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ant part of S
hützenberger intelle
tual and

operational inheritage)

1. Algebras on words

Exercice 1 : Exchangeable series and polynoms.

Let k be a ring and X an alphabet, as usual we have k⟨X ⟩, the algebra of noncommu-
tative polynomials (over the noncommutative variables X and with coefficients in k)
and k⟨⟨X ⟩⟩, the algebra of noncommutative series (idem). A series S ∈ A⟨⟨X ⟩⟩ is called
syntactically exchangeable if and only if it is constant on multi-homogeneous classes,
i.e.

(∀u, v ∈ X ∗)([(∀x ∈ X )(∣u∣x = ∣v∣x)] ⇒ ⟨S ∣ u⟩ = ⟨S ∣ v⟩). (1)

The set of these series, a shuffle subalgebra of A⟨⟨X ⟩⟩, will be denoted A
synt
exc ⟨⟨X ⟩⟩.

a) Prove that a series S ∈ A⟨⟨X ⟩⟩ is syntactically exchangeable iff it is of the form

S = ∑
α∈N(X),supp(α)={x1 ,...,xk}

sα x
α(x1)
1

⊔⊔ . . . ⊔⊔ x
α(xk)
k

. (2)

b) Prove that all series of the form

S = ∑
α∈N(X)

cαX ⊔⊔
α. (3)

is syntactically exchangeable. What is the correspondence between the coefficients
sα and cβ ?
c) Deduce from (b) that, if A is a Q-algebra, every syntacticallly exchangeable series
is of the form (3).
d) Give, in Z⟨X ⟩, polynomials which are syntactically exchangeable but cannot be
put in the form (3).

Exercice 2 : Exchangeable polynoms.

a) Prove that if A is a Q-algebra, the shuffle subalgebra A
synt
exc ⟨⟨X ⟩⟩ ∩ A⟨X ⟩ is exactly

the shuffle subalgebra generated by X (Hint. — Call A shuffle subalgebra generated
by X and proceed by double inclusion).
b) What happens when A is not a Q-algebra ?
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2. Cartier-Quillen-Milnor-Moore theorem.

2.1. Preliminaries on words

Exercice 3 : Dualizable and moderate series.

a) Reprove Th2 in [4] (as much as possible in a CBT1 mode).
Let X be a set2, we define q-infiltration (see [4] p8) co-product on the letters by

∆↑q(x) = x⊗ 1+ 1⊗ x + q x⊗ x (4)

and extend by bi-concatenation.
b) Show that, for q = 0, ∆↑0 = ∆⊔⊔ and, for q = 1, ∆↑1 is dual of the ordinary infiltration
product (see [5, 9]).
c) Prove the beautiful combinatorial formula (5) in [8]

∆(w) = ∑
I∪ J=[1..∣w∣]

q∣I ∩ J∣w[I] ⊗w[J] (5) in MO
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