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How can we predict self-assembly?

We have a set of particle with known interactions and conditions:

What phase(s) can we expect to show up?



Predicting self-assembly with simulations

Direct strategy:

Simulate the system, see
what forms

- Usually slow
- Not reliable
- Qualitative results
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Can we be more precise?



Predicting phase behavior

Given:

* Number of particles N

* Volume V

* Temperature T

the thermodynamically stable state for any system is the state with the
lowest Helmholtz free energy F(N,V,T).

This free energy Is a combination of potential energy and entropy:

F=U-TS

For large systems, F is proportional to N and V.
Hence, can be writtenas F(p, T) =N f(p, T).

pP=NIV
Number density



Starting simple: Hard spheres

6¢(r> _{ e eriy b, (overlap)

i o (no overlap)

* Helmholtz Free Energy:

F:)(- TS

For hard particles, all non-overlapping configurations have the same
potential energy (U = 0).

The entropy drives the phase transitions.



Starting simple: Hard spheres

* Model:
0o, r <o (overlap)

sor) =1 o

™20 (no overlap)

* Helmholtz Free Energy:

F:)(- TS

F=-k,Tlog Q
Boltzmann distribution Thermal wavelength
1 h
N,V,T drN e BY (x™) A =
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Starting simple: Hard spheres

* Model:
0o, r <o (overlap)

sor) =1 o

r=>o (no overlap)

* Helmholtz Free Energy:

F:)(- TS

F=-k,Tlog Q

s

Boltzmann distribution No overlaps: 1

Q(N’ V’ T) _ 1 / drNe_BU(rN/ s

NTA3N

Overlaps: 0O



Thermodynamic integration

Unfortunately, we cannot measure this entropy in simulations
directly.

However, we can measure derivatives of the free energy.

For example the pressure:

OF __—>  Pressure
. N, T R Derivative taken at
Volume constant number of

particles and temperature



Thermodynamic integration

Unfortunately, we cannot measure this entropy in simulations
directly.

However, we can measure derivatives of the free energy.

For example the pressure:

OF __—  Pressure

- — _p

oV N, T Derivative taken at
— ) >

Volume constant number of
particles and temperature

Additionally, in the low-density limit, the system behaves as an ideal
gas, with a known free energy: F:
“— = log(pA°) — 1
NkgT
Hence, we can calculate F at any density
by integrating the pressure... for a fluid




Pressure

Hard sphere pressure

Measure equation of state in simulations:

3
PPo -
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Density

p =NV
p=1/k,T
o = particle diameter



Pressure

Hard sphere pressure

Measure equation of state in simulations:
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p=1/k,T
o = particle diameter



Pressure

Hard sphere pressure

Measure equation of state in simulations:

BPc
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p =NV
— But where do we draw the crystal?
B=1/k,T y

o = particle diameter



Crystal free energy

For ordered phases, we need a reference free energy.

Several routes for obtaining a reference free energy:
1. Thermodynamic integration to an analytically solvable system

Hard-sphere Non-interacting
Hard-sphere crystal with harmonic
crystal springs crystal

>

Increasing spring constant




Crystal free energy

For the crystal phase, we can do the same thing, if we know the free energy
at some density.

Several routes for obtaining a reference free energy:
2. Theoretical approximations

. Simple example: Cell theory

- Mean-field approximation of crystal
free energy.

- Simple and reasonably accurate for
hard particles.




Cell theory

Consider a hard-sphere crystal (e.g. FCC):
p ystal (e.g 3/3 P=N/V
- lattice spacing: a = (L>
Prmax Prmax = V2/0°

If we assume all other particles are at
their average positions, what is the free
energy of a single particle?

fl = —kBT log VA

= —kgTlog (%/Vdrexp(—ﬁlf))

4 . 3
g (T P)

Full free energy:

F=Nfh



Cell theory

Consider a hard-sphere crystal (e.g. FCC): p=N/V

5 1/3
- |attice spacing: a = ( )

pmax

Pmax — \/5/0-3

If we assume all other particles are
fixed at their average positions, what is
the free energy of a single particle?

fi = —kgTlogZ

1

= —kpT'log (P/ drexp(—ﬁU))

Cell theory 7 3

4 . <

~ —kBTlog( ma—al )

3
1.0 11 10 13 T Full free enerqy:

/30_3 F:Nfl



Cell theory

Consider a hard-sphere crystal (e.g. FCC): p=N/V

5 1/3
- |attice spacing: a = ( )

pmax

Pmax — \/5/0-3

If we assume all other particles are
fixed at their average positions, what is
the free energy of a single particle?

16[
14 f1 — —kBTlogZ |
12 = —kpT'log (P/ drexp(—ﬁU))
10 Cell theory V1
3
(47r(a —0) )

“Exact” 3
6
A Polyhedral cell

Full free energy:

1.0 1.1 1.2 1.3 1.4
3

d F=Nf



Phase transition

We can now plot the free energy per unit volume of both phases:

15
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Phase transition

We can now plot the free energy per unit volume of both phases:

6.0
5.5}
> 5.0/
"5 4.5}
.,
Q 4.0}
3.5
3.0

Freezing point

0.90 /'0.'95' 100

po

| '1.1']5:\' 1.10

Melting point

Coexistence region
between fluid and solid.

With full simulations:
pro® = 0.942, po® = 1.041

With (polyhedral) cell theory:
pra® = 0.940, p,,0° = 1.060



Hard sphere phase diagram

.......... 1.41
Crystal
---------- 1.04
Co-existence
.......... 0.94
Liquid

FCC

HCP

Simulations have shown that the
free energy difference (1990s):
0.001KT/particle

FCC wins!



Hard sphere phase diagram

hard-s phere colloidal ¢ rytal and glass
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Free-energy calculation using simulations

1) Construct a continuous path from a system where you know the free
energy to the system where you want to know the free energy.

2) Measure free-energy derivative along path

3) Calculate free energy

Complications:
- Avoiding phase transitions
- “Configurational entropy”

Dorsaz et al.
Farad. Discuss. 159, 9 (2012)




Adding more length scales

Multiple ways of increasing complexity of the geometry:

- Confinement

- Size mixtures

- Soft interactions

- Directional interactions




Geometry through confinement

Colloids/nanoparticles confined in shrinking droplets.



Geometry through confinement




Geometry through confinement

Fraction
Fraction

0.0 !llll.f I ...1 1 |JJIJ[ 1 1 lJIlI\J 1 1 L1
500 1,000 10,000 100,000 700,000
Number of nanoparticles

N 14, 56 (2015)

De Nijs et al., Nature Materials



Geometry through confinement

Simulations vs. experiment:

Muodels Manoparticles Colloids Simulations




Candidate crystal structures?

We can (in principle) calculate free energies for any relevant crystal structure.

How to determine what crystal structures are relevant?

Direct simulation (and hope for the best)

Intelligent guessing

Genetic algorithms

Optimization algorithms



Candidate crystal structures?

We can (in principle) calculate free energies for any relevant crystal structure.
How to determine what crystal structures are relevant?

“Floppy box” Monte Carlo:

* Simulate very few particles in a simulation cell with variable shape.
* Look for structures with high packing, low energy for a wide range of
pressure, temperature, and number of particles.

Translation Uniform scaling Deformation

Filion et al. , PRL 103, 188302 (20009).



Rhombohedral unit cell

* Resulting “unit cell” can in principle represent any periodic lattice if the number
of particles is a multiple of the number of particles in the unit cell.

* No quasicrystals!

* To prevent extremely distorted cells, lattice reduction techniques can be used:

Many separate runs to find possible structures.

Each run is relatively short, and ends with a low-temperature annealing step to
suppress thermal fluctuations.
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Finding close-packed structures

NaCl AIB,
HgBr,

CsCl

YCuTi AuTe,

alrV

Filion & Dijkstra, PRE 79,
046714 (2009) g



Pressure

Not all stable phases are close-packed

p
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fluid
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X

Fraction of large spheres

0.8 1

Entropy can be higher
in phases that do not
pack as well.

MgZn,

Hynninen, Filion, Dijkstra
J. Chem. Phys. 131, 064902 (2009)



Geometry through soft interactions

Nanoparticles coated with soft ligands

Hajiw, Pansu, Sadoc, ACS Nano 9, 8116 (2015)



Geometry through soft interactions

potential
)
o0 r<<o
hard
core U(I’):<€ 0<r<a—|—5
ft
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o >~ > distance
£ ) £ ) \
d 1 | :
. \ . Very rough model for polymer-coated nanoparticles:
- 548 > - fixed energy cost for interpenetration of the
polymers
/ Ve
.. - hard repulsion at some smaller distance ¢
>

o



Interesting phase behavior?

In two dimensions: quasicrystals!

6/c =0.4

0.50
(b)
0.45} ] :
a'_ .‘>
) 0.40 '.".1 (s}
- FL 8 &
@© Y N |
& goss ST E Sy
q .4 ’ 2520 28
E e
~C * »
(] | 6 ".
_ 030 *%n
w © ’I‘ BE
8 a 8%y
S 0.25} ‘e a
8 .‘I
o - Nt
0.20} K .9.
.
o

05 T06° 07 08 09
Reduced Density p

1.0 1.1

See e.g. Pattabhiraman, et al., J. Chem. Phys. 143, 164905 (2015).



Interesting phase behavior?

In three dimensions: complex crystals?

* Phase diagram based on a

kylle 5 1 i i T (different) mean-field approach
F : EFCC 1A15 * Only considered a few different
1.5} i l: crystal structures
1t 1 i * Effect of temperature on fluid
- stability neglected
051 .
0 i l 1
04 06 08
Iy

Zinerl & Kamien, J. Phys. Chem. B 105, 10147 (2001).



Candidate structures

Sample output:
* Each pointis an MC run

* Bottom envelope is the
lowest-energy state (or
coexistence) possible at
each density

* Several structures clearly
stable at zero-
temperature.

0 P m ‘ | | | ) | | | . . | | | | | | | . | | | | | | |
0.45 0.50 0.55 0.60 0.65 0.70 0.75
n



Zero-T structures

For each shoulder length, we map
out all structures found to be
stable in the zero-T limit.

* No Frank-Kasper phases found
to be stable

* Large variety of structures, but
all with simple unit cells

* Subscript indicates energy per
particle




Zero-T structures

Name Front view Side view U/Ne Notes

FCCy 0 Low-density FCC.
Body-centered orthogonal

o 1 (BCO) lattice. Also contains
low-density hexagonal planes.
Body-centered tetragonal

(o 2 lattice. Also contains square
and 3 planes.

3 3 Also contains « planes.
Body-centered tetragonal

B4 4 (BCT) lattice. Body-centered

. 2 4
cubic when § = 7 1 ~0.1547.



Zero-T structures

Name Front view Side view U Ne Notes

hexy Also contains § planes.

he Body-centered orthogonal
0 (BCO) lattice.

FCCsg High-density FCC.



kBT/E

Extension to finite temperature

Using cell theory, we can draw the finite-temperature phase diagram for
specific shoulder lengths.
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Conclusions

* Strong connection between geometry and entropy

* Even simple interactions can lead to complex structures

* Resulting structures can be hard to guess!







Geometry through size mixtures

Wurtzite CaF, o ReO3 Cr3S| SiF,

LSgfee AgCq LSgfce LSghep
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