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Abstract. Many real world systems can be expressed as complex networks
of interconnected nodes. It is frequently important to be able to quantify the
relative importance of the various nodes in the network, a task accomplished by
defining some centrality measures, with different centrality definitions stressing
different aspects of the network. It is interesting to know to what extent these
different centrality definitions are related for different networks. In this work, we
study the correlation between pairs of a set of centrality measures for different
real world networks and two network models. We show that the centralities are
in general correlated, but with stronger correlations for network models than for
real networks. We also show that the strength of the correlation of each pair
of centralities varies from network to network. Taking this fact into account,
we propose the use of a centrality correlation profile, consisting of the values
of the correlation coefficients between all pairs of centralities of interest, as a
way to characterize networks. Using the yeast protein interaction network as an
example we show also that the centrality correlation profile can be used to assess
the adequacy of a network model as a representation of a given real network.
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1. Introduction

Important aspects of many systems can be represented by complex networks [1-5]. As the
nodes frequently differ with respect to their essentiality, since the beginning of the study of
networks the quantification of the importance of their nodes has been receiving attention,
as can be seen, e.g. in [6-13]. There are different ways to quantify the importance, or
centrality, of a node and therefore a large number of measures used for this purpose,
with new centrality measures being constantly proposed for use in new applications or to
achieve better results in old ones, see e.g. [14-33].

Although based on different definitions, the various node centralities are, in real
networks, correlated: important nodes using one of the definitions are frequently also
important using others. For example, nodes with high degree have also high closeness
centrality [7]. Some papers already analysed those correlations, while others do correlation
analysis when proposing new centralities [7, 29, 30, 32-36]. Nonetheless, there are nodes
with high value for one centrality and low value for another and the correlations are not
the same for all networks, as will be shown below.
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In this work we systematically study the correlations between all pairs of a set of
centralities using some real-world networks and two network models. We find that the
correlations are generally strong, but there are marked differences between correlations
in real network and models and also among different real networks. We therefore suggest
the use of such correlations as a way to characterize networks.

This paper is organized as follows. In section 2 we present the considered network
centralities and the real networks and models used. In section 3 we present scatter plots
of the centrality values for some pairs of centralities (section 3.1) and show that the
relations are mostly power law; taking into account this power-law behaviour, we present
Pearson correlations for the logarithms of the centralities, which will give us a measure
of how closely the centralities are related by a power law. Next (section 3.2) we present
the concept of centrality correlation profile to characterize networks. This is followed by
showing (section 3.3) that this centrality correlation profile can be used to distinguish
the real networks from their randomly rewired counterparts, as well as from the network
models. Finally (section 3.4) we propose the use of this profile to evaluate models for a
given real network, using as an example a model for protein—protein interaction networks.

2. Basic concepts and datasets

We are considering only undirected, unweighted networks without multiple edges or self
connections. In this case, the network can be represented by a symmetric adjacency matriz
A whose N x N elements (where N is the number of nodes) A;; are 1 if nodes i and j are
connected and 0 otherwise. In the following, we use F to represent the number of edges
(connections) in the network. Some networks are in fact weighted, as described below,
but we disregard the weights. We also drop self and multiple connections when present.
When a network has more than one connected component, we consider only the nodes in
the largest component.

An important concept is that of shortest paths. A path is a sequence of nodes where
each two subsequent nodes are directly connected and no node is repeated in the path. A
shortest path between nodes ¢ and j is a path starting at node i, ending at node 5 and
with the smallest possible number of intermediate nodes in the path.

2.1. Node centralities

There is a large number of centrality measures in the literature. For brevity, we will work
with some of them, including the most used ones, instead of trying to be comprehen-
sive. Although other centralities can be important in many applications, the methodology
employed here could be, if needed, easily extended to include other centralities. Further-
more, we use PCA (see section 3.2) to automatically compensate for possible redundan-
cies among the centralities and the results show that using other centralities would not
contribute significantly for the considered networks (as enough discrimination is already
achieved). It is plausible that other centralities could be necessary for a different dataset.

Degree centralit. 'This centrality quantifies the importance of a node counting its number
of connections. Using the adjacency matrix, the degree of node i, represented as k; is
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computed as

N
7=1

Here we use a normalized degree centrality, given by dividing the degree by the maximum

possible degree:
. ki
ki = — 2
N1 (2)
Degree centrality has a low complexity of O(FE) when using sparse network
representations.

Eigenvector centrality. Just counting the number of connections, as done in the degree
centrality, can give a distorted view of the importance of a node, because it does not
quantify the importance of its neighbors. In principle, the importance of the neighbors
should be considered when acessing the importance of a node. If v; is the importance of
node ¢, we can compute it in a self-consistent way through

1
V; = X ; Aijvj- (3)

where A\ must be chosen appropriately. In vector form we have:

Av = Av, (4)
which tells us that v is an eigenvector of the adjacency matrix and A\ the corresponding
eigenvalue. In fact, we use the eigenvector associated with the largest eigenvalue of

the adjacency matrix and the eigenvector centrality of node i is the i-th entry in this
eigenvector. Computation of this centrality takes O(NN+ E) operations for sparse networks.

Closeness centrality. It is also possible to take the word ‘centrality’ more literally and search
for nodes that are central in the sense of being in average closer to the other nodes. If
d;; is the shortest path distance between nodes ¢ and j we can compute the closeness

centrality of node i as
1

Y diy

This computation is O(NE).

()

&

Betweenness centrality. Assuming pairs of nodes in the network must interact, if they are

not directly connected the interaction must go through intermediary nodes. A node is

important in the betweenness centrality sense if it must be used as an intermediary for

many pairs of nodes (under the assumption that the interactions always follow a shortest
path, that is, a path with minimum number of intermediaries).

The betweenness centrality of node 7, represented as b;, is computed by the expression:

by — n(j,i, k) 6

20 o)

where j # 1 # k, n(j, k) is the number of shortest paths from j to k and n(j,i, k) is the

number of shortest paths from j to k that pass through 7. This centrality can be computed

in O(NFE) using the algorithm of Brandes [37].
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Current flow betweenness centrality. Betweenness centrality takes into account only the shortest
paths from a node j to another node k. It is possible for the nodes to interact through
other paths. This is taken into account by the centrality measure based on computing the
current flow through the network elements supposing that each link is a resistor (with
a value of 1 for unweighted networks) considering all possible sources and drains for
the current. This is equivalent to counting the number of times a random walk from a
node j to node k passes through a given node i, for all pair (j, %) (but canceling back-
and-forth movements of the walker that do not contribute to a net movement toward
the target) [18,38] and is therefore also called random walk betweenness centrality. This
centrality can be computed as the average of the current ]i(s’t) flowing through the node
i over all pairs of sources and drains (s, t),

2 st
B = NN =) oI (7)

s<t

The currents are given by

(s,t) 17 L= 87t
L= 3 S AV =V, i st ¥
J

where Vi(s’t) is the potencial on node 7 when source is in s and drain in ¢ and
can be computed using the Laplacian of the graph (see [18]). This computation has
complexity O((N + E)N?).

Current flow closeness.  Also know as information centrality [38], this measure first proposed
in [15], is a generalization of the closeness centrality in the same lines than the current
flow (or random walk) betweeness centrality is a generalization of the shortest-path
betweenness centrality: by considering alternate paths from a node to other nodes instead
of just the shortest path. It is evaluated by the expression

N
Yi = )
> Ry

where R;; = V;(i’j ) — Vj(i’j ) is the equivalente resistance from i to j when the source is in i

and the drain in j. Computation takes time O(N?).

(9)

Subgraph centrality. This measure takes into account the participation of a node in
subgraphs, given larger weight for smaller subgraphs [19]. Closed walks starting and ending
in a node 7 are counted and weighted with the inverse factorial of their size. With the
chosen weighting, the values can be efficiently computed using the spectral decomposition
of the adjacency matrix. If A\; are the eigenvalues and v; are the respective eigenvectors,
the subgraph centrality s; of node i can be computed in O(N?) using the expression

N

si=y (0])"eV, (10)

Jj=1
where v§ is the ¢-th element of eigenvector v;.
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Table 1. Topological measurements for the (largest components of the) networks:
karate club (KT), dolphins (DP), high-energy physics collaboration (HP),
network science collaboration (NS), political books (PB) and power grid (PW).

Measures KT DP HP NS PB PW
N 34 62 5835 379 105 4941
m 78 159 13815 914 441 6594
(k) 459 513 4.74 482 84 2.67
(k?) 35.65 34.90 43.19 38.69 100.25 10.33
Alocal 0.57 0.26  0.51 0.74 0.49 0.08
Atransitivity 0.26 0.31 0.28 0.43 0.35 0.10
14 2.34 3.30 7.03 6.03 3.05 18.99
E 0.49 0.38 0.16 0.20 0.40 0.06
T —-0.48 —-0.04 0.19 —-0.08 -0.13 0.00

Note: N: number of nodes, m: number of edges, (k): average degree, (k?): variance
of the degree distribution, Ajgcar: average local clustering coefficient, Agransitivity:
global clustering coefficient (transitivity), ¢: average shortest path length, E:
efficiency, r: assortativity.

2.2. Networks and network models

We work here with the following available network datasets: Zachary’s karate club
(represents friendship between 34 members of a karate club) [39]; dolphin social
network (frequent association between 62 dolphins) [40]; high-energy theory collaboration
(coauthorship in preprints on the hep-th section in arXiv.org) [41-43]; network science
collaborations (coauthorship in network science papers) [44]; books about US politics
published around 2004 and sold on Amazon.com (edges show frequent co-purchase) [45];
power grid (topology of the power grid of the Western States of the USA) [46]. Table 1
shows some measurements for the networks.

Our emphasis is showing results for real networks. We therefore include only two simple
models for comparison, the Erdés—Rényi (ER) random graphs [47] and the Barabdsi-
Albert (BA) scale-free networks [48]. The method used here could be applied for other
models (as done in section 3.4), if appropriate.

3. Results and discussion

Given a network, we compute the centralities of each of its nodes and search for
correlations between pairs of centralities, with each node in the network corresponding to
a data point.

3.1. Correlations

Figure 1 shows scatterplots for some of the pairs of centralities for the network models,
while the plots for the real networks are presented in figure 2 (best correlations) and
figure 3 (worst correlations). We do not show closenees or current flow closeness centralities
results for best cases as these measurements span a limited range, which limits the
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Figure 1. Scatter plots for some pairs of centralities for the Erdés—Rényi (top)
and Barabési—Albert (bottom) network models. Left: best correlations (excluding
closeness related cases, see text); right Worst correlations.

significance of a good correlation in a log log plot. Due to space limitations, we show
only two of the pairs with largest and smallest correlation values, respectively, for each
network. These plots suggest that the centralities are correlated, with visible correlations
even in the weakest cases for some networks and that the correlations are close to a power
law, specially for high values of centralities.

To quantify how closely two measurements are related by a power law, we use log—log
plots and compute the Pearson correlation coefficient between the logarithms of the values
of the centralities. Similar results were also found when using the Pearson and Spearman
correlations of the measurements (without the logarithms). The use of the logarithms here
is to emphasize possible power-laws, as observed in figures 1 and 3.

Table 2 shows the values of the Pearson coefficients for all pairs of logarithms of the
centralities in the networks studied. For the ER and BA models, 50 networks (for each
model) of 1000 vertices and average degree 6 where used. We can see that the centralities
have, in general, large values of the Pearson coefficient, which in our case implies proximity
to a power law relation. With the exception of a small negative coefficient between
closeness and eigenvector centralities for the power grid network, all coefficients are
positive. This means that nodes that are important with respect to one definition are,
in general, also important according to other definitions. It can be seen that the network
models studied present larger coefficients than the real networks (with the exception of
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the real networks. Top, left to right: karate, dolphins and high-energy physics;
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the karate club network, which also has large coefficients'). Especially noticeable is the
coefficient of closeness with eigenvector centrality, which is almost perfect for the network
models (0.99 for ER and 0.98 for BA), but non-existent for the power grid network. It is,
therefore, important to be careful when generalizing conclusions from results using such
simplified models to real networks. The coefficients of degree with random walk closeness
and subgraph centrality are large for all networks, with the exception of the power grid

! The karate club is a small network, with a few dominating nodes and many peripheral nodes. This could explain
the large values.
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Table 2. Pearson coefficients for the networks: karate club (KT), dolphins (DP),
high-energy physics collaboration (HP), network science collaboration (NS),
political books (PB), power grid (PW), Erdés—Rényi model (ER) and Barabdsi—
Albert model (BA).

Measurements KT DP HP NS PB PW ER  BA

Degree/Closeness 0.80 0.75 054 0.26 0.61 0.22 0.92 0.67
Degree /Betweenness 0.84 073 052 0.58 0.656 0.47 0.98 0.92
Degree/Eigenvector 0.82 063 049 021 069 0.16 0.91 0.62
Degree/Subgraph 091 094 079 079 0.83 0.89 0.97 0.62
Degree/CF betweenness 095 0.70 059 051 0.79 0.46 0.51  0.94
Degree/CF closeness 095 096 077 059 095 0.35 0.98 0.97
Closeness/Betweenness 0.7 0.71 035 040 0.75 0.40 0.90 0.77
Closeness/Eigenvector 092 083 091 058 045 —0.04 0.99 0.98
Closeness/Subgraph 089 0.72 0.71 0.34 0.47 0.16 0.96 0.97
Closeness/CF betweenness 0.82 055 048 0.14 0.84 0.50 0.43 0.54
Closeness/CF closeness 0.89 087 085 0.76 0.69 0.75 0.93 0.70
Betweenness/Eigenvector 0.7 0.39 0.24 034 035 0.05 0.89 0.72
Betweenness/Subgraph 0.82 0.60 030 033 0.31 0.35 0.95 0.70
Betweenness/CF betweenness  0.90 0.93 0.69 0.71 093 0.55 0.98 091
Betweenness/CF closeness 0.85 071 029 039 062 0.34 0.96 0.93
Eigenvector /Subgraph 0.97 070 0.v1 046 0.82 0.32 0.95 0.96
Eigenvector /CF betweenness 0.7 061 040 0.15 045 0.10 0.44 0.49
Eigenvector /CF closeness 092 0.76 078 0.65 0.72 0.06 0.92 0.66
Subgraph/CF betweenness 0.82 0.55 0.41 034 046 0.37 0.40 0.49
Subgraph/CF closeness 096 090 0.77 0.71 0.87 0.29 0.94 0.65

CF betweenness/CF Closeness 0.91 0.76 0.57 0.39 0.77 0.70 0.58  0.93

Note: The largest (absolute) value of correlation for each network and all values within a 0.05 inclusive range are
marked in bold; idem for the smallest (absolute) values, marked in italics. (CF is an abbreviation for ‘current
flow”).

network. To a lesser extend, the same is true for other pairs involving degree, betweenness
and current flow betweenness. Other pairs have large coefficients in some networks, but
small coefficients in others. For instance, betweenness and subgraph centralities have large
coefficients for the network models, the dolphins and karate networks, but small values for
the other networks. Most interesting is the case of betweenness and eigenvector centralities:
they have small coefficients for all real networks (with the exception of the karate club
network, where it is large, but smaller than for other pairs), but large coefficients for the
network models. This suggests that they complement each other when analising real world
networks and reinforces our previous observation of inadequacy of generalizing conclusions
based on simple models.

3.2. Correlation profile of networks

These results suggest that each network or network model has a specific profile of
correlations between centrality measurements. We call this the centrality correlation profile
of the network. To show that this profile can be used to characterize the networks, figure 4
plots a two-dimensional projection of the real world networks from the space defined by the
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Figure 4. PCA projection of the centrality correlation profile space for the
networks used in this work. A total of 26 networks are included (6 real networks
and 10 for each model, BA and ER), each one characterized by 21 correlation
values. Also shown is a histogram of the values of the contributions of each
correlation to the two principal components.

centrality correlation profile using principal component analysis (PCA) [49]. Each network
is a point in a 21-dimensional space defined by the values of the Pearson correlation
between the logarithms of the seven considered measurements. The points are projected
to the two principal components for visualization. Note how the networks generated by
the same model are clustered in small regions, while the different real networks or models
are spread through the graph. The only exception is the small karate club network, which
is close to the ER model cluster. To evaluate if there are some correlations that are
dominant or negligible for the discrimination of the networks in the projection, we follow
the method employed in [50] and compute the contribution of each correlation to the PCA
by summing up the magnitudes of their respective dimensions in the principal components
(see further details in the reference). A value of contribution close to zero would imply
that the corresponding correlation could have been discarded. A histogram of these values
is included in the figure. It is clear that all contributions are of the same order and no
correlation could have been ignored without reduction of the discriminating power.

3.3. Comparison with random rewiring

In our next experiment we generate, for each real network, 100 random networks with
the same degree sequence through link rewiring [51]. In this method, a pair of edges
is randomly chosen, the original edges are removed and substituted by two new edges
among the same vertices; the process is repeated a certain number of times. Each rewired
network is generated by a number of random rewirings equal to 100 times the number
of edges in the original network. We also include, for comparison, 100 networks each for
the ER and BA models with the same number of nodes and similar average degrees. We
compute the centrality correlation profiles of all networks and generate a two-dimensional
PCA projection. The results are shown in figure 5. With the exception of the karate
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club network, where the real network is inside the region of the rewired networks, we
can distinguish the networks from their random rewirings and the two other models.
This stresses the fact that, although there is generally a strong correlation between the
various centralities, there is also important information in the specific wiring pattern
of real networks, resulting in distinct correlation profiles. It is also interesting to note
that the randomly rewired networks are sometimes closer to the ER, sometimes to the
BA networks, but always closer to the models than the corresponding real network,
supporting the assertion that the centrality correlation profile is characteristic of the
specific network. In all the shown projections, the contributions of all correlations are
important, as demonstrated by the attached histograms.

3.4. Evaluating models with the correlation profile

Considering the previously presented results, we suggest that the centrality correlation
profile can be used as a tool to test the adequacy of a network model developed to
study a given real network. If the real network can be considered typical, with respect to
the correlation profile, in comparison to networks generated using the proposed model,
the model is appropriate. In an ideal case, we would know the distribution of points
representing the generated networks in the correlation profile space and use standard
statistical methods to evaluate the probability of the real network being generated by
the model. In practice, when the correlation profile of the model is not known, we can
use PCA projections of the real network and a large number of generated networks to
achieve an informal confirmation of the model. To demonstrate this procedure, we use
the yeast protein interaction network from [52] and compare it with Barabdsi-Albert
networks and the model developed by Pastor-Satorras et al [53] specifically for protein
interaction networks. Figure 6 shows a PCA projection of the centrality correlation profile
of the network and 30 random networks generated by each model. The real network is
much closer to the networks generated by the Pastor-Satorras et al model than to the
ones generated the Barabasi-Albert model. But the yeast network cannot be considered
a typical network from the Pastor-Satorras et al model, as it lies outside of the region
of correlation profile space spanned by the random networks generated according to the
model, demonstrating that there are still important structural details in the real network
not accounted for by the model.

4. Conclusion

Various centrality measurements are comonly used to discriminate important nodes in
complex networks. The different measurements correspond to different definitions of
the importance of the nodes, but our results have shown that they are in general
strongly correlated for real networks and even more for the two network models studied.
We considered the following measurements: degree, closeness, betweenness, eigenvector,
subgraph, current flow closeness and current flow betweeness centralities. For most pairs
of centralities, their Pearson correlation coefficients are above 0.5 for most networks, with
some pair showing coefficients above 0.95 for some networks, specially the network models.
The log—log scatter plots show that the correlations are specially strong for high centrality
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Figure 5. PCA projections comparing the real networks with rewired random
version with the same degree sequence, Barabédsi—Albert and Erdés—Rényi with
the same number of nodes and similar average degree. Each graph include a real
network, 100 rewired networks and 100 of each model, BA and ER), with each
network characterized by 21 correlation values. From top left to bottom right:
karate, dolphins, high-energy physics, network science, political books and power
grid. Also shown are histograms of the contributions of each correlation to the
projections.
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show that all correlations are relevant.

nodes, where they follow a power law. But the correlation values vary strongly from
one network to another. For example, while the Pearson correlation coefficient between
closeness and eigenvector centrality is 0.99 for the ER model and 0.92 for the karate club
network, it is almost zero for the power grid network. We proposed therefore the use of
the centrality correlation profile, consisting of the values of the correlation coefficient
for all pairs of centralities studied, to characterize a network. Our results show that
the networks can be distinguished using this profile and all studied correlations have
a significant contribution to the discriminating power. We have also shown, using the
example of the yeast protein interaction network, how the centrality correlation profile
can be used to verify to what extent a model (in our example the Pastor-Satorras et al
model) is adequate to explain a given network.

Interesting open questions suggested by this work include: why are the correlation
coefficients for the network models so strong for almost all pairs of centralities? Are
the power laws seen for high centrality values due to specific topological features of the
considered networks or do they result from the definitions of the measurements? Why are
correlations in real networks consistently smaller than in the models? Do the results hold
for other models and real networks? Would the inclusion of other centrality measurements
increase the discriminating power of the method? What kind of topological features makes
some correlations smaller and other larger for a given network? An answer to the last
question would help us design more adequate models for some network and therefore
understand them better.
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