
On and Off-Policy
Relational Reinforcement Learning

Christophe Rodrigues, Pierre Gérard, and Céline Rouveirol

LIPN, UMR CNRS 7030, Institut Galilée - Université Paris-Nord
first.last@lipn.univ-paris13.fr

Abstract. In this paper, we propose adaptations of Sarsa and regular Q-
learning to the relational case, by using an incremental relational function
approximator RIB. In the experimental study, we highlight how changing
the RL algorithms impacts generalization in relational regression.

1 Introduction

Most works on Reinforcement Learning (RL, [1]) use propositional – feature
based – representations to produce approximations of value-functions. If states
and actions are represented by scalar vectors, the classical numerical approach
to learn value-functions is to use regression algorithms. Recently, the field of
Relational Reinforcement Learning (RRL) has emerged [2] aiming at extending
Reinforcement learning to handle more complex – first order logic-based – repre-
sentations for states and actions. Moving to a more complex language opens up
possibilities beyond the reach of attribute-value learning systems, mainly thanks
to the detection and exploitation of structural regularities in (state, action) pairs.

In this paper, we study how even slight modifications in the RL algorithm em-
ployed may impact significantly on the performance of the relational regression
system. In section 2, we briefly present the RL problem in the relational frame-
work and we present three very similar RRL algorithms: the former Q-RRL [2],
and two regular algorithms upgraded to relational representations: Q-learning
(off-policy) and Sarsa (on-policy). We combine all these RL techniques with the
same relational function approximator: RIB [3]. In section 3, we compare those
algorithms experimentally and show a significant impact on RIB performance.
Indeed, the size of the models learned by RIB decrease, resulting in an overall
reduction of computation time.

2 Relational Temporal Difference

Relational Reinforcement Learning (RRL) addresses the development of RL al-
gorithms operating on relational representations of states and actions.

The relational Reinforcement Learning task can be defined as follows. Given:

– a set of possible states S, represented in a relational format,
– a set of possible actions A, also represented in a relational format,

– an unknown transition function T : S × A 7→ S, (this function can be
nondeterministic)

– an unknown real-valued reward function R : S ×A 7→ R,

the goal is to learn a policy for selecting actions π : S → A that maximizes the
discounted return Rt =

∑∞
k=0 γkrt+k+1 from any time step t. This return is the

cumulative reward obtained in the future, starting in state st. Future rewards
are weakened by using a discount factor γ ∈ [0, 1]. In value-based RL methods,
the return is usually approximated thanks to a value function V : S → R or a
Q-value function Q : S ×A → R such that Q(s, a) ≈ E {Rt | st = s, at = a}.

Algorithm 1 Off-policy TD RRL algorithm: Qlearning-RIB (RIB-Q)
Require: state and action spaces 〈S,A〉, RIB regression system for QRIB

Ensure: approximation of the action-value function QRIB

initialize Q
loop

choose randomly start state s for episode
repeat

a← πτ
QRIB

(s) (Boltzmann softmax)
perform a; get r and s′ in return
if s′ is NOT terminal then

QRIB(s, a)
learn←−−− r + γ maxa′∈A(s′) QRIB(s′, a′)

else
QRIB(s, a)

learn←−−− r
end if
s← s′

until s terminal
end loop

States are relational interpretations, as used in the “learning from interpre-
tations” setting [4]. In this notation, each (state, action) pair is represented by
a relational interpretation, ie a set of relational facts. The action is represented
by an additional ground fact.

Among other incremental relational function approximators used in RRL [2,
5–7], the RIB system [3] is a quite good performance/efficiency compromise. It
adopts an instance based learning paradigm to approximate the Q-value func-
tion. RIB stores a number of prototypes each associated with a Q-value. These
prototypes are employed to predict the Q-value of unseen examples, using a k-
nearest-neighbor algorithm. It takes advantage of a relational distance adapted
to the problem to solve (see [8] for a distance for the blocks world problem).
RIB handles incrementality since it forgets prototypes that are not necessary to
reach a good prediction performance or have a bad prediction performance.

As opposed to regular Q-learning, in the RRL algorithm introduced in [2],
learning occurs only at the end of episodes, and not at each time step. It stores
full trajectories s0, a0, r1, s1, · · · , sT−1, aT−1, rT , sT . Then, back-propagation

of all the time-steps occurs at once only when reaching a terminal state, using
the usual update rule:

Q(st, at)
learn←−−− rt+1 + γ max

a∈A(st+1)
Q(st+1, a)

In order to learn at each time step, we propose (algorithm 1) a regular adap-
tation of Q-learning to a relational framework and use RIB for the relational
regression part.

Algorithm 2 On-policy TD RRL algorithm: Sarsa-RIB (RIB-S)
Require: state and action spaces 〈S,A〉, RIB regression system for QRIB

Ensure: approximation of the action-value function QRIB

initialize Q
loop

choose randomly start state s for episode
a← πτ

QRIB
(s) (Boltzmann softmax)

repeat
perform a; get r and s′ in return
a′ ← πτ

QRIB
(s′) (Boltzmann softmax)

if s′ is NOT terminal then
QRIB(s, a)

learn←−−− r + γQRIB(s′, a′)
else

QRIB(s, a)
learn←−−− r

end if
s← s′; a← a′

until s terminal
end loop

In this algorithm, QRIB(s, a) stands for the RIB prediction for the (s, a) pair.
πτ

QRIB
means that the action is chosen according to a policy π derived from the

action values QRIB . The action is selected according to a Boltzmann distribution
with a temperature τ 1.

Q-learning is said off-policy because it learns an optimal Q-value function,
even if it does not always choose optimal actions. With minor modifications, we
propose (algorithm 2) an upgraded version of Sarsa [1], an on-policy algorithm
which learns the Q-value function corresponding to the policy it actually follows.

With these new algorithms, there is no need anymore to keep complete tra-
jectories in memory. In addition, the value function is modified at each time
step. As a consequence, action selection improves along an episode. Although we
expect little performance gain from a strict RL perspective, from an ILP point
of view, these algorithms take full advantage of the incrementality of RIB. This
method changes both the presented samples and their order of presentation to

1 The probability of choosing action a in state s is e
QRIB(a)

τP
b∈A(s) e

QRIB(b)
τ

.

the regression algorithm, resulting in a different generalization of the Q-value
function.

3 Experimental study

The experiments are performed on the blocks world problem as described in [9].
Each algorithm (RIB-S, RIB-Q and RIB-RL) is tested for 20 trials, and results
are averaged. The trials are divided into episodes, each starting in a random state
and ending depending on the task to solve (stacking or on(a,b)). The Q-value
function is periodically evaluated during a trial. For each evaluation, 10 episodes
of greedy exploitation without learning are performed, each starting randomly.

In every experiment, the discount factor γ is set to 0.9. Each episode is inter-
rupted after N time steps, depending of the number of blocks in the environment:
N = (nblocks − 1)× 3. All other parameters are set according to [9].

Figure 1 compares the different algorithms facing the on(a,b) problem with
5 and 7 blocks. Table 1 shows the average number of instances used by RIB
after 1000 episodes, indicating the complexity of the model obtained by each
algorithm by each algorithm on the different problems.

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 7 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 1. Evolution of the number of time steps to complete an episode

stacking 5 blocks 6 blocks 7 blocks
goal Average σ Average σ Average σ

RIB-RL 21 0 38 0 63 1.0
RIB-Q 19 0.2 32 0.6 51 1.9
RIB-S 19 0 32 0.5 50 1.3

Table 1. Number of prototypes used by RIB after 1000 episodes

Figure 2 compares the different algorithms facing the stacking problem with
5 and 7 blocks. Table 2 shows the average number of instances used by RIB after
1000 episodes (with standard deviation), indicating the complexity of the model
obtained by each algorithm on the different problems.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 7 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 2. Evolution of the number of time steps to complete an episode

on(a, b) 5 blocks 6 blocks 7 blocks
goal Average σ Average σ Average σ

RIB-RL 325 3.0 757 18.4 1339 47.7
RIB-Q 254 2.9 566 7.8 1063 18.2
RIB-S 245 4.4 465 17.3 608 17.1

Table 2. Number of prototypes used by RIB after 1000 episodes

The experimental results show that, as one might expect on such a task
where exploration actions do not lead to catastrophic actions, the off-policy TD
algorithms (RIB-RL and RIB-Q) outperform slightly the on-policy one (RIB-
S). Moreover, RIB-Q does not differ that much from the original Q-RRL (here,
RIB-RL), considering the convergence speed wrt the number of episodes. Most
important is the level of performance (computation time) reached by all pre-
sented RRL algorithms. Our adaptations of Q-learning and Sarsa, namely RIB-
Q and RIB-S, don’t provide more examples to the regression system than the
former Q-RRL. Thus, since RIB’s learning is linear in the number of prototypes,
and having less prototypes saves computation time. RIB-S (on-policy) learns
less prototypes for these relatively simple tasks, it explores a smaller portion of
the state space than off-policy algorithms due to its policy, and therefore needs
less prototypes to reach a good predictive accuracy on those states. As a con-
sequence, RIB-S outperforms RIB-Q and RIB-RL as far as computation time
is concerned, demonstrating than despite its slower convergence speed wrt the
number of episodes, Sarsa remains a good candidate for scaling-up.

RIB is instance-based and thus strongly relies on its distance: generalization
only takes place through the distance computation during the k-nearest-neighbor
prediction. The distance used in RIB [9] is well suited for blocks world problems:
it relies on a distance similar to the Levenshtein edit distance between sets of
block stacks, seen as strings. The distance between (state, action) pairs is equal
to 0 for pairs differing only by a permutation of constants that do not occur
in the action literal. This distance also takes into account bindings of variables
occurring in the goal. Without this prior knowledge, the system cannot solve

problems like on(a, b), where two specific blocks have to be stacked on each
other.

4 Conclusion

We have observed that even small differences in the RL techniques significantly
influence the behavior of a fixed relational regression algorithm, namely RIB. We
have proposed two RRL algorithms, RIB-Q and RIB-S, and have tested them
on usual RRL benchmarks, showing performance improvements.

This work opens up several new research directions. We plan to adapt more
sophisticated RL algorithms that will provide more useful information to the
relational regression algorithms. We have already made experiments with rela-
tional TD(λ) with eligility traces, without noticing a significant improvement,
neither on the number of prototypes nor on the computation time. A possible
explanation is that the distance is to well fitted to the problem that eligibility
traces are useless in that case. It might be interesting to study how RL may
balance the effects of a misleading distance or even further, how RL may help
in adapting the distance to the problem at hand.

Acknowledgements The authors would like to thank Kurt Driessens and Jan
Ramon for very nicely and helpfully providing the authors with RIB-RL.

References

1. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press
(1998)

2. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43 (2001) 7–52

3. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Proceedings of the Twentieth International Conference on
Machine Learning (ICML 2003). (2003) 123–130

4. De Raedt, L., Džeroski, S.: First-order jk-clausal theories are PAC-learnable. Arti-
ficial Intelligence 70(1–2) (1994) 375–392

5. Driessens, K., Ramon, J., , Blockeel, H.: Speeding up relational reinforcement learn-
ing through the use of an incremental first order decision tree algorithm. In: Pro-
ceedings of the European Conference on Machine Learning (ECML 2001), LNAI vol
2167. (2001) 97–108

6. Driessens, K., Dzeroski, S.: Combining model-based and instance-based learning
for first order regression. In: Proceedings of the 22nd International Conference on
Machine Learning (ICML 2005). (2005) 193–200

7. Gartner, T., Driessens, K., , Ramon, J.: Graph kernels and gaussian processes
for relational reinforcement learning. In: Proceedings of the 13th Inductive Logic
Programming International Conference (ILP 2003), LNCS vol 2835. (2003) 146–163

8. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point
sets. Acta Informatica 37(10) (2001) 765–780

9. Driessens, K.: Relational reinforcement learning. PhD thesis, K. U. Leuven (2004)

