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Finite local complexity



Finite local complexity: a non-example

Tiles in the pinwheel tiling come in an infinite number of
orientations:

(Image: Baake and Grimm (2012))



From FLC patterns to FLC polyhedral tilings

Voronoi tessellation of a point set yields polyhedral cells:

Next step: triangulate each cell to produce a simplicial tiling.
Alternatively: use Delaunay triangulation right away.



From a simplicial tiling to an FBS complex
The recipe: glue all similar simplices together:
Simplicial tiling FBS-complex

Define “similar simplices”:

I Their shapes must agree (up to a translation, no rotation
allowed!)

I If the tiling is decorated, the decorations should also agree.

N.B.: the decoration may encode anything: types of atomic
species, local environment up to some range etc. The only
condition is: there must be a finite number of possible decorations
for a given shape.



FBS = “flat-branched semi-simplicial”

I Why flat? Because each simplex inherits a Euclidean
structure from the tiling, and because these structures on
neighboring simplices agree.

I Why branched? Because the underlying tiling may be
aperiodic.

I Why semi-simplicial? Because vertices of one simplex may
be glued together in the complex:

(this is not allowed in simplicial complexes!)



From local to global: density and stoichiometry

Take a large “round-shaped” patch of the tiling and count
occurrences of each tile species:

The equality is approximate because of the finite size of the patch.
In the limit of infinite volume of the patch, it leads to a system of
linear equations on the densities of different tile species.
This system must admit non-negative solutions! (What if it does
not?)



From local to global: encoding matching rules

An FBS complex can also be constructed directly from prototiles
and the matching rules:

Prototiles FBS-complex

Isometric windings

Tilings respecting the matching rules are in one-to-one cor-
respondence with the special sort of continuous maps from
the physical space E to the FBS-complex, called “isometric
windings”.



From local to global: constraints on coherent diffraction

For the wave corresponding to a Bragg peak, the sum should grow
asymptotically linearly with the size of the patch.
The results should agree on faces of all simplices of the
FBS-complex. This leads to constraints on the contributions of
different sites to the coherent diffraction.



Defining an FBS complex (the first attempt)

A d-dimensional FBS-complex B is a finite d-dimensional semi-
simplicial complex equipped with a map

ρ : {edges of B} → E

Problems with this definition: non-closed faces and degenerate
simplices.

?



Defining an FBS complex

A d-dimensional FBS-complex B is a finite connected
d-dimensional semi-simplicial complex equipped with a ho-
momorphism of the group of 1-chains

ρ : C1(B,Z)→ E

vanishing on boundaries:

ρ ◦ ∂ = 0

and such that for any d-simplex s ∈ B and the set
{e1, . . . , ed} of edges of s originating at the same vertex,
the vectors ρ(e1), . . . , ρ(ed) are linearly independent.



Recovering the tile shapes

Let {e1, . . . , ek} be the edges of a k-simplex s ∈ B having a
common vertex. Identification of the barycentric coordinates yields
a homeomorphism of |s| onto an open affine simplex in E :

αs : |s| →

{
k∑

i=1

ciρ(ei )

∣∣∣∣∣
k∑

i=1

ci < 1, ci > 0

}
+ t

defined up to a translation t ⊂ E .



Isometric windings

A continuous map f :
E → |B| is called isomet-
ric winding if

I Over each simplex
|s| ⊂ |B| (of any
dimension) f is a
covering map.

I For each connected
component σ of
f −1(|s|), the
composition αs ◦ f

∣∣
σ

is a translation by
some vector t ∈ E .



Density and stoichiometry revisited

Let f : E → B be an isometric winding. Suppose that for all s ∈ B
the spatial density νs of tiles in f −1(|s|) is well defined (either as a
natural density, or by averaging over a transitionally invariant
measure on the Hull of the tiling). Then

c =
∑
s∈B

dim s=d

νss

is a d-cycle in Cd(B,R). That is, possible values of densities are
determined by the homology group Hd(B,R).



Quasiperiodic tilings: lifting and matching rules

Matching rules

For tilings obtained by the cut-and-project method, the pha-
son coordinate ϕ is globally bounded. It is generally believed
that this is the case for real quasicrystals; if this condition
is enforced by the underlying FBS-complex B, we say that
B represents weak matching rules. If ϕ grows slower than
linearly, we say that B represents minimal matching rules.



Quasiperiodic tilings: the lifting map β

Factoring the lifted tiling w.r.t. the lattice L yields this:

The map β emerges in two different contexts:

I If we start with an existing tiling model, then the
FBS-complex is known, but the lifting is to be constructed.

I If we start with the phased data, then the lifting dimension n
and the positions of the lifted vertices of B in Tn are known,
but B itself is to be constructed.



Quasiperiodic tilings: slope locking property

The map β : B → Tn is called slope locking if the image
of every d-cycle on B annihilates the space of mixed forms

T =
(∧d−1 E ∗

)
∧ F ∗.

The consequence of the slope locking: since dx ∧ dϕ is a mixed
form, its integral over the lifted tiling patch within a cube of edge
length r evaluates to a boundary term and is bounded by Krd−1

for some global constant K independent on r .



Quasiperiodic tilings: order propagation



Quasiperiodic tilings: defects and robustness
Defects can be modeled by tiles
originating from a larger
FBS-complex B̌ ⊃ B (shaded
triangles). The length of the
boundary of the defect-free part
of this patch scales with r as

O(max(εrd , rd−1)),

where ε is the density of defects.
The difference of the average
vallues of ϕ on the opposite faces
is then bounded by K ′1 + εK ′2r .

The arguments above then leads to the following upper bound for
the phason coordinate:

‖ϕ(x)‖ < K1 log(‖x‖) + K2ε‖x‖+ const



Real quasicrystals: constructing T0 and B0
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The cut through the phased density
of Cd5.7Yb by the two-fold
symmetry plane. Triangles (a) and
(b) are L-equivalent.

I Label each peak by the
type of its atomic surface
and a translation ` ∈ L.

I Eliminate some peaks to
avoid short distances
(making random choice).

I Construct the simplicial
tiling T0 by Delaunay
triangulation.

I Construct the
FBS-complex B0 by
factoring T0 with respect
to the L-equivalence.

N.B.: Both of the triangles
labeled (c) will appear in T0.



Real quasicrystals: reduction and refinement

Reduction

The “raw” FBS-complex B0 contains too many simplices for
β0 : B0 → Tn be slope locking. When constructing T0, we
know already that some simplices are uncertain (those with
vertices at the peaks of small amplitude, or those occurring
rarely in T0). We try to construct the working FBS-complex
B by gradually eliminating such simplices from B0.

Refinement

Initially, the L-equivalence in T0 is defined w.r.t. the labeling
of the vertices by atomic surfaces. To extend the range of
the matching rules, we can refine the labeling by the labels
of the nearest neighbors. This procedure can be repeated,
each time encoding into B0 the information about larger local
configurations.



Atomic density and partial validation
Under some mild “matter conservation” conditions, the model
predicts the exact value of the density of atoms belonging to a
given atomic surface:∑

1≤i1<···<id≤n

mi1,...,id

M
|ki1 ∧ · · · ∧ kid |, where M,mi1,...,id ∈ Z.

This prediction can be compared with the total density and the
volumes of individual atomic surfaces obtained e.g. by the
watershed algorithm:



Matching rules exploration: Flow chart
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Diffraction revisited: the model

The diffracting density is a tempered distribution:

% =
m∑
i=1

 ∑
y∈f −1(xi )

wiδy


with the diffraction measure

η =
m∑

i ,j=1

wiwjζij ,

where ζij are complex-valued tempered measures on E ∗.



Diffraction: some results

If k ⊂ E ∗ belongs to the pure point part of the matrix-valued
measure ζ, then

ζij({k}) = ak(xi )ak(xj),

where ak : |B| → C over open d-simplices of |B| are sections of
the locally constant sheaf F(k) of complex spaces, defined by the
homomorphism of the fundamental groupoid Π(|B|) to GL(1,C):

γ 7→ exp (−2πik · ρ̌(γ)) ,

where ρ̌ extends ρ from homotopy classes of edge-paths to those of
arbitrary paths. Moreover,

zk =
∑
s∈B

dim(s)=d

(
ak
∣∣
|s|

)
s

is a cycle of Cd(B,F(k)).
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