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Abstract. A compact packing is a set of non-overlapping discs where
all the holes between discs are curvilinear triangles. There is only one
compact packing by discs of radius 1. There are exactly 9 values of r
which allow a compact packing with discs of radius 1 and r. It has been
proven that at most 11462 pairs (r, s) allow a compact packing with discs
of radius 1, r and s. We prove that there are exactly 164 such pairs.
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1 Introduction

A packing of the plane by discs is a set of interior-disjoint discs. Packings are
of special interest to model the structure of materials, e.g., crystals or granular
materials, and the goal in this context is to understand which typical or extremal
properties have the packings. In 1964, Tóth coined the notion of compact packing
[4]: this is a packing such that the graph which connects the center of mutually
tangent discs is triangulated. Equivalently, a packing is compact when all its
holes are curvilinear triangles.

There is only one compact packing by one disc, called the hexagonal compact
packing, where the disc centers are located on the triangular grid. In [9], it has
been proven that there are exactly 9 values of r which allow a compact packing
with discs of radius 1 and r (Fig. 1 – all already appeared in [4], except the fifth
which later appeared in [11] and the second which was new at this time). Re-
cently, it was proven in [12] that there are at most 11462 pairs (r, s) which allow
a compact packing by discs of radii 1, r and s. The author provided several ex-
amples and suggested that a complete characterization of all the possible pairs is
probably beyond the actual capacity of computers. Little is know for more discs,
in particular it is still open whether there are always finitely many possible radii.
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1 1111r 2 111rr 3 11r1r

4 1111 5 11rrr 6 1r1rr

7 111r 8 111 9 11rr

Fig. 1. Compact packing with discs of radii 1 and r < 1 for each of the 9 possible values
of r. They are all periodic, with the parallelogram showing a fundamental domain. The
top-right word over {1, r} gives the sequence of radii of the discs around a small disc.

A classic problem in packing theory is to find the maximal density, defined by

δ := sup
packings

lim sup
k→∞

covered area the k × k square

k2
.

For packings with only one disc, the maximal density has been proven in [3]
to be δ1 := π/

√
12 ' 0.9069, attained for the unique compact packing. For

packings with discs of size 1 and r, the maximal density δ(r) is arbitrarily close
to δ1 +(1−δ1)δ1 ' 0.9913 for r small enough, and it has been proven in [1] to be
still equal to δ1 for r ≥ 0.7429. An upper bound on δ(r) has been proven in [6]
for any r, but the only exact results correspond to radii which allow a compact
packing, namely those on Fig. 1, except the fifth and the last ones for which
no proof has been given, see [7,8,10]. Compact packings thus seem to be good
candidates to provably maximize the density. No result is known for more discs.
This is our main motivation to study compact packings by three sizes of discs.
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2 Results

Our main result is a complete characterization of the possible radii which allow
a compact packing by three size of discs. We also found, for each case, a periodic
compact packing. The characterization of the compact packings which maximize
the density is still open, as well as the presumably harder issue of whether com-
pact packings (for suitable radii) maximize the density among all the packings5.

All the radii are algebraic and we have an explicit expression of their minimal
polynomials, which we however do not give here because it would fill several
rather uninteresting pages. Let us just mention that the mean algebraic degree
is 6.08, with standard deviation 4.45 and maximal value 24. Instead, the following
theorem states the number of possible pairs, Fig. 2 illustrates their distribution,
and Fig. 3 shows some packings (the full list can be found in Appendix of [5]).

Theorem 1. There are exactly 164 pairs (r, s) which allow a compact packing
by discs of radii 1, r and s, with 0 < s < r < 1.

Fig. 2. Distribution of the 164 pairs (r, s), with abscissa r and ordinate s
r
. Pairs below

the hyperbola are such that a small disc fits in the hole between three large discs.
Voronöı cells aim to give an idea of how close are two pairs.

5 This does not hold when small discs can be added in holes between larger discs,
breaking the compacity but increasing the density, see, e.g., packing 33 on Fig. 3.
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3 1111 / 11r1r 27 11r / 1s1s1s1s 33 1rr / 11srs1srs

51 111rr / 1rrrrs 53 11r1r / 1r1s1s 87 1r1r / 1r1r1s

93 1r1rr / 1s1srs 110 1r1ss / 111s1s 131 1rs1s / 1s1sss

Fig. 3. Some compact packings with three sizes of discs. Those on the first line are
easily derived from compact packing with two sizes of discs. The other ones are more
original. The top-left number refers to numbers on Fig. 2, and the two top-right words
over {1, r, s} give a possible sequence of radii of discs around, respectively, a disc of
radius s and one of radius r (small and medium corona, see Sec. 3 and 4).

The examples given in [12] correspond on Fig. 2 to numbers 143, 145, 146,
144, 104 and 99. Number 107 also already appeared in [4] (p. 187). Number
51 (depicted on Fig. 3) can be seen on the floor in front of the library of Weg-
gis, Switzerland (4 Luzernerstrasse). Other examples probably appear elsewhere.
The challenge is to find them all.

This is rather simple in theory: as we shall see, we just need basic trigonome-
try and solving systems of polynomial equations. The challenge is computational:
there are many cases to consider and the equations are very complicated. To get
over the barrier encountered in [12], the main new ingredient we introduced are:

– use combinatorics to reduce the number of cases before computing;
– use resultants and interval arithmetic to solve systems of equations.
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The rest of the paper is organized as follows. Sections 3 and 4 define small
and medium coronas and show how to compute a list containing those which
can appear in a compact packing. Section 5 explain how to associate with these
coronas polynomial equations in the radii r and s. The three last sections are
then devoted to solving these equations and finding the corresponding packings.
We outline the theory in Section 6, review the main problems arising in practice
in Section 7 and detail how we solved them in Section 8. The presentation is a
bit sketchy due to space limitations, see [5] for full details.

3 Small coronas

In a compact packing, the discs tangent to a given disc is called a corona. They
form a circular sequence, ordered such that each disc is tangent to the next one.
We code this sequence by the disc radii, i.e., a word over {1, r, s} (see examples
on Fig. 1 and 3). Since circular permutations or reversal of this word encode
the same corona up to an isometry, we shall usually choose the lexicographi-
cally minimal coding. A corona is said to be small, medium or large depending
whether it surrounds a small, medium or large disc. We shall also call x-disc a
disc of radius x, and x-corona

An s-corona contains at most 6 small discs, and at most 5 discs if one of
them is not small. There is thus finitely many different s-coronas. We shall
bound as sharply as possible this number in order to reduce the complexity of
the further exhaustive search. For this, let us define for 0 < s < r < 1 and
k = (k1, . . . , k6) ∈ N6 the function

Sk(r, s) := k11̂s1 + k21̂sr + k31̂ss+ k4r̂sr + k5r̂ss+ k6ŝss,

where x̂yz denotes, in the triangle which connects the centers of mutually tan-
gent discs of radii x, y and z, the angle at the center of the disc of radius y. The
function Sk counts the angles to pass from disc to disc in an s-corona. To each
s-corona corresponds a vector k, called its angle vector, such that Sk(r, s) = 2π.
For example, to the s-corona 1rsrs corresponds the angle vector (0, 1, 1, 0, 3, 0).
We have to find the possible values k for which the equation Sk(r, s) = 2π ad-
mits a solution 0 < s < r < 1.

The angles which occur in Sk(r, s) decrease with s, except ŝss, and increase
with r. This yields the following inequalies, strict except for the s-corona ssssss:

Sk(r, s) ≤ lim
r→1
s→0

Sk(r, s) = k1π + k2π + k3
π

2
+ k4π + k5

π

2
+ k6

π

3
,

Sk(r, s) ≥ inf
r

lim
s→r

Sk(r, s) = lim
r→1
s→1

Sk(r, s) = k1
π

3
+k2

π

3
+k3

π

3
+k4

π

3
+k5

π

3
+k6

π

3
.

The existence of (r, s) such that Sk(r, s) = 2π thus yields the inequalities

k1 + k2 + k3 + k4 + k5 + k6 < 6 < 3k1 + 3k2 +
3

2
k3 + 3k4 +

3

2
k5 + k6,
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except for the s-corona ssssss (k1 = . . . = k5 = 0 and k6 = 6). An exhaustive
search on computer yields 383 possible values for k. For each of them, one shall
check that there indeed exists a coding over {1, r, s} with this angle vector6. This
is also checked by computer and eventually yields 56 s-coronas, listed in Tab. 1.

Table 1. The 55 possible s-coronas, besides ssssss. Those on the first line have no
1-disc and those on the second line no r-disc. All the codings in a given column are
identical up to the replacement 1→ r (this is the keypoint of Lemma 1).

rrrrr rrrrs rrrss rrsrs rrrr rrsss rsrss rrrs rrr rrss
11111 1111s 111ss 11s1s 1111 11sss 1s1ss 111s 111 11ss
1111r 111rs 11rss 11srs 111r 1rsss 1srss 11rs 11r 1rss
111rr 11r1s 1r1ss 1rs1s 11rr 1r1s 1rr
11r1r 11rrs 1rrss 1rsrs 1r1r 1rrs
11rrr 1r1rs r1rss rrs1s 1rrr r1rs
1r1rr 1rr1s
1rrrr 1rrrs

r11rs
r1rrs

4 Medium coronas

Since s can be arbitrarily smaller than r, there can be infinitely many s-discs in
an r-corona. Let us however see that this cannot happen in a compact packing.

Lemma 1. The ratio s
r is uniformly bounded from below in compact packings

with three sizes of discs.

Proof. Consider a compact packings with three sizes of discs. It contains an s-
disc and not only s-discs, thus an s-corona other than ssssss. By replacing each
1 by r in this s-corona, Table 1 shows that we still get an s-corona. In this new
corona, the ratio s

r is smaller. Indeed, the 1-discs have been ”deflated” in r-discs,
so that the perimeter of the corona decreased, whence the size of the surrounded
small disc too. But there is at most 10 possible ratios s

r for an s-corona without
large discs: they correspond to the values computed in [9] for compact packing
with two sizes of discs (the smallest is 5− 2

√
6 ' 0.101).

This lemma ensures that the number of s-discs in an r-corona is uniformly
bounded in compact packings. There is thus only finitely many different r-
coronas in compact packings. To find them all, we proceed similarly as for s-
coronas. We define for 0 < s < r < 1 and l = (l1, . . . , l6) ∈ N6 the function

Ml(r, s) := l11̂r1 + l21̂rr + l31̂rs+ l4r̂rr + l5r̂rs+ l6ŝrs.

6 For example, k = (0, 3, 0, 0, 0, 0) corresponds to three angles 1̂sr around an s-disc:
this is combinatorially impossible.
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We have to find the possible values l for which the equation Ml(r, s) = 2π admits
a solution 0 < s < r < 1. Actually, since the solution should correspond to an r-
corona which occur in a packing, we can assume that it satisfies s

r ≥ α, where α
is the lower bound on s

r given by the s-coronas which occur in this packing. The
angles which occur in Ml(r, s) decrease with r (except r̂rr) and increase with s.
This yields the following inequalities, strict except for the r-corona rrrrrr:

Ml(r, s) ≤ sup
r

lim
s→r

Ml(r, s) = l1π + l2
π

2
+ l3

π

2
+ l4

π

3
+ l5

π

3
+ l6

π

3
,

Ml(r, s) ≥ inf
r

lim
s
r→α

Ml(r, s) = l1
π

3
+ l2

π

3
+ l3uα + l4

π

3
+ l5uα + l6vα,

where 1̂rs has been bounded from below by r̂rs for any r, and the limits uα and
vα of r̂rs and ŝrs when s

r → α are obtained via the cosine law:

uα := arccos

(
1

1 + α

)
and vα := arccos

(
1− 2α2

(1 + α)2

)
.

The existence of (r, s) such that Ml(r, s) = 2π thus yields the inequalities

l1 + l2 + l4 +
3

π
(l3uα + l5uα + l6vα) < 6 < 3l1 +

3

2
l2 +

3

2
l3 + l4 + l5 + l6,

except for the r-corona rrrrrr (l1 = . . . = l5 = 0 and l6 = 6). We also impose

l1 + l2 + l4 +
1

2
(l3 + l5) < 6,

which tells that an r-corona (other than rrrrrr) contains at most 5 r- or 1-discs.
An exhaustive search on computer, which also checks whether there indeed ex-
ists a coding for each possible l, eventualy yields the possible r-coronas for each
value of α. Tab. 2 gives the numbers of such coronas.

Table 2. Each s-corona whose 1-discs have been deflated in r-discs (first line) yields a
lower bound α on s

r
in any compact packing which contains it (second line), and thus

an upper bound on the number of possible r-coronas in this packing (third line).

rrrrr rrrrs rrrss rrsrs rrrr rrsss rsrss rrrs rrr rrss
0.701 0.637 0.545 0.533 0.414 0.386 0.349 0.280 0.154 0.101

84 94 130 143 197 241 272 386 889 1654

Since any r-corona for some lower bound α also appears for a smaller α, there
are at most 1654 different r-coronas. Combining Tables 1 and 2 shows that there
is at most 16805 pairs formed by an s-corona and an r-corona which can appear
in the same compact packing with three sizes of discs.
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5 Equations

We here describe an algorithm to associate with an s-corona with angle vector k
a polynomial equation in r and s whose solutions contain those of Sk(r, s) = 2π.

Start from the equation Sk(r, s) = 2π. Take the cosine of both sides and
fully expand the left-hand side. Substract cos(2π) = 1 to both sides. This yields
a polynomial equation in cosines and sines of the angles occuring in Sk.

The power of each sine can be decreased by 2 by using sin2 a = 1 − cos2 a.
Doing this as much as possible yields a polynomial where no sines is raised to
a power greater than 1. The cosine law then allows to replace each cosine by
a rational fraction in r and s. This yields a rational function in r, s and sines.
Multiplying by the least common divisors of the denominators yields a polyno-
mial in r, s and the sines which is equal to zero.

We shall now ”remove” the sines one by one. Whenever the polynomial
writes A sin a + B, where A and B are polynomials without sin a, we multi-
ply by A sin a − B to get A2 sin2 a − B2 = 0. We can then replace sin2 a by
1 − cos2 a, use the cosine law to replace cos2 a by a rational function in r and
s, and multiply by the least common divisors of the denominators. By iterating
this for each sine, we eventually get a polynomial equation in r and s. The final
polynomial can however be quite large since each sine removal roughly doubles
its degree.

The solutions (r, s) of Sk(r, s) = 2π are still solution of this polynomial
equation, but each multiplication by A sin a−B could have added new solutions
which shall eventually be ruled out (we shall come back to this later).

This algorithm has been implemented on computer. For example, it associates
with the s-corona 11rs the polynomial equation

r2s4−2r2s3−2rs4−23r2s2−28rs3 + s4−24r2s−58rs2−2s3 + 16r2−8rs+ s2.

The same algorithm also associates with each r-corona a polynomial equation.

We cannot write here all the equations. Let us just provide some statistics.
The equations associated with the 55 s-coronas are computed on our laptop7 in
less that 5s and yield a 17Ko file. The mean degree of these polynomial equations
is 6.71 (standard deviation 5.77), with maximum 28 for the s-corona 11rrs. The
equations associated with the 1654 r-coronas are computed on our laptop in 2h
21min and yield a 35Mo file. The mean degree of these polynomial equations is
57.88 (standard deviation 50.16), with maximum 416 for the s-corona 11rrs12.

7 Intel Core i5-7300U with 4 cores at 2.60GHz and 15, 6 Go RAM.
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6 Computating radii: the theory

The path to compute the possible radii is now marked:

1. Compute the solutions (r, s) with 0 < s < r < 1 of each system of two
polynomial equations in r and s associated with a possible pair formed by
an s-corona and an r-corona.

2. Use the computed values of r and s to compute the angles appearing in Sk

and Ml, as well as in the function defined for 0 < s < r < 1 and n ∈ N6 by

Ln(r, s) := n11̂11 + n21̂1r + n31̂1s+ n4r̂1r + n5r̂1s+ n6ŝ1s.

Perform an exhaustive search for all the possible values k, l and n which
satisfy the equations Sk(r, s) = 2π, Ml(r, s) = 2π and Ln(r, s) = 2π. This
yields all the possible sets of s-, r- and 1-coronas.

3. Check the existence of a compact packing for each set of coronas.

Consider, for example, the pair s/r-coronas 1r1r/1r1r1s. The associated equa-
tions are respectively rs+s2−r+s and r3+r2s−rs−s. There is only one solution
(r, s) with 0 < s < r < 1, namely r ' 0.751 is a root of X4−4X3−2X2+2X+1
and s ' 0.356 is a root of X4 + 6X3 + 2X − 1. Searching for all the other coro-
nas compatible with these values yields only large coronas, namely r3sr3s, r4sr2s
and r5srs (same angle vector). On then easily finds a periodic compact packing,
namely the number 87 on Fig 3.

7 Computating radii: problems

The above approach however suffers from a number of problems:

1. The example 1r1r/1r1r1s in the previous section has been chosen because
it yields one of the most simple system to solve. The coronas 11rs/111srrss
yield equations of degree 6 and 56 - close to the mean degree of equations
associated with s- and r-coronas - and we need 22min 44s with SageMath
[14] on our laptop to solve the system. For 11rrs/11rrs

12
, the equations have

degree 28 and 416 and solving the system seems out or reach of our laptop8.
2. Algebraic values of r and s yield non-algebraic angles: how to perform exact

computation to find all the compatible coronas and only them?
3. Not only systems can be highly complicated, but there are 16805 of them!
4. Checking the existence of a compact packing for a given set of coronas could

be hard. This indeed amounts do decide whether a set of ten triangular tiles,
namely the triangles between the centers of three mutually adjacent discs,
does tile the plane. This is close to the domino problem, which is known to
be undecidable [13].

The next section sketches how we got over this (full details can be found in [5]).

8 It required 6 minutes just to compute the equations. Trying to solve the system
exhausted the memory of our laptop after around 30h and crashed thereafter.
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8 Computating radii: the practice

8.1 Solving equations

We use the hidden variable method (see, e.g., Sec. 3.5 of [2] or Sec. 9.2.4 of [15]).
Recall that the resultant of two univariate polynomials is a scalar which is equal
to zero iff the two polynomials have a common root. Now, if P and Q are two
polynomials of Z[r, s], we can see them as polynomials in r with coefficients in
Z[s], i.e., we hide the variable s. Their resultant is thus a polynomial in s which
has a root s0 iff P (r, s0) and Q(r, s0) have a common root r. In other words, we
can compute the second coordinates of the roots (r, s) of P and Q by computing
the roots of an univariate polynomial (the above resultant). We can similarly
compute the first coordinates by exchanging r and s. The cartesian product of
these first and second coordinates then contains the roots (r, s) of P and Q.

We shall apply this to the two polynomial equations in r and s associated
with each pair of s/r-coronas. The point is that resultants are easily computed
(as determinants of Sylvester matrices), as well as the roots of an univariate
polynomial (it amounts to find a proper interval for each root). Of course, the
obtained cartesian product generally contains, besides the solutions, many ”false
pairs” (r, s) which have to be ruled out. Actually, even among the solutions there
are also false pairs which must be ruled out: those introduced when we remove
the sines to get a polynomial equation (Sec. 5). But too much is better than not
enough: we shall now focus on finding the pairs which indeed allow coronas.

8.2 Finding coronas

Assume two algebraic real numbers 0 < s < r < 1 are given. We want to find all
the values k, l and n which satisfy the equations Sk(r, s) = 2π, Ml(r, s) = 2π
and Ln(r, s) = 2π. If they are no possible value for k, l or n, then we rule out
the pair (r, s).

We rely on interval arithmetic as much as possible. We compute intervals for
r and s, then for the angles appearing in Sk, Ml, and Ln via arccos. We then
compute the k, l and n such that the intervals Sk(r, s), Ml(r, s) and Ln(r, s)
contain 2π. As we shall see, this actually suffices to rule out all the false pairs
(a hint is that the remaining set is stable when the precision used for intervals
is increased).

To check that the found coronas are indeed valid, we check the associated
polynomial equations. We compute them as in Section 5, except that each time
we multiply by A sin a − B to remove sin a, we compute the interval for this
expression and check that it does not contain zero. If it does9, we check exactly
whether A sin a+B = 0 and rule out the case if it does not. We finally put the
algebraic values of r and s in the polynomial equation to check it exactly10.

9 In all the cases we eventually considered, it occured only for 1r1r/11r1s.
10 There were eventually only 213 cases to check; it tooks less than 5min on our laptop.
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8.3 Reducing the number of cases

As seen in Sec. 4, there are 16805 pairs of s- and r-coronas, i.e., 16805 systems
of polynomials equations to solve. Many of them are moreover too hard to solve.
However, as we shall see, combinatorial arguments can be used to show that
most of them do not allow compact packing, without even computing r and s.
For this purpose, we distinguish three classes of compact packings:

1. those with no s- and r-discs in contact;
2. those with two different s-coronas (besides ssssss);
3. all the other ones.

The first class is very simple. There is an s-corona without r-disc which thus
characterizes one of the 10 values of s for a compact packings with discs of radii
1 and s. Similarly, there is an r-corona without s-disc which yield 10 possibles
values for r. With moreover s < r, this immediatly yields

(
10
2

)
= 45 pairs (r, s).

The second class relies only on s-coronas. There are 55 of them, moreover
associated with simpler equations than r-coronas. This yields

(
55
2

)
= 1485 sys-

tems. The hidden variable method gives 1573 pairs (r, s) where r and s are real
algebraic numbers such that 0 < s < r < 1. Only 37 of them admit coronas of
all sizes11. All these computations required no more than a couple of minutes.

The last class is the main one. The fact that there is only one s-corona
(besides ssssss) however yields a strong combinatorial constraint on the possible
r-coronas. Since these compact packings contain an s-corona and a r-corona
which intersect, i.e., the surrounded s- and r-discs are tangent, we can assume
that the considered pair of s- and r-coronas intersect. Then, each pattern xsy in
the coding of the r-corona force the pattern xry in the coding of the s-corona
(the discs of radii x and y are those which are tangent to the centers of both
coronas). This simple constraint reduces to only 803 the number of pairs of s-
and r-coronas to be considered. Moreover, the remaining r-coronas are among
the simplest ones12. The hidden variable method gives 62892 pairs (r, s) where
r and s are real algebraic numbers such that 0 < s < r < 1. Only 176 of them
admit coronas of all sizes. All these computations required around 13min13.

8.4 Finding packings

The three above combinatorial classes now respectively contain 45, 37 and 176
pairs (r, s) which allow coronas of all sizes. It was a bit long but not too difficult
to find, by hands, an example of a periodic compact packing with three size of

11 That is, the values of r and s allows s-, r- and 1-coronnas, which is necessary to
have a packing with the three size of discs

12 There are 192 different r-coronas (among the 1654 initial ones), and the mean alge-
braic degree of the associated equations is 14, with maximum 80 for 11rrsrss.

13 Except for 1rr1s/11rrs: the hidden variable method with SageMath inexplicably
crashed and solving the system via Gröbner basis tooks 45 minutes on our laptop.



12 Thomas Fernique, Amir Hashemi, and Olga Sizova

discs for respectively 18, 1 and 145 of these pairs14. We then had to combinato-
rially prove that the other pairs do not allow any compact packing with three
size of discs. Since 18 + 1 + 145 = 164, Theorem 1 follows.

The 27 cases ruled out in the first combinatorial class were exactly those with
no 1-corona containing both s- and r-discs. They do admit compact packings but
not with all the three size of discs. All the cases in in the second combinatorial
class turned out to have no 1-corona containing an r-disc, and the only case
which allows three sizes of discs is the one with an s-corona which contains both
r- and 1-discs (namely 1srrs). In the last class, we proved that an s-corona 1rss,
11rss, 1rrss or 1srss in a compact packing actually implies another s-corona in
this packing, which thus falls into the second combinatorial class. This ruled out
24 cases. The 7 remaining ones were ruled out one by one, each with a short
combinatorial argument. They do not allow any compact packing.
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