
Relational TD Reinforcement Learning

Christophe Rodrigues, Pierre Gérard, and Céline Rouveirol

LIPN (Computer Science lab of the Paris 13 University)
first.last@lipn.univ-paris13.fr

Abstract. Relational Reinforcement Learning (RRL) addresses the use
of relational representations of states and actions in RL rather than the
usual attribute-values. Most works in this field aims at improving rela-
tional function approximation, or at adapting advanced techniques to the
relational framework. However, little has been done so far to investigate
basic Temporal Difference in RRL. In this paper, we propose adaptations
of Sarsa and regular Q-learning to the relational case, by using an incre-
mental relational function approximator RIB. In the experimental study,
we highlight how changing the RL algorithms impacts generalisation in
relational regression.

1 Introduction

Most works on Reinforcement Learning (RL) [1] use propositional – feature
based – representations to produce approximations of value-functions. If states
and actions are represented by scalar vectors, the classical numerical approach
to learn value-functions is to use regression algorithms. Recently, the field of
Relational Reinforcement Learning (RRL) has emerged [2] aiming at extending
Reinforcement learning to handle more complex – first order logic-based – repre-
sentations for states and actions. Moving to a more complex language opens up
possibilities beyond the reach of attribute-value learning systems, mainly thanks
to the detection and exploitation of structural regularities in (state, action) pairs.
Many works in RRL have focused on the development of relational regression
algorithms, ie, they tackle the problem of approximating value-functions for re-
lational representations of state and actions. Surprisingly, there has been yet
little work to include basic Temporal Difference RL algorithms within such RRL
systems. In this paper, building on the work of Driessens and colleagues [3], we
plan to investigate the gain of upgrading the RL algorithm for a fixed relational
regression algorithm, namely RIB [3].

In section 2, we introduce the RRL field by motivating the use of relational
representations for RL, and sit our contribution in this context. In section 3,
after a brief overview, we justify why we select RIB as the relational function
approximator for our RRL system. In section 4, we detail how we adapt classi-
cal Temporal Difference algorithms to handle relational representations. Finally,
section 5 describes several experiments and draw some lessons about the inter-
actions between RL and ILP, before concluding on open research perspectives.

2 Relational representations in RL

Usually, RL uses propositional or attribute-value (AV) representations. States
and actions are then represented by a vector of attributes, most of the time
scalar. When value-based algorithms are used for RL, a value is associated to
states or (state, action) pairs. This value enables to decide which state or (state,
action) pair is most suitable among others. In order to produce value predictions,
one can use numerical function approximators such as Neural Networks, as in
[4] for instance.

Let us consider a simple and illustrative AI problem: the blocks world prob-
lem. Blocks are stacked on top of each other and an intelligent system can move
blocks on each other in order to fulfil different goals, such as stacking all blocks
in a single stack. Figure 1 shows a state example, where:

– blocks a, b and d are on floor;
– block c is on block b.

After After
Initial state moving d on c moving c on floor

a b d

c

a b

d

c

a b d c

(1) (2)

Fig. 1. Initial state and outcomes after action selection

Representing a state in such an environment is not straightforward for who wants
to design a reasoning or a learning algorithm. A naive representation could use
two attributes for each block: one for the column (from 0 to 3 in the example
of figure 1) and the other for the height of each block in the stack (from 0 to 3
in the 4-blocks world of the example). With such a representation, the state in
figure 1 is represented by the vector (0, 0, 1, 0, 1, 1, 2, 0). Here, (0, 0) corresponds
to the “coordinates” of block a, (1, 0) of block b, (1, 1) of block c and (2, 0) of
block d. In order to represent an action in a propositional way, one could also
use two attributes: one to specify the column of the block to move, and another
one to specify the destination column. This way, moving block d (stack 2) on
top of block c (stack 1) is represented by the action vector (2, 1).

Figure 1 shows the resulting states st+1 when different actions at are ap-
plied to the state st of figure 1. The corresponding (state, action) pairs can be
represented in a propositional way as shown in table 1.

Option (1) (2)

Action move d on c move c on floor

st (0, 0, 1, 0, 1, 1, 2, 0) (0, 0, 1, 0, 1, 1, 2, 0)
at (2, 1) (1, 4)
st+1 (0, 0, 1, 0, 1, 1, 1, 2) (0, 0, 1, 0, 2, 0, 3, 0)

Table 1. Examples of states, actions and outcomes with a propositional representation

RL algorithms have to discover regularities in the dynamics of the environ-
ment and to find out which possibilities are the most suitable ones among those
considered (in our example, (1) should be preferred). For AV-based algorithms,
numerical Q-values associated to (state, action) pairs enable to decide which
action will be preferred in any given state. Rather than tabular algorithms,
state-of-the-art RL algorithms use incremental regression in order to find accu-
rate approximations of Q : S ×A→ R value functions with a limited number of
parameters. Value-based RL methods use generalisation in order to produce a
compact representation of the value function. How generalisation takes place is
of course highly dependant on the chosen representation for states and actions.

In order to scale-up, a RL system should be able to use solutions learned on
small problems as a starting point for large problems. By iterating this method,
it becomes gradually possible to tackle complex problems, out of reach when
directly addressed. For example, to deal with a 10 blocks problem1, one could
begin with a 5 blocks version of the problem2 and then learning repeatedly with
the solutions obtained at the previous iteration.

When regularities are identified on simpler versions of a problem and repre-
sented in a propositional way, it may be tricky to reuse them in order to tackle
more complex versions of the problem. Thus scaling-up of AV RL algorithms to
large problems is limited.

In order to implement such scaling-up capabilities, best is to shift to relational
dedicated representations. In such representations, constants are associated to
objects (blocks a, b, c and d for instance) which are linked thanks to relational
predicates (like on/2). In our example, on(a, b) denotes that block a is on top of
block b). Assuming that we have a constant f representing the floor, the state
on figure 1 can then be represented by on(a, f), on(b, f), on(c, b), on(d, f) and
the considered actions by (1) move(d, c) and (2) move(c, f). The corresponding
outcomes are depicted by table 2.

1 58,941,091 states, difficult to handle from the outset
2 501 states only

Option (1) (2)

Action move d on c move c on f

st on(a, f), on(b, f), on(c, b), on(d, f) on(a, f), on(b, f), on(c, b), on(d, f)
at move(d, c) move(c, f)
st+1 on(a, f), on(b, f), on(c, b), on(d, c) on(a, f), on(b, f), on(c, f), on(d, f)

Table 2. Examples of (state, action) pairs and outcomes with a relational representa-
tion

The first advantage of such a representation is its elicitation of relations
between objects. More important is the new generalisation capabilities offered
by such a language.

In order to bound the complexity of the value function representation, it is
advisable to avoid tabular algorithms and rather shift to function approximation.
As with propositional representations, a key point in value-based RL is to use
incremental regression in order to find an approximation of the optimal value
function. Since option (1) is more suitable than (2) in the above table, the
function approximation should predict a greater value for

Q(on(a, f), on(b, f), on(c, b), on(d, f),move(d, c))

than for Q(on(a, f), on(b, f), on(c, b), on(d, f),move(c, f)), eg the less suitable
(state, action) pair.

Moreover, the value of the former (state, action) pair should be identical to
other pairs among which those depicted figure 2 and denoted as:

i on(c,f), on(c,f), on(a,d), on(b,f), move(b,a)
ii on(b,f), on(a,f), on(d,a), on(c,f), move(c,d)

iii on(d,f), on(c,f), on(b,c), on(d,f), move(a,b)

These states and actions are identical up to a permutation of constants a, b, c and
d. When a system learns in one situation, it is suitable to generalise to the other
ones. Considering generalisation issues, notice the matching of bold constants
between the action and the state part. This kind of regularities between states

(i) (ii) (iii)

c d b

a

b a c

d

d c a

b

Fig. 2. Several (state, action) pairs with the same value

and actions is difficult to exhibit with AV RL. It is more straightforward with

relational representations: assuming that X, Y , Z and T are variables and f is
still a constant denoting the floor, the (state, action) pairs of figure 2 can all be
represented with the following first order description

on(X, f), on(Y, f), on(Z, Y), on(T, f),move(T,Z)

since variables X, Y , Z and T may instantiate to different constants depending
on the (state, action) pair. In addition, such generalisations learned in small
environments can be easily reused in more complex versions of the problem
since the representation does neither rely on the number of constants nor on
their order, thus providing the system with scaling-up capabilities.

3 Relational function approximation for RL

So as to draw expected benefits underlined in previous section, Relational Re-
inforcement Learning (RRL) addresses the development of RL algorithms oper-
ating on relational representations of states and actions, as informally described
above.

Before defining RRL, we very briefly introduce basic notions of first order
logics used in the remainder of the paper. Names of objects are called constants,
their identifiers start with a lowercase character (a, b, f , . . .). Variables, which
are used to denote arbitrary objects have identifiers starting with an uppercase
character (X, Y , Z, . . .). A term here is either a constant or a variable. The arity
o a function or predicate symbol is the number of terms to which the function or
predicate symbol applies. A function or predicate symbol of arity n is referred
to as f/n. Relations that link objects (eg, on/2) or actions (eg, move/2) are
denoted by predicate symbols. Similarly, a predicate symbol of arity n is referred
to as p/n. An atom is a predicate symbol applied to a number of terms (eg,
move(a, b)). A ground atom is an atom without a variable. A literal is either an
atom or a negated atom.

The relational Reinforcement Learning task can be defined as follows.

Definition 1. (Relational Reinforcement learning) Given:

– a set of possible states S, represented in a relational format,
– a set of possible actions A, also represented in a relational format,
– an unknown transition function T : S × A 7→ S, (this function can be non-

deterministic)
– an unknown real-valued reward function R : S ×A 7→ R,

the goal is to learn a policy for probabilistically selecting actions π : S × A →
[0, 1] that maximises the discounted return Rt =

∑∞
k=0 γ

krt+k+1 from any time
step t. This return is the cumulative reward obtained in the future, starting in
state st. Future rewards are weakened by using a discount factor γ ∈ [0, 1]. In
value-based RL methods, the return is usually approximated thanks to a value
function V : S → R or a Q-value function Q : S × A → R such that Q(s, a) =
E {Rt | st = s, at = a}.

States are relational interpretations, as used in the “learning from interpreta-
tions” setting [5, 6]. In this notation, each (state, action) pair is represented by
a relational interpretation, ie a set of relational facts. The action is represented
by an additional ground fact (see table 2).

Although there are numerous possible developments in RRL, the most stud-
ied one up to now is about learning to approximate value-functions for relational
(state, action) pairs. [2, 7, 3, 8, 9] work on providing RRL with more and more
efficient relational regression systems. This learning problem is a challenge for
the Inductive Logic Programming (ILP) community, because it requires the de-
velopment of incremental regression algorithms for rich representations.

The first relational regression system TILDE-RT, [10] coupled with a Q-
learning-like system in the Q-RRL system [2], is not incremental: at the end
of each episode, the system learns again from all (state, action) pairs already
encountered.

The posterior work of Kurt Driessens and colleagues [7, 3, 8, 9] aimed at im-
proving the relational regression system, focusing on the incrementality issue. TG
[7] builds a regression tree as TILDE-RT does. TG mainly differs from TILDE-
RT in the way it splits a node into several ones, if the test yielding this split is
highly significant. TG is incremental, still the tree structure is quite rigid and
does not allow to cope well with the concept drift inherent to RL : the quality
of examples improves during learning and unnecessary nodes (nodes that do not
belong to the optimal regression tree) may be introduced high in the tree, and
cannot be suppressed later in the learning process.

More recently, the RIB system [3] adopts an instance based learning paradigm
to approximate the Q-value function. RIB stores a number of prototypes each
associated with a Q-value. These prototypes are employed to predict the Q-
value of unseen examples, using a k-nearest-neighbour algorithm or a “maximum
variance” estimation ([11], p80). Both rely on a relational distance adapted to
the problem to solve (see [12] for a distance for the blocks world problem). RIB
handles incrementality since it forgets prototypes that

i are not necessary to reach a good prediction performance or
ii have a bad prediction performance

KBR [9] uses a graph kernel defined on (state, action) pairs to produce highly
accurate approximations of the value function. However, KBR is not incremental
at all, yielding a poor efficiency for large problems. Given this state of the art, we
have chosen to use RIB as relational regression system, as it is indeed incremental
and stands for a quite good performance/efficiency compromise.

4 Relational Temporal Difference

In section 3, we have presented the state of the art concerning function approxi-
mation for RRL. All the results presented in [11] involve the same reinforcement
learning algorithm, but coupled with a variety of relational regression algorithms.

In the RRL algorithm presented in [2], learning occurs only at the end of
episodes, and not each time step. This matter is due to the fact that TILDE-
RT was not fully incremental and thus, it appears more efficient providing the
regression algorithm with large sets of samples, instead of learning each time
an action is performed. Therefore, the RRL algorithm used by [2] stores full
trajectories s0, a0, r1, s1, · · · , sT−1, aT−1, rT , sT . Then, back-propagation of
all the time-steps occurs at once only when reaching a terminal state, using the
usual update rule:

Q(st, at)
learn←−−− rt+1 + γ max

a∈A(st+1)
Q(st+1, a)

Even if this batch-learning fits algorithms like TILDE-RT, it does not seem
that justifiable for fully incremental ones like RIB, but the RL algorithm used
in [7, 3, 8, 9] has not been upgraded. Because of the learning process occurring
at the end of episodes, this algorithm can not really be considered as Temporal
Difference (TD). Surprisingly, many developments have been achieved in RRL
[13, 14] but little has been done yet to perform basic but regular TD.

This TD issue has been recently addressed by [15] but this work supposes
that an action model3 is available so that only state values have to be learned.
In this paper, we propose adaptations of regular TD algorithms in a relational
framework, without an action model, and using RIB for the relational regression
part. We first propose the algorithm 1 as a straightforward adaptation of online
TD.

Algorithm 1 Online TD RRL algorithm: Sarsa-RIB (RIB-S)
Require: state and action spaces 〈S,A〉, RIB regression system for QRIB
Ensure: approximation of the action-value function QRIB

initialise Q
loop

choose randomly start state s for episode
a← πτQRIB (s) (Boltzmann softmax)
repeat

perform a; get r and s′ in return
a′ ← πτQRIB (s′) (Boltzmann softmax)
if s′ is NOT terminal then
QRIB(s, a)

learn←−−− r + γQRIB(s′, a′)
else
QRIB(s, a)

learn←−−− r
end if
s← s′; a← a′

until s terminal
end loop

3 The transition function T : S ×A 7→ S

In this algorithm, QRIB(s, a) stands for the RIB prediction for the (s, a) pair.
πτQRIB means that the action is chosen according to a policy π derived from the
action values QRIB . The action is selected according to a Boltzmann distribution
with a temperature τ 4.

There is no learning rate here because the RIB regression algorithm does not
make full replacement of values. When a new sample is provided, only a part of
the error is corrected.

In being online, RIB-S does not learn the optimal values and relies on explo-
ration/exploitation tradeoff to converge towards an optimal behaviour. In order
to learn optimal values even if a non-greedy policy is used, it is necessary to
design off-line techniques like Q-learning [16]. The algorithm 2 is an adaptation
of regular Q-learning for relational representations.

Algorithm 2 Off-line TD RRL algorithm: Q-learning-RIB (RIB-Q)
Require: state and action spaces 〈S,A〉, RIB regression system for QRIB
Ensure: approximation of the action-value function QRIB

initialise Q
loop

choose randomly start state s for episode
repeat
a← πτQRIB (s) (Boltzmann softmax)
perform a; get r and s′ in return
if s′ is NOT terminal then
QRIB(s, a)

learn←−−− r + γmaxa′∈A(s′)QRIB(s′, a′)
else
QRIB(s, a)

learn←−−− r
end if
s← s′

until s terminal
end loop

With these new algorithms, there is no need anymore to keep complete tra-
jectories in memory. In addition, the value function is modified at each time
step. As a consequence, action selection improves along an episode. Although we
expect little performance gain from a strict RL perspective, from an ILP point
of view, these algorithms take full advantage of the incrementality of RIB. This
method changes both the presented samples and their order of presentation to
the regression algorithm, resulting in a different generalisation of the Q-value
function.

4 The probability of choosing action a in state s is e
QRIB(a)

τP
b∈A(s) e

QRIB(b)
τ

.

5 Experimental study

5.1 Problem setup

In this section, we compare experimentally RIB-S and RIB-Q to each other,
and we compare them to the former RIB-RL [8]. The experimental study uses
the most common environment in RRL: the blocks world already used as an
illustrative problem in section 2.

A blocks world environment is composed of several blocks that can be stacked
on each other, or on the floor. A block on top of a stack is said “clear”. One
constant is defined for each block of the problem, plus one for the floor. Two
predicates are required to describe the states :

– on/2: on(A,B) is true iff the block B is on right on top of the block A ;
– clear/1: clear(A) is true iff there is no block on top of the block A

A special constant f representing the floor is used in conjunction with the pred-
icate on/2 to indicate which blocks are lying on the floor: on(A, f) is true iff A
lies on the floor.

Actions are defined thanks to the predicate move/2 : move(A,B) is true if
block A is moved on top of block B. The action is possible iff both A and B
are clear. A(s) denotes set of the actions allowed in state s. It is computed by
considering clear blocks only. Actions are resolved as expected by computing the
resulting state.

A reward of 1 is given when the system meets the assigned goal, and 0
otherwise. Goal states are terminal states. Three usual goals are considered :

– stacking : all the blocks are stacked on top of each other ;
– unstacking : every block is on the floor. This problem is more difficult because

the single goal state may be difficult to reach at early episodes without
devoted strategies. This experiment is irrelevant here since we do not aim at
providing such dedicated mechanism ;

– on(a,b): one specific block a is on top of another one b. This problem is also
difficult because the value action function is more “rugged”, thus generali-
sation is more difficult.

Each algorithm (RIB-S, RIB-Q and RIB-RL) is tested for 20 trials, and
results are averaged. The trials are divided into episodes, each starting in a
random state and ending depending on the task to solve (stacking or on(a,b)).
The Q-value function is periodically evaluated during a trial. For each evaluation,
10 episodes of greedy exploitation without learning are performed, each starting
randomly. Thus, each average plot of the following figures involves 20× 10 test
episodes. The period between two evaluations is shorter in earlier episodes of a
trial.

In every experiment, the discount factor γ is set to 0.9. The Boltzmann
temperature τ used in softmax action selection starts with a value of τstart = 5, a
decay parameter of 0.95 is used, but the temperature is never less than τmin = 1.
Each episode is interrupted afterN time steps, depending of the number of blocks

in the environment : N = (nblocks − 1) × 3. In RIB, a parameter M is used in
prediction to upper-bound the difference between the Q-values of different states,
knowing their distance. In our experiments, M = 0.1.

In [7, 3, 11, 8, 9], experimental results show the evolution of the total reward
collected during episodes (like on figure 5). In the blocks world problem, since
reward is only given when the goal is fullfiled, this measure is actually 1 if the
system succeeds to reach a terminal state and 0 if it fails. Thus, it only shows
the proportion of successes within the allotted time, but not the quality of the
behaviour. In this paper, we rather show the evolution – as time steps increase
– of the number of time steps required to terminate test episodes. When this
measure equals N , it means that the system did not succeed at all to reach a
terminal state in alloted time steps.

In [11], experimental results show how RIB-RL performs in 3, 4 and 5 blocks
problems. We have run experiments with 5, 6, 7 and 9 blocks.

5.2 Experimental results for task stacking

Figure 3 compares the different algorithms facing the on(a,b) problem with 5,
6, 7 and 9 blocks.

(a) (b)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 6 blocks

RIB-RL
RIB-Q
RIB-S

(c) (e)

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 7 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70

T
im

e
st

ep
s

Episode

Task : stack with 9 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 3. Evolution of the number of time steps to complete an episode : (a) 5 blocks,
(b) 6 blocks, (c) 7 blocks and (d) 9 blocks

Table 3 shows the average number of instances used by RIB after 1000 episodes (with
standard deviation), indicating the complexity of the model obtained by each algorithm
by each algorithm on the different problems.

stacking 5 blocks 6 blocks 7 blocks 9 blocks
goal Average σ Average σ Average σ Average σ

RIB-RL 21 0 38 0 63 1.0 156 1.8
RIB-Q 19 0.2 32 0.6 51 1.9 94 3.6
RIB-S 19 0 32 0.5 50 1.3 88 4.8

Table 3. Number of prototypes used by RIB after 1000 episodes

5.3 Experimental results for task on(a,b)

Figure 4 compares the different algorithms facing the stacking problem with 5,
6, 7 and 9 blocks.

(a) (b)

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 6 blocks

RIB-RL
RIB-Q
RIB-S

(c) (e)

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 7 blocks

RIB-RL
RIB-Q
RIB-S

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 9 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 4. Evolution of the number of time steps to complete an episode : (a) 5 blocks,
(b) 6 blocks, (c) 7 blocks and (d) 9 blocks

Table 4 shows the average number of instances used by RIB after 1000
episodes (with standard deviation), indicating the complexity of the model ob-
tained by each algorithm on the different problems. After 1000 episodes, RIB-S
still doesn’t reach an optimal behaviour, thus the 459±29.6 number of prototypes
for RIB-S facing the 9 blocks on(a, b) task is not representative.

on(a, b) 5 blocks 6 blocks 7 blocks 9 blocks
goal Average σ Average σ Average σ Average σ

RIB-RL 325 3.0 757 18.4 1339 47.7 2593 87.1
RIB-Q 254 2.9 566 7.8 1063 18.2 2255 75.5
RIB-S 245 4.4 465 17.3 608 17.1 459 29.6

Table 4. Number of prototypes used by RIB after 1000 episodes

5.4 Discussion

The experimental results presented in sections 5.2 and 5.3 show that, as one
might expect on such a tasks where exploration actions do not lead to catas-
trophic actions, the off-line TD algorithms (RIB-RL and RIB-Q) outperform
slightly the online one (RIB-S). Moreover, RIB-Q does not differ that much
from the original RIB-RL wrt to convergence speed. This means that RIB is
robust enough to support samples provided one by one rather than in a batch
way.

Thus, keeping a memory of only one single (st, at, rt+1, st+1) tuple is enough,
and there is no need for storing complete episode trajectories, as soon as one
runs a fully incremental regression algorithm like RIB. Trajectories could be
useful within other algorithms like Monte Carlo (MC) for instance, but in that
case we would rather use the TD(λ) generalisation of TD and MC [1]. Most
important is the level of performance reached by all presented RRL algorithms.
Blocks world problems do not need very long sequences of actions to be solved,
but they involve many states, especially as the number of blocks grows. This
number of states has to be compared to the number of episodes required to solve
the problem (for 9 blocks stacking: less than 50 episodes to learn about 4 596 553
states). These good results show at least two points:

– When a relational representation is available, it may be a good idea to use
it in order to draw benefits from additional generalisation capacities.

– The distance used in RIB to discriminate between (state, action) pairs fits
the problem well.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

T
im

e
st

ep
s

Episode

Task : on(a,b) with 5 blocks

RIB-RL
RIB-Q
RIB-S

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

T
ot

al
 r

ew
ar

d

Episode

Task : on(a,b) with 5 blocks

RIB-RL
RIB-Q
RIB-S

Fig. 5. Evolution of the number of time steps to complete an episode (task on(a,b)
with 5 blocks, goal information not taken into account)

RIB stores prototypes in the form of specific (state, action) pairs ; generalisation
only takes place through the distance computation. The distance used in RIB
[11] is well suited for blocks world problems: it relies on a distance similar to
the Levenshtein edit distance between sets of block stacks, seen as strings. The
distance between (state, action) pairs is such that it is 0 between pairs differing
only by a permutation of constants that do not occur in the action literal (figure
2).

This distance takes into account relationships between objects but not their
specific identity, unless prior knowledge is given. It behaves very well for the
stacking task where all blocks should be stacked regardless on their order, but
it is less adapted when it is not the case – like the on(a, b) problem. To make
it work nevertheless, [11] proposes to provide the system with prior information
about the constants involved in goal states. When this information is not taken
into account, the system is not able to learn a correct behaviour, as shown on
the experiments on figure 5.

Beyond similar convergence speed of RIB-Q and RIB-RL, tables 3 and 4
show the main difference between former and our new RRL algorithms : the
complexity of the Q-function model. Indeed, for every task, RIB-Q achieves
similar performance with a smaller number of prototypes than RIB-RL. In ad-
dition, RIB-S achieves even better generalisation despite a lower convergence
speed. This is particularly obvious for our most complex on(a, b) tasks. Even if
the convergence speed of the online RIB-S is lower, it stores less prototypes and
therefore it remains a good candidate for scaling-up. This reduced number of
prototypes is due to changes in the order of presentation of the examples, our
algorithms providing RIB with better opportunities for generalisation.

6 Conclusion

Our goal in this work was to investigate the gain of upgrading the RL algorithm
for a fixed relational regression algorithm, namely RIB. We have proposed two
simple RRL algorithms, RIB-Q and RIB-S, and have tested them on usual RRL
benchmarks.

From a RL viewpoint, these are the first systems to date that implement
regular and simple TD in a RRL context. Without storing full trajectories, we
achieved similar convergence speed. From an ILP viewpoint, the experiments
show the robustness of RIB in a fully incremental context. Less expected was
that this new interaction between RL and relational regression yields a more
compact model for the Q-function. We may expect that this will improve the
scaling-up ability of RRL systems.

This work opens up several new research directions. We plan to adapt more
sophisticated RL algorithms that will provide more useful information to the
relational regression algorithms. We have observed that the RIB performance
is highly dependant on the distance adequation with the problem. It might be
interesting to study how RL may balance the effects of a misleading distance or
even further, how RL may help in adapting the distance to the problem at hand.

Acknowledgements The authors would like to thank Kurt Driessens and Jan
Ramon for very nicely and helpfully providing the authors with RIB-RL.

References

1. Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press
(1998)

2. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. Ma-
chine Learning 43 (2001) 7–52

3. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Proceedings of the Twentieth International Conference on
Machine Learning (ICML 2003). (2003) 123–130

4. Tesauro, G.J.: Temporal difference learning and td-gammon. Communications of
the ACM 38(3) (1995) 58–68

5. De Raedt, L., Džeroski, S.: First-order jk-clausal theories are PAC-learnable. Ar-
tificial Intelligence 70(1–2) (1994) 375–392

6. Blockeel, H., de Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic pro-
gramming by learning from interpretations. Data Mining and Knowledge Discovery
3(1) (1999) 59–93

7. Driessens, K., Ramon, J., , Blockeel, H.: Speeding up relational reinforcement
learning through the use of an incremental first order decision tree algorithm.
In: Proceedings of the European Conference on Machine Learning (ECML 2001),
LNAI vol 2167. (2001) 97–108

8. Driessens, K., Dzeroski, S.: Combining model-based and instance-based learning
for first order regression. In: Proceedings of the 22nd International Conference on
Machine Learning (ICML 2005). (2005) 193–200

9. Gartner, T., Driessens, K., Ramon, J.: Graph kernels and gaussian processes for
relational reinforcement learning. In: Proceedings of the 13th Inductive Logic
Programming International Conference (ILP 2003), LNCS vol 2835. (2003) 146–
163

10. Blockeel, H., De Raedt, L., Ramon, J.: Top-down induction of clustering trees.
In: Proceedings of the 15th International Conference on Machine Learning (ICML
1998). (1998) 55–63

11. Driessens, K.: Relational reinforcement learning. PhD thesis, K. U. Leuven (2004)
12. Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point

sets. Acta Informatica 37(10) (2001) 765–780
13. Tadepalli, P., Givan, R., Driessens, K.: Relational reinforcement learning: An

overview. In: Proceedings of the ICML’04 Workshop on Relational Reinforcement
Learning. (2004) 1–9

14. Van Otterlo, M.: A survey of reinforcement learning in relational domains. Tech-
nical report, Centre for Telematics and Information Technology, University of
Twente, Enschede (2005)

15. Asgharbeygi, N., Stracuzzi, D., Langley, P.: Relational temporal difference learn-
ing. In: Proceedings of the Twenty-Third International Conference on Machine
Learning (ICML 2006). (2006) 49–56

16. Watkins, C.J.: Learning with delayed rewards. PhD thesis, Psychology Depart-
ment, University of Cambridge, England (1989)

