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Packing: union of interior-disjoint spheres (no overlap).
Density of a packing:

volume of [k, k]3 inside the spheres
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Conjecture (Kepler, 1610)
For equal spheres in R3, the maximal density is 3?—@ ~ 74%.
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Beyond oranges

What if we have oranges and mandarins, i.e., different sphere sizes?

Conjecture (Rock salt)
For sizes 1 and /2 — 1, the maximal density is (3 — v/2)m ~ 79%.

What if we pack spheres in R"” for other values of n?

Theorem (Viazovska, 2016)

For equal spheres in R®, the maximal density is 3% ~ 25%.
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Materials science

Slicing higher dimensional packings may also be interesting!
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Equal disks

Consider the Delaunay triangulation of the disk centers.
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N

Consider the Delaunay triangulation of the disk centers.
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Equal disks

Lemma (Chan-Wang, 2010)
Densest possible triangle: three pairwise tangent disks.
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Equal disks

Theorem (Thue 1910, Téth 1943)

For equal disks, the maximal density is 2%@ ~ 91%.
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Unequal disks

Consider a packing of disks with, e.g., two sizes.
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Consider the Delaunay triangulation of the disk centers.
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Unequal disks

Theorem (Florian, 1960)

Densest triangle: two small and one large pairwise tangent disks.
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Unequal disks
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11/15



Unequal disks

Frustration: Florian's triangles do not tile the plane!
Around a small disk: k > 4 angles a, keven = k> 6 = a < %
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11/15



Unequal disks

Strategy: local redistribution of density excesses. . .

11/15



Unequal disks

Strategy: local redistribution of density excesses. . .

11/15



Unequal disks

Strategy: local redistribution of density excesses. . .

11/15



Unequal disks

Strategy: local redistribution of density excesses. . .

11/15



Unequal disks
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Theorem (Bédaride-F., 2022)

Each of these nine (periodic) packings maximizes the density.
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Equal spheres

Theorem (Rogers, 1958)
Density upper bound: tetrahedron of pairwise tangent spheres.
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Equal spheres

Theorem (Rogers, 1958)
Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space ~~ frustration.

Kepler's packings: stacked layers of spheres on a triangular grid
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Equal spheres

Theorem (Rogers, 1958)
Density upper bound: tetrahedron of pairwise tangent spheres.

Regular tetrahedra do not tile the space ~~ frustration.

Kepler's packings: tilings of regular tetrahedra and octahedra.
Theorem (Hales-Ferguson, 1998-2014)

For equal spheres in R3, the maximal density is % ~ 74%.
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Unequal spheres

No tight bound, though very interesting for materials science. . .
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No tight bound, though very interesting for materials science. . .

Conjecture (Rock salt)
For sizes 1 and /2 — 1, the maximal density is (3 — v/2)m ~ 79%.
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Higher dimensions

Only equal spheres packing have been considered.
Tight bound in dim. 8 mentionned. Similar result in dim. 24.

For (many) other dimensions, only bounds or conjectures.
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Higher dimensions

Only equal spheres packing have been considered.
Tight bound in dim. 8 mentionned. Similar result in dim. 24.

For (many) other dimensions, only bounds or conjectures.

Theorem (easy but not constructive)
There are packings of unit spheres in R" with density at least 1/2".

Theorem (Kabatianskiy-Levenshtein, 1978)
Any packing of unit spheres in R" has density at most 1,/20-599",
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Density plot for two disks
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Interval arithmetic
x € R ~> representable interval X = [x,X].

Interval Arithmetic library:
Given f : R — R and an interval X, computes an interval fx s.t.

> Vx € X, f(x) € fx (correctness);

» the smaller X, the smaller fx (accuracy).

Attention: fx is usually much larger than f(X) = {f(x) | x € X}:
X =[0,1] ~ X-X=[-1,1].

Used to prove inequalities over intervals:
F(X)>0 = VxeX, f(x)>0,

Usually, 0 € f(X) and we cannot conclude. Refine by dichotomy!.
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