: Universal property from Sets to k-AAU

1.4. Ex4. � Free monoids

a) What are words ? what is the free monoid ? concatenation ?
b) Make precise the embedding j4 ∶ X ↪ X ∗.
b) Let M be a monoid and f ∶ X → M be any set-theoretical map.

Show that there exists a unique morphism of monoids f̂ ∶ X ∗ → A such that the
following triangle Fig. 4 commutes.
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X ∗

f
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Figure 4: Universal property from Sets to Monoids

1.5. Ex4. � Lo
alization, generalities

à faire

1.6. Ex5. � Lo
alization of di�erential algebras

à faire
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