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How can we predict self-assembly?

We have a set of particle with known interactions and conditions:

What phase(s) can we expect to show up?



Predicting self-assembly with simulations

Direct strategy:

Simulate the system, see 
what forms

- Usually slow
- Not reliable
- Qualitative results
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Can we be more precise?





• Model:

• Helmholtz Free Energy:

if no overlaps(overlap)

if overlaps(no overlap)

For hard particles, all non-overlapping configurations have the same 
potential energy (U = 0).

The entropy drives the phase transitions.
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Starting simple: Hard spheres











Hard sphere pressure

Measure equation of state in simulations:
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Density

 = N/V
 = 1/ kB T
 = particle diameter
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But where do we draw the crystal?



For ordered phases, we need a reference free energy.

Several routes for obtaining a reference free energy:
1. Thermodynamic integration to an analytically solvable system

Crystal free energy

Increasing spring constant

Hard-sphere
crystal

Hard-sphere
crystal with 

springs

Non-interacting 
harmonic 

crystal



For the crystal phase, we can do the same thing, if we know the free energy 
at some density.

Several routes for obtaining a reference free energy:
2. Theoretical approximations

Crystal free energy

Simple example: Cell theory

- Mean-field approximation of crystal 
free energy.
- Simple and reasonably accurate for  
hard particles.









We can now plot the free energy per unit volume of both phases:
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Phase transition

Melting pointFreezing point

Coexistence region 
between fluid and solid.

With full simulations:

With (polyhedral) cell theory:





Hard sphere phase diagram

Packing fraction
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Figure:  Pusey et al (2009)
Remade from 1989



Free-energy calculation using simulations

1) Construct a continuous path from a system where you know the free 
energy to the system where you want to know the free energy.

2) Measure free-energy derivative along path

3) Calculate free energy

Complications:
- Avoiding phase transitions
- “Configurational entropy”

Dorsaz et al.
Farad. Discuss. 159, 9 (2012)



Adding more length scales

Multiple ways of increasing complexity of the geometry:

- Confinement
- Size mixtures
- Soft interactions
- Directional interactions
- …



Geometry through confinement

Colloids/nanoparticles confined in shrinking droplets.



Geometry through confinement



Geometry through confinement

De Nijs et al.,  Nature Materials 
14, 56 (2015)
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Geometry through confinement

Simulations vs. experiment:



Candidate crystal structures?

We can (in principle) calculate free energies for any relevant crystal structure.

How to determine what crystal structures are relevant?

- Direct simulation (and hope for the best)

- Intelligent guessing

- Genetic algorithms

- Optimization algorithms



Candidate crystal structures?

We can (in principle) calculate free energies for any relevant crystal structure.

How to determine what crystal structures are relevant?

“Floppy box” Monte Carlo:

 Simulate very few particles in a simulation cell with variable shape.
 Look for structures with high packing, low energy for a wide range of 

pressure, temperature, and number of particles.

Filion et al. , PRL 103, 188302 (2009). 



Rhombohedral unit cell

 Resulting “unit cell” can in principle represent any periodic lattice if the number 
of particles is a multiple of the number of particles in the unit cell.

 No quasicrystals!

 To prevent extremely distorted cells, lattice reduction techniques can be used:

Many separate runs to find possible structures.

Each run is relatively short, and ends with a low-temperature annealing step to 
suppress thermal fluctuations.
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Finding close-packed structures

NaCl

CsCl

CuTi

IrV

AlB2

HgBr2

AuTe2

AgSe2

Filion & Dijkstra, PRE 79, 
046714 (2009)



Not all stable phases are close-packed

Fraction of large spheres
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Entropy can be higher 
in phases that do not 
pack as well.

Hynninen, Filion, Dijkstra
J. Chem. Phys. 131, 064902 (2009)

MgZn2



Geometry through soft interactions

Nanoparticles coated with soft ligands

C14

Hajiw, Pansu, Sadoc, ACS Nano 9, 8116 (2015)







Interesting phase behavior?

In three dimensions: complex crystals?

 Ziherl & Kamien, J. Phys. Chem. B 105, 10147 (2001).

 Phase diagram based on a 
(different) mean-field approach

 Only considered a few different 
crystal structures

  
 Effect of temperature on fluid 

stability neglected



Candidate structures

U
 

3 /
 V

 

Sample output:

 Each point is an MC run

 Bottom envelope is the 
lowest-energy state (or 
coexistence) possible at 
each density

 
 Several structures clearly 

stable at zero-
temperature.

?



Zero-T structures

For each shoulder length, we map 
out all structures found to be 
stable in the zero-T limit.

 No Frank-Kasper phases found 
to be stable

 Large variety of structures, but 
all with simple unit cells

 Subscript indicates energy per 
particle

 



Zero-T structures



Zero-T structures



Extension to finite temperature

Using cell theory, we can draw the finite-temperature phase diagram for 
specific shoulder lengths.



Conclusions

 
 Strong connection between geometry and entropy
 
 Even simple interactions can lead to complex structures

 Resulting structures can be hard to guess!
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