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What is a glass?

Temperature

* No long range order

* Arrested system
e Out of equilibrium



When can we call it a glass?

Relaxation Time

Intermediate Scattering Function

Liquid Regime
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When can we call it a glass?
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Relaxation Time

I

Relaxation Time

Intermediate Scattering Function

At least 4 orders of magnitude

Why?
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Local Structural Changes

Icosahedral Cluster

1952

Frank, P. ROY. SOC. A-MATH PHY, 215, 1120 (1952)
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Local Structural Changes
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Local Structural Changes

Icosahedral Cluster
1952
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LOCClI S‘I‘r‘ucfur‘al Changes Other cluster with similar

trends:

Icosahedral Cluster
1952

Frank, P. ROY. SOC. A-MATH PHY, 215, 1120 (1952)

Malins, et al. JCP 139, 234506 (2013)
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How can we s’rudy glassesliquids?

* Molecular
Simulations Dynamics Interaction Potential
How the particles interact between each
* Monte Carlo other

Colloidal particles
Atomistic models

M Glycerol O
Polystyrene © All-Atam OPLS

* Lennard-Jones
* Square-Well
 Hard-spheres

Hung, et al. Soft Matter, 15, 6,(2019)




How can we s’rudy glassesliquids?

* Molecular
Simulations Dynamics Interaction Potential
How the particles interact between each
* Monte Carlo other

STEPS:
Colloidal particles 1. Initial configuration
(positions and velocities)
e Lennard-Jones 2.Find the next time where

. Square-Well two particles will collide
Tard-spheres Event-Driven Molecular Dynamics 3. Solve collision
0 0
EDMD 4. Update velocities and

positions




How can we s’rudy glassesliquids?

* Molecular
Simulations Dynamics Interaction Potential
How the particles interact between each
* Monte Carlo other

vt RESULTS:

Colloidal particles » Dynamical properties:
diffusion coefficient, mean

square displacement,

r relaxation times, ISF, ...

e Static properties: S(q), g(r),
compresibility...

 Lennard-Jones
Square WeII
Hard-spheres

o




Short range potentials: Two glassy states

Repulsive glass:
M
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F. Sciortino, Nat. Mater. (2002)



Short range potentials: Two glassy states

Temperature

Intermediate fluid: y

Some particles tightly bound
to neighbors, others more
free to move.

Gel

* {v\ Glass—glass transition
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Short range potentials: Two glassy states

Attractive glass:

Particles trapped by attractions to
their neighbors. Liquid

Gel line

Temperature

-.\___/.' '\_\h____,;" .“.\_____z'll --H. Gel

Volume fraction
F. Sciortino, Nat. Mater. (2002)



Short range potentials: Two glassy states

Liquid
Gellline
0.5 1 T 1.5 2
Temperature e

———

Zaccarelli et al., PRE 66, 041402 (2002)
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Short range potentials: Two glassy states

Attractive
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Short range potentials: Two glassy states

Attractive Repulsive

|||||||||||

Temperature
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Zaccarelli et al., PRE 66, 041402 (2002)
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How to control dynamics (or local structure)?

Colloids: ideal playground for studying glasses.

Size distribution Surface chemistry

SILICA MICRO-CUBES CUBIC CRYSTALS

Rossi et al., Soft Matter 7,4139 (2011)

Talapinetal.,
Nature 461,
964 (2009)

(.‘ : ‘ %7 ;_./:' ";f,},,f’ Al
Kuijk et al.,J. Am. Chem. Soc. 133, 2346 (2011) .

Whaf abouT The 'as re ime? Y. Wang et al., Nature 491, 51 (2012)
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How to control dynamics (or local structure)?

Colloids: ideal playground for studying glasses.

Surface chemistry

AT B

ooooo

A 2
.....
.

Y. Wang et al., Nature 491, 51 (2012)



How to modify the cage?

Patchy Particles —> Kern-Frenkel Model
Directional Interactions
. {fm any two patches face to face and,

<A

Uii(rii) = 4
Hard spheres decorated with attractive i(rig) =
square-well patches on the surface. “

0

Two particles bond when:
« The distance between them is
less than the potential range.

« The line connecting them goes
through a patch on both
surfaces.




How to?

Event-Driven Molecular Dynamics

* Binary mixture
* N=700
 A=1.030

* (=0.833 (size ratio) Chﬂnge pCﬂ'Ch size

Hard sphere Square well

Increasing patch size (6)




How to?

Event-Driven Molecular Dynamics

* Binary mixture

* N=700
* A=1.030
* =0.833 (si ti
roskerato)  Change patch geometry
n=12
(Trlangle) (Tetrahedron) (Octahedron) (Rotated (Icosahedron)

square prism

Increasini number of iatches ‘nl




Reentrance in patchy particle systems

Reentrance remains intact for patchy interactions.

n=0.58

) 5 W ! ' ! ' ! ' 1

6 patches
(Octahedron)
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Reentrance in patchy particle systems
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Reentrance in patchy particle systems

Reentrance remains intact for patchy interactions.

n=0.58

-2

> SW
97.6%
<+« 70.2%
3| 4A 54.2%
=8 40%
*¢ 28.1%
o 20%
4]

6 patches
(Octahedron)




What is the behavior with different geometries?

Fixed surface coverage of 40%
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Patches
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What is the behavior with different geometries?

Fixed surface coverage of 40%
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What is the behavior with different geometries?

Fixed surface coverage of 40%

10 | | | | | | 1 T | Drastic slowdown for
10, 11, and 12 patches.

6 10 -
H
- oo k;T/e=0.38 n=10 n=11 n=12
uu k T/e=0.4
o K T/e=0.5
10°F aa k T/e=0.6 - What about the local

structure?

| | | | |
2 4 6 8§ 10 12 14 16 18 20
Patches




Topological Cluster Classification

p3 &A e, @ %@ g % & & @ Modified Voronoiconstruction that:

11B 11C ME 11F 11W
spé :: ﬁ@. ?@ *@%@6’ * Prevents countingthe particles in
ﬁ@ &@ &@ 13B 13K FCC HCP BCC the second shell.
p5 4 * Allows distorted 4 ring members.
(a) k

(b) i, k not neighbours (c) i, k neighbours
k |l’u’| < |I'"‘| k
' (a) (b)
_— 1) . \ S,
- ! N *
N ‘: N y
Tig =~ Yik S
1 s
i i L N

rg!'quso r!}-r,q>0

Malins, A., et al. J. Chem Phys, 139, 23 (2013)

“Direct neighbours “




Why 10, 11 and 12 patches are so special ?

Fraction of particles involved in an icosahedral cage.

0.5 ' I ' | T I
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Why 10, 11 and 12 patches are so special ?

Fraction of particles involved in an icosahedral cage.

0.5 ' I ' | ' I

Hard Sphere Limit
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Fraction of particles involved in an icosahedral cage.
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Why 10, 11 and 12 patches are so special ?

Fraction of particles involved in an icosahedral cage.

10, 11 and 12
patch case 0.5
reinforce
iIcosahedral 0.4
order at low '
temperature
E 03
3
Z 02
0.1




Why 10, 11 and 12 patches are so special ?

Fraction of particles involved in an icosahedral cage.

10, 11 and 12
patch case 0.5 - T - u - 1
reinforce '
icosahedral
order at low
temperature

n=10 n=11 n=12

By adding directionality to
interactions, there is a way
of changing the structure
of the cages by reinforcing
the geometries that match
with long-lived structures.

ols

0 0.5




Why 10, 11 and 12 patches are so special ?

Fraction of particles involved in an icosahedral cage.

Patchy interactions
play a major role



Colloidal glasses and how to model them?

SILICA MICRO-CUBES CUBIC CRYSTALS
Rossi et al., Soft Matter 7,4139 (2011)

3 2 it ; ¢ P W 7 g
g - K Pl il 5
g m 2 i ‘ / ¢ 7 . i / H

Kuilk et al,, ). Am. Chem. Soc. 133, 2346 (2011) Patchy interactions
play a major role



Colloidal glasses and how to model them?

- . V : - m ’ aly. Ty
Kuijk et al.,J. Am. Chem. Soc. 133, 2346 (2011)




Surface chemistry

« Directional interactions can induce changes in
the local structure.

The enhancement of Iicosahedral clusters
promotes a slowing down on dynamics in patchy
particles and polyhedral repulsive particles.

Shape

The reentrance is conserved In systems of
patchy particles.

« Systems with same coverage behave the same
excepting for the ones that enhance specific local

structures. : .
Slowing down supercooled liquids

by manipulating their local structures
arXiv:1812.00764




Colloidal glasses and how to model them?

Colloids: ideal playground for studying glasses.

Size distribution Surface chemistry

SILICA MICRO-CUBES CUBIC CRYSTALS
Rossi et al., Soft Matter 7,4139 (2011)

Talapinetal.,
Nature 461,
964 (2009)

3 & %% 2P Yy 4
N’ o RPN %00
Kuijk et al.,)J. Am. Chem. Soc. 133, 2346 (2011)

Y. Wang et al., Nature 491, 51 (2012)



Hard Sphere Systems

[}
e Purely repulsive interactions
Q. oo * Capture changes on dynamics towards
o Supercooled liquid : : :
] i : : the glass regime
b regime g g
£ (m=> How to avoid?
' . Using mixtures of Experiments
different size ratios Simulations
’ - - Theory
Packing Fraction 1 =)

Parisi et al., JSTAT, 2009, 03 (2009)




Hard Sphere Systems

' Palangetic et al., Faraday discussions, 11, 35‘(201) | Binar.y Mixvfur.es
EToFCC . .
' (Close
Packed)
a i
g Supercooled liquid ' Change size ratio g (from 0.6 to 0.8)
% regime Change in composition x; (from 0.2 to 0.65
a
Polydisperse Systems
" ‘ v
o . | | ‘ l =
Packing Fraction 'l . Change polydispersity from 2% - 8%

Parisi et al., JSTAT, 2009, 03 (2009)




Dynamics (Binary Mixtures)

n=0.575

4 ' |

10 £

| ! |
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Diffusion time
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Dynamics (Binary Mixtures)

n=0.575

Size ratio

0p/0,4

| * Non monotonous behaviour
:qu'gs on dynamics by changing size
,3;027 | ratio and composition.

mq=0.75
vq=0.8
¢ q=0.85

Diffusion time

2 : ] ; ] : l , l
1092 0.3 0.4 0.5 0.6
xL

Comiosi‘rion (Larie Particles)




Dynamics and Structure

n=0.575 Number of particles in Icosahedral Clusters

I ' [ ' |

o q=0.6 |
A q=0.65 _
¢q=0.7 |
mq=0.75 _
vq=0.8 |
»q=0.85




Tetrahedrality

Tetrahedron: smallest
cluster in 3 dimensions.

Tetrahedral cluster: 4 neighbour
particles linked all together by
distance.
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particle is involved in.
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Tetrahedrality
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Tetrahedrality

Tetrahedron: smallest
cluster in 3 dimensions.

Tetrahedral cluster: 4 neighbour

particles linked all together by
distance.

Quantify the tetrahedrality of the
local structure:

Icosahedral Cluster

The central
particle will be
involved in 20
tetrahedrons

Counting the number of tetrahedron that one
particle is involved in.




Dynamics and Structure

n=0.575

Number of tetrahedron per particle

Non monotonous behaviour
on average number of
tetrahedron per particle.

Sensitive parameter to the
changes of q and X,




Dynamics and Structure

n=0.575 Number of tetrahedron per particle




Hard Sphere Systems
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Hard Sphere Systems

Different packin
fractions follow the
same relation between
the number of
tetrahedra and the
diffusion time.

3
=
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Hard Sphere Systems

Different packin
fractions follow the
same relation between &
the number of s
tetrahedra and the
diffusion time.

10° p——F———1———+T1———T——,
- o =058 o np=0.56 ]
- A =0575 v n=0.54 N
[ o =057 o p=0.52 0 0. 7% ']

10*E

103;

The polydisperse
systems follow the
same trend.



Heterogeinity

Regions of high mobility

Regions of low mobility

chaas AL
e AT S

0.6 11 1.6

(a7) T
anaka, et al. Nat. mater, 9, 4, (2010)



Heterogeinity

C A ol

How the tetrahedrality of the system affects
local mobility?

Characterize:

* Local mobility (Propensity)

Correlation

S —— 16 * Local tetrahedrality

(a7) T
anaka, et al. Nat. mater, 9, 4, (2010)




Hard Sphere Systems

How well correlated are those two quantities in time?
2 TETRAHEDRALITY 0

—

0 MOBILITY 2

Anticorrelation

correlation
] 1

St/t Number of tetrahedra




Hard Sphere Systems

How well correlated are those two quantities in time?
2 TETRAHEDRALITY 0
—
—
o 0 MOBILITY 2
=-0.2F
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Hard Sphere Systems

How well correlated are those two quantities in time?

TETRAHEDRALITY 0

0 MOBILITY 2

correlation
1 1

St/ Propensity Number of tetrahedra




Hard Sphere Systems

How well correlated are those two quantities in time?
2 TETRAHEDRALITY 0
—
—
Ny 0 MOBILITY 2
=-0.2F
g
5
=
3-0.41
-0.61
107 10" 107 10*

St/ Propensity Number of tetrahedra




Hard Sphere Systems

How well correlated are those two quantities in time?
2 TETRAHEDRALITY 0

—
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correlation
1 1
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2 TETRAHEDRALITY 0

Hard Sphere Systems E
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Summary (second part)

« Changing the size ratio and the composition induces changes in the
local structure and the dynamics.

« Tetrahedrality is a good parameter that can be used to predict global
dynamical properties.

« At alocal level, regions with high tetrahedrality are less mobile.

Tetrahedrality dictates dynamics in hard spheres
arxiv:1908.00425
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Different Patch Geometries

Number of bonds per particle
03 | ' | ' |

The number of bonds obeys a master
curve, when the temperature is
normalized.




Different Patch Geometries

Number of bonds per particle
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Then... what about the local structure? Ng=



