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Abstract—Nodes in real-world networks organize into
densely linked communities where edges appear with high con-
centration among the members of the community. Identifying
such communities of nodes has proven to be a challenging
task mainly due to a plethora of definitions of a community,
intractability of algorithms, issues with evaluation and the lack
of a reliable gold-standard ground-truth.

In this paper we study a set of 230 large real-world social,
collaboration and information networks where nodes explicitly
state their group memberships. For example, in social networks
nodes explicitly join various interest based social groups. We
use such groups to define a reliable and robust notion of
ground-truth communities.

We then propose a methodology which allows us to compare
and quantitatively evaluate how different structural definitions
of network communities correspond to ground-truth communi-
ties. We choose 13 commonly used structural definitions of net-
work communities and examine their sensitivity, robustness and
performance in identifying the ground-truth. We show that the
13 structural definitions are heavily correlated and naturally
group into four classes. We find that two of these definitions,
Conductance and Triad-participation-ratio, consistently give
the best performance in identifying ground-truth communities.
We also investigate a task of detecting communities given
a single seed node. We extend the local spectral clustering
algorithm into a heuristic parameter-free community detection
method that easily scales to networks with more than hundred
million nodes. The proposed method achieves 30% relative
improvement over current local clustering methods.

I. INTRODUCTION

Networks are a natural way to represent social [20], bio-

logical [23], technological [16], and information [8] systems.

Nodes in such networks organize into densely linked groups

that are commonly referred to as network communities, clus-

ters or modules [11]. There are many reasons why nodes in

networks organize into densely linked clusters. For example,

society is organized into social groups, families, villages and

associations [7], [12]. On the World Wide Web, topically

related pages link more densely among themselves [8]. And,

in metabolic networks, densely linked clusters of nodes are

related to functional units, such as pathways and cycles [23].

To extract communities from a given undirected network,

one typically chooses a scoring function (e.g., modularity)

that quantifies the intuition that communities correspond to

densely linked sets of nodes. Then one applies a procedure to
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find sets of nodes with a high value of the scoring function.

Identifying such communities in networks [14], [6], [26], [9]

has proven to be a challenging task [10], [18], [17] due to

three reasons: There exist multiple structural definitions of

network communities [5], [24]; Even if we would agree on

a single common structural definition (i.e., a single scoring

function), the formalizations of community detection lead

to NP-hard problems [26]; And, the lack of reliable ground-

truth makes evaluation extremely difficult.

Currently the performance of community detection meth-

ods is evaluated by manual inspection. For each detected

community an effort is made to interpret it as a “real”

community by identifying a common property or external

attribute shared by all the members of the community. For

example, when examining communities in a scientific col-

laboration network, we might by manual inspection discover

that many of detected communities correspond to groups of

scientists working in common areas of science [22]. Such

anecdotal evaluation procedures require extensive manual

effort, are non-comprehensive and limited to small networks.

A possible solution would be to find a reliable definition

of explicitly labeled gold-standard ground-truth communi-

ties. Using such ground-truth communities would allow for

quantitative and large-scale evaluation and comparison of

network community detection methods. Such ability would

enable the field to move beyond the current standard of

anecdotal evaluation of communities to a comprehensive

evaluation of community detection methods based on their

performance to extract the ground-truth.

The contributions of our work are three fold. First, we

describe a set of 230 large social and information networks

where we define ground-truth communities in a reliable

way. Second, based on the ground-truth we quantitatively

evaluate 13 commonly used structural definitions of network

communities and examine their robustness and sensitivity

to noise. Third, we extend the local spectral clustering

algorithm into a parameter-free community detection method

that scales to networks of hundreds of millions of nodes.

Present work: Ground-truth communities. Next we de-

scribe the proposed definition of ground-truth communities

and argue why it corresponds to “real” communities.

Generally, after communities are identified based on the

structure of given network, the essential next step is to



interpret them by identifying a common external property or

function that the members of a given community share and

around which the community organizes [7]. For example,

given a protein-protein interaction network of a cell we

identify communities based on the structure of the network

and then find that these communities correspond to real

functional units of a cell. Thus, the goal of community

detection is to identify sets of nodes with a common

(often external/latent) function based only the connectiv-

ity structure of the network. A common function can be

common role, affiliation, or attribute [12]. In our protein

interaction network example above, such common function

of nodes would be ‘belonging to the same functional unit’.

Community detection methods identify communities based

on structure while the extracted communities are evaluated

based on their function. So we distinguish between structural

and functional definitions of communities. We use common

function of nodes to define ground-truth communities.

Present work: Networks with ground-truth. We gathered

230 networks from a number of different domains and

research areas where nodes explicitly state their ground-truth

community memberships. Our collection consists of social,

collaboration and information networks for each of which

we find a robust functional definition of ground-truth.

For example, in online social networks (like, Orkut,

LiveJournal, Friendster and 225 different Ning networks) we

consider explicitly defined interest based groups (e.g., fans

of Lady Gaga, students of the same school) as ground-truth

communities. Nodes explicitly join such groups that organize

around specific topics, interests, and affiliations [7], [12].

Next, we also consider the Amazon product co-purchasing

network where we define ground-truth using hierarchically

nested product categories. Here all members (i.e., products)

of the same ground-truth community share a common func-

tion or purpose. Last, in the scientific collaboration network

of DBLP we use publication venues as proxies for ground-

truth research communities. Our reasoning here is that in

scientific collaboration networks, real communities would

correspond to areas of science. Thus, we use journals and

conferences as proxies for scientific communities.

Present work: Methodology and findings. The ground-

truth allows us to examine how well various structural defini-

tions of network communities correspond to real functional

groups (i.e., ground-truth communities). A good structural

definition of a community would be such that it would detect

connectivity patterns that correspond to real groups (i.e.,

the ground-truth). This means that we can evaluate differ-

ent structural definitions based on their ability to identify

connectivity structure of ground-truth communities.

We study 13 commonly used structural definitions of com-

munities and examine their quality, sensitivity and robust-

ness. Each such definition corresponds to a scoring function

that scores a set of nodes based on their connectivity. A

high score means that a set of nodes closely resembles

the connectivity communities. By comparing correlations of

scores that different structural definitions assign to ground-

truth communities, we find that the 13 definitions naturally

group into four distinct classes These classes correspond

to definitions that consider: (1) only internal community

connectivity, (2) only external connectivity of the nodes

to the rest of the network; (3) both internal and external

community connectivity, and (4) network modularity.

We then consider an axiomatic approach and define four

intuitive properties that communities would ideally have.

Intuitively, a “good” community is cohesive, compact, and

internally well connected while being also well separated

from the rest of the network. This allows us to characterize

which connectivity patterns a given structural definition

detects and which ones it misses. We also investigate the

robustness of community scoring functions based on four

types of randomized perturbation strategies. Overall, evalu-

ation shows that scoring functions that are based on triadic

closure [29] and the conductance score [27] best capture the

structure of ground-truth communities.

Last, we also investigate a task of detecting communities

from a single seed node. The task is to discover all members

of a community from a single seed member node. We extend

the local spectral clustering algorithm [2] into a parameter-

free community detection method that scales to networks of

hundreds of millions of nodes. Our method recovers ground-

truth communities with 30% relative improvement in the

F1-score over the current local graph partitioning methods.

To the best of our knowledge our work is the first to

use social and information networks with explicit commu-

nity memberships to define an evaluation methodology for

comparing network community detection methods based on

their accuracy on real data. We believe that the present work

will bring more rigor to the standard for the evaluation

of community detection methods. All our datasets can be

downloaded at http://snap.stanford.edu.

II. COMMUNITY SCORING FUNCTIONS

AND DATA SETS

We start by describing the network datasets and our

proposed functional definitions of ground-truth communi-

ties. Then we continue with outlining 13 commonly used

structural definitions of network communities.

Networks with ground-truth communities. Overall we

consider 230 large social, collaboration and information

networks, where for each network we have a graph and a set

of functionally defined ground-truth communities. Members

of these ground-truth communities share a common function,

property or purpose. Networks that we study come from a

wide range of domains and sizes. Table I gives the networks.

First, we consider online social networks (the LiveJournal

blogging community [4], the Friendster online network [20],

and the Orkut social network [20]) where users create



Dataset N E C S A

LiveJournal 4.0M 34.9M 311,782 40.06 3.09

Friendster 117.7M 2,586.1M 1,449,666 26.72 0.32

Orkut 3.0M 117.2M 8,455,253 34.86 95.9

Ning (225 nets) 7.0M 35.5M 137,177 46.89 0.92

Amazon 0.33M 0.92M 49,732 99.86 14.83

DBLP 0.42M 1.34M 2,547 429.79 2.56

Table I
230 SOCIAL, COLLABORATION AND INFORMATION NETWORKS WITH

EXPLICIT GROUND-TRUTH COMMUNITIES.N : NUMBER OF NODES, E :
NUMBER OF EDGES, C : NUMBER OF COMMUNITIES,S : AVERAGE

COMMUNITY SIZE, A: COMMUNITY MEMBERSHIPS PER NODE. NING

STATISTICS ARE AGGREGATED OVER 225 DIFFERENT SUBNETWORKS.

explicit functional groups to which others then join and

share content. These groups are created based on specific

topics, interests, hobbies and geographical regions. For ex-

ample, LiveJournal categorizes groups into the following

types: culture, entertainment, expression, fandom, gaming,

life/style, life/support, sports, student life and technology.

Similarly, in other social networks considered in this study

users define topical communities that others then join. We

consider each such explicit interest-based group as a ground-

truth community. Similarly, we have a set of 225 different

online social networks [13] that are all hosted by the Ning

platform. It is important to note that each Ning network is

a separate social network — an independent website with

a separate user community. For example, the NBA team

Dallas Mavericks and diabetes patients network TuDiabetes

all use Ning to host their separate online social networks.

After joining a specific network, users then create and join

groups. For example, in TuDiabetes, Ning network groups

form around specific types of diabetes, different age groups,

and similar. Note that these are exactly the properties around

which we expect communities to form in a network of

diabetes patients. Again, we use such explicitly defined

functional groups as ground-truth communities.

The second type of network we consider is the Ama-

zon product co-purchasing network [16]. The nodes of the

network represent products and edges link commonly co-

purchased products. Each product (i.e., node) belongs to

one or more hierarchically organized product categories and

products from the same category define a group which

we view as a ground-truth community. Note that here the

definition of ground-truth is somewhat different. In this case,

nodes that belong to a common ground-truth community

share a common function or purpose.

Finally, we also consider the DBLP scientific collabora-

tion network [4] where nodes represent authors and edges

connect authors that have co-authored a paper. To define

ground-truth in this setting we reason as follows. Commu-

nities in a scientific domain correspond to people working

in common areas and subareas of science. However, note

that publication venues serve as good proxies for scientific

areas: People publishing in the same conference form a

scientific community. Thus we use publication venues (i.e.,

conferences) as ground-truth communities which serve as

proxies for highly overlapping scientific communities around

which the collaboration network then organizes.

All our networks and the corresponding ground-truths

are complete and publicly available at http://snap.stanford.

edu/data. The results we present here are consistent and

robust across a wide range of networks and across an even

wider range of groups. This gives further evidence that

our approach is general and well-founded. Our work is

consistent with the premise that is implicit in all community

detection works: members of structural communities share

some functional role or property that serves as an organizing

principle of the network. Here we use functionally defined

groups as labeled ground-truth communities.

Note that our work is fundamentally different from Ahn

et al. [1], who evaluated communities with attribute based

node-node similarity of the members. This approach, for ex-

ample, folds all social dimensions (family, school, interests)

around which separate communities form into one similarity

metric [19]. In contrast, we do not use node similarity to

define communities. Rather, we harness explicitly labeled

functional groups as labels of ground-truth communities.

Data preprocessing. To represent all networks in a con-

sistent way we consider each network as an unweighted

undirected static graph. Because members of the group

may be disconnected in the network, we consider each

connected component of the group as a separate ground-truth

community. However, we allow ground-truth communities to

be nested and to overlap.

Community scoring functions. We now proceed to discuss

various scoring functions that characterize how community-

like is the connectivity structure of a given set of nodes.

The idea is that given a community scoring function, one

can then find sets of nodes with high score and consider

these sets as communities. All scoring functions build on

the intuition that communities are sets of nodes with many

connections between the members and few connections from

the members to the rest of the network. There are many

possible ways to mathematically formalize this intuition. We

gather 13 commonly used scoring functions, or equivalently,

13 structural definitions of network communities. Some

scoring functions are well known in the literature, while

others are proposed here for the first time.

Given a set of nodes S, we consider a function f(S)
that characterizes how community-like is the connectivity

of nodes in S. Let G(V,E) be an undirected graph with

n = |V | nodes and m = |E| edges. Let S be the set of

nodes, where nS is the number of nodes in S, nS = |S|;
mS the number of edges in S, mS = |{(u, v) ∈ E : u ∈
S, v ∈ S}|; and cS , the number of edges on the boundary

of S, cS = |{(u, v) ∈ E : u ∈ S, v 6∈ S}|; and d(u) is the

degree of node u. We consider 13 scoring functions f(S)
that capture the notion of quality of a network community

S. The experiments we will present later reveal that scoring
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Figure 1. Clusters based on correlations of community scoring functions.

functions naturally group into the following four classes:

(A) Scoring functions based on internal connectivity:

• Internal density: f(S) = mS

nS(nS−1)/2 is the internal

edge density of the node set S [24].
• Edges inside: f(S) = mS is the number of edges

between the members of S [24].
• Average degree: f(S) = 2mS

nS
is the average internal

degree of the members of S [24].
• Fraction over median degree (FOMD):

f(S) = |{u:u∈S,|{(u,v):v∈S}|>dm}|
nS

is the fraction of

nodes of S that have internal degree higher than dm,

where dm is the median value of d(u) in V .
• Triangle Participation Ratio (TPR):

f(S) = |{u:u∈S,{(v,w):v,w∈S,(u,v)∈E,(u,w)∈E,(v,w)∈E}6=∅}|
nS

is the fraction of nodes in S that belong to a triad.

(B) Scoring functions based on external connectivity:

• Expansion measures the number of edges per node that

point outside the cluster: f(S) = cS
nS

[24].
• Cut Ratio is the fraction of existing edges (out

of all possible edges) leaving the cluster: f(S) =
cS

nS(n−nS)
[9].

(C) Scoring functions that combine internal and exter-

nal connectivity:

• Conductance: f(S) = cS
2mS+cS

measures the fraction

of total edge volume that points outside the cluster [27].
• Normalized Cut: f(S) = cS

2mS+cS
+ cS

2(m−mS)+cS
[27].

• Maximum-ODF (Out Degree Fraction):

f(S) = maxu∈S
|{(u,v)∈E:v 6∈S}|

d(u) is the maximum frac-

tion of edges of a node in S that point outside S [8].
• Average-ODF: f(S) = 1

nS

∑

u∈S
|{(u,v)∈E:v 6∈S}|

d(u) ) is

the average fraction of edges of nodes in S that point

out of S [8].
• Flake-ODF: f(S) = |{u:u∈S,|{(u,v)∈E:v∈S}|<d(u)/2}|

nS

is the fraction of nodes in S that have fewer edges

pointing inside than to the outside of the cluster [8].

(D) Scoring function based on a network model:

• Modularity: f(S) = 1
4 (mS−E(mS)) is the difference

between mS , the number of edges between nodes in S
and E(mS), the expected number of such edges in a

random graph with identical degree sequence [21].

Experimental result: Four classes of scoring functions.

Next we examine relationship the 13 community scoring

functions we introduced. For each of the 10 million ground-

truth communities in our networks, we compute a score

using each of the 13 scoring functions. We then create

a correlation matrix of scoring functions and threshold it.

Fig. 1 shows connections between scoring functions with

correlation ≥ 0.6 (on the LiveJournal network). We ob-

serve that scores naturally group into four clusters. This

means that scoring functions of the same cluster return

heavily correlated values and quantify the same aspect of

connectivity structure. Overall, none of the scoring func-

tions are negatively correlated, which means that none of

them systematically disagree. Interestingly, Modularity is not

correlated with any other scoring function (Avg. degree is

the most correlated at 0.05 correlation). We observe similar

results in other all data sets.

The experiment demonstrates that even though many

different structural definitions of communities have been

proposed, these definitions are heavily correlated. Essentially

there are only 4 different structural notions of network

communities as revealed by Fig. 1. For brevity in the rest

of the paper we present results for 6 representative scoring

functions (denoted as blue nodes in Fig. 1): 4 from the two

large clusters and 2 from the two small clusters).

We also note that here we computed the values of the

13 scores on ground-truth communities. In reality the aim

of community detection is to find sets of nodes that maxi-

mize a given scoring function. Exact maximization of these

functions is typically NP-hard and leads to its own set of

interesting problems. (Refer to [17] for discussion.)

III. EVALUATION OF COMMUNITY

SCORING FUNCTIONS

The second main purpose of the paper is to develop an

evaluation methodology for network community detection.

Based on ground-truth communities we now aim to compare

and evaluate different community scoring functions.

Community goodness metrics. Our goal is to rank different

structural definitions of a network community (i.e., commu-

nity scoring functions) by their ability to detect ground-truth

communities. We adopt the following axiomatic approach.

First, we define four community “goodness” metrics that

formalize the intuition that “good” communities are both

compact and well connected internally while being relatively

well-separated from the rest of the network.

The difference between community scoring functions

from Section II and the goodness metrics defined above

is that a community scoring function quantifies how

community-like a set is, while a goodness metric in an

axiomatic way quantifies a desirable property of a commu-

nity. A set with high goodness metric does not necessarily

correspond to a community, but a set with high community

score should have a high value on one or more goodness

metrics. In other words, the goodness metrics shed light on



various (in many cases mutually exclusive) aspects of the

network community structure.

Using the notation from Section II, we define four good-

ness metrics g(S) for a node set S:

• Separability captures the intuition that good communi-

ties are well-separated from the rest of the network [27],

[9], meaning that they have relatively few edges point-

ing from set S to the rest of the network. Separability

measures the ratio between the internal and the external

number of edges of S: g(S) = mS

cS
.

• Density builds on intuition that good communities are

well connected [9]. It measures the fraction of the edges

(out of all possible edges) that appear between the

nodes in S, g(S) = mS

nS(nS−1)/2 .
• Cohesiveness characterizes the internal structure of the

community. Intuitively, a good community should be

internally well and evenly connected, i.e., it should

be relatively hard to split a community into two sub

communities. We characterize this by the conductance

of the internal cut. Formally, g(S) = minS′⊂S φ(S′)
where φ(S′) is the conductance of S′ measured in

the induced subgraph by S. Intuitively, conductance

measures the ratio of the edges in S′ that point outside

the set and the edges inside the set S′. A good com-

munity should have high cohesiveness (high internal

conductance) as it should require deleting many edges

before the community would be internally split into

disconnected components [17].
• Clustering coefficient is based on the premise that

network communities are manifestations of locally in-

homogeneous distributions of edges, because pairs of

nodes with common neighbors are more likely to be

connected with each other [29].

Experimental setup. We are interested in quantifying how

“good” are the communities chosen by a particular scoring

function f(S) by evaluating their goodness metric. We

formulate our experiments as follows: For each of 230

networks, we have a set of ground-truth communities Si.

For each community scoring function f(S), we rank the

ground-truth communities by the decreasing score f(Si).
We measure the cumulative running average value of the

goodness metric g(S) of the top-k ground-truth communities

(under the ordering induced by f(Si)).

The intuition for the experiments is the following. A

perfect community scoring function would rank the com-

munities in the decreasing order of the goodness metric

and thus the cumulative running average of the goodness

metric would decrease monotonically with k. While if a

hypothetical community scoring function would randomly

rank the communities, then the cumulative running average

would be a constant function of k.

Experimental results. We found qualitatively similar results

on all our datasets. Here we only present results for the
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Figure 2. Cumulative average of goodness metrics for LiveJournal
communities ranked by each of the six representative scoring functions.

LiveJournal network. Results are representative for all other

networks. We point the reader to the extended version of the

paper [31] for a complete set of results.

Figure 2(a) shows the results by plotting the cumulative

running average of separability for LiveJournal ground-truth

communities ranked by each of the six community scoring

functions. Curve “U” presents the upper bound, i.e., it plots

the cumulative running average of separability when ground-

truth communities are ordered by decreasing separability. We

observe that Conductance (C) and Cut Ratio (CR) give near

optimal performance, i.e., they nearly perfectly order the

ground-truth communities by separability. On the other hand,

we observe that Triad Participation Ratio (T) and Modularity

(M) score ground-truth communities in the inverse order of

separability (especially for k < 100), which means that they

both prefer densely linked sets of nodes.

Similarly, Figures 2(b), (c), and (d) show the cumulative

running average of community density, cohesiveness and

clustering coefficient. We observe that all scoring functions

(except Modularity) rank denser, more cohesive and more

clustered ground-truth communities higher. For the density

metric, the Fraction over median degree (D) score performs

best for high values of k followed by Conductance (C)

and Flake-ODF (F). In terms of cohesiveness and clustering

coefficient, the Triad Participation Ratio (T) score gives

by far the best results. In all cases the only exception

is the Modularity which ranks the communities in nearly

reverse order of the goodness metric (the cumulative running

average increases as a function of k). We note that these are

all well-known issues of Modularity [10] but they get further

attenuated when tested on ground-truth communities.

The curves in Figure 2 illustrate the ability of the scoring

functions to rank communities. To quantify this we perform

the following experiment. For a given goodness metric g and



Scoring function Separability Density Cohesiveness Clustering

Conductance (C) 1.0 3.5 3.4 3.1

Flake-ODF (F) 3.9 3.6 3.5 4.3

FOMD (D) 4.9 3.0 2.9 2.9

TPR (T) 4.5 2.3 2.1 1.2

Modularity(M) 4.0 5.5 5.7 3.9

CutRatio (CR) 2.6 3.1 3.2 5.5

Table II
AVERAGE SCORING FUNCTION RANK FOR EACH GOODNESS METRIC.

for each scoring function f , we measure the rank of each

scoring function in comparison to other scoring functions at

every value of k. For example, in Figure 2(a), the rank at

k = 100 of Conductance is 1, Cut ratio 2, Flake-ODF 3,

FOMD 4, Modularity 5, and TPR 6. For every k, we rank

the scores and compute the average rank over all values of

k, which quantifies the ability of the scoring function to

identify communities with high goodness metric.

Table II shows the average rank for each score and each

goodness metric. An average rank of 1 means that a partic-

ular score always outperforms other scores, while rank of 6

means that the score gives worst ranking out of all 6 scores.

We observe that Conductance (C) performs best in terms

of Separability but relatively bad in the other three metrics.

For Density, Cohesiveness and Clustering coefficient, Triad

Participation Ratio (T) is the best. Perhaps not surprisingly,

Triad Participation Ratio scores badly on Separability of

ground-truth communities. Thus, Conductance is able to

identify well-separated communities, but performs poorly

in identifying dense and cohesive sets of nodes with high

clustering coefficient. On the other hand, Triad Participation

Ratio gives the worst performance in terms of Separability

but scores the best for the other three metrics.

We conclude that depending on the network different

definitions of network communities might be appropriate.

When the network contains well-separated non-overlapping

communities, Conductance is the best scoring function.

When the network contains dense heavily overlapping com-

munities, then the Triad Participation Ratio defines the

most appropriate notion of a community. Further research

is needed to identify most appropriate structural definitions

of communities for various types of networks and types of

functional communities. E.g., in social networks we have

both identity-based as well as bond-based communities [25]

and they may in fact have different structural signatures.

Lastly, in Figure 2 we also observe that the average

goodness metric of the top k communities remains flat but

then quickly degrades. We observe the same pattern in all

our data sets. Thus, for the remainder of the paper we focus

our attention to a set of the top 5,000 communities of each

network based on the average rank over the 6 scores.

IV. ROBUSTNESS OF COMMUNITY

SCORING FUNCTIONS

In this section, we evaluate community scoring functions

using a set of perturbation strategies. We develop a set of

strategies to generate randomized perturbations of ground-

truth communities, which allows us to investigate robustness

and sensitivity of community scoring functions. Intuitively,

a good community scoring function should be such that

it is stable under small perturbations of the ground-truth

community but degrades quickly with larger perturbations.

Our reasoning is as follows. We desire a community

scoring function that scores well when evaluated on a

ground-truth community but scores low when evaluated on

a perturbed community. In other words, an ideal commu-

nity scoring function should give a maximal value when

evaluated on the ground-truth community. If we consider a

slightly perturbed ground-truth community (i.e., a node set

that differs very slightly from the ground-truth community),

we would want the score to be nearly as good as the

score of the original ground-truth community. This would

mean that the scoring function is robust to noise. However,

if the ground-truth community is perturbed so much that

it resembles a random set of nodes, then a good scoring

function should give it a low score.

Community perturbation strategies. We proceed by defin-

ing a set of community perturbation strategies. To vary

the amount of perturbation, each perturbation strategy has

a single parameter p that controls the intensity of the

perturbation. Given p and a ground-truth community defined

by its members S, the community perturbation starts with S
and then modifies it (i.e., changes its members) by executing

the perturbation strategy p|S| times. We define the following

perturbation strategies:

• NODESWAP perturbation is based on the mechanism

where the community memberships diffuse from the

original community through the network. We achieve

this by picking a random edge (u, v) where u ∈ S and

v 6∈ S and then swap the memberships (i.e., remove

u from S and add v). Note that NODESWAP preserves

the size of S but if v is not connected to the nodes in

S, then NODESWAP makes S disconnected.
• RANDOM takes community members and replaces them

with random non-members. We pick a random node

u ∈ S and a random v 6∈ S and then swap the member-

ships.Like NODESWAP, RANDOM maintains the size

of S but may disconnect S. Generally, RANDOM will

degrade the quality of S faster than NODESWAP, since

NODESWAP only affects the “fringe” of the community.
• EXPAND perturbation grows the membership set S by

expanding it at the boundary. We pick a random edge

(u, v) where u ∈ S and v 6∈ S and add v to S.

Adding v to S will generally decrease the quality of

the community. EXPAND preserves the connectedness

of S but increases the size of S.
• SHRINK removes members from the community bound-

ary. We pick a random edge (u, v) where u ∈ S, v 6∈ S
and remove u from S. SHRINK will decrease the

quality of S and result in a smaller community while



preserving connectedness.

For a given S, let h(S, p) denote a perturbed version of the

community generated by the perturbation h of intensity p.

We now quantify the difference of the score between the

unperturbed ground-truth community and its perturbation.

We use the Z-score, which measures in the units of standard

deviation how much the scoring function changes as a func-

tion of perturbation intensity p. For ground-truth community

Si, the Z-score Z(f, h, p) of community scoring function f
under perturbation strategy h with intensity p is:

Z(f, h, p) =
Ei[f(Si)− f(h(Si, p))]
√

V ari[f(h(Si, p))]
,

where Ei[·], V ari[·] are the mean and the variance over

communities Si, and f(h(Si, p)) is the community score

of perturbed Si under perturbation h with intensity p.

To measure f(h(Si, p)), we run 20 trials of h(Si, p) and

compute the average value of f . Z-score is the difference

between the average community score of true communi-

ties f(Si) and the average community scores of perturbed

communities f(h(Si, p)) normalized by the standard de-

viation of community scores of perturbed communities.

Since f(h(Si, p) are independent for each i, Ei[f(h(Si, p))]
follows a Normal distribution by the Central Limit The-

orem. Thus, P (z < Z(f, h, p)) gives the probability that

Ei[f(h(Si, p))] > Ei[f(Si)] where z is a standard normal

random variable. We measure f so that lower values mean

better communities, i.e., we add a negative sign to TPR,

Modularity and FOMD. High Z-scores mean that Ei[f(Si)]
is likely to be smaller than Ei[f(h(Si, p))] and that Si is

better than h(Si, p) in terms of f .

Experimental results. For each of the 6 community scoring

functions, we measure Z-score for perturbation intensity p
ranging between 0.01 and 0.6. This means that we randomly

swap between 1% and 60% of the community members and

measure the Z-score for each scoring function. For small

p, small Z-scores are desirable since they indicate that the

scoring function is robust to noise. For high perturbation in-

tensities p, high Z-scores are preferred because this suggests

that the community scoring function is sensitive, i.e., as the

community becomes more “random” we want the scoring

function to significantly increase its value.

Figure 3 shows the Z-scores of LiveJournal communities

as a function of perturbation intensity p. We plot the Z-

score for each of the 6 community scoring functions. As

expected, the Z-scores increase with p, which means that as

the community gets more perturbed, the value of the score

tends to decrease. However, the faster the increase the more

sensitive and thus the better the score. For example, under

the NODESWAP perturbation Conductance (C) exhibits the

highest Z-score after p > 0.2, and it has the steepest curve.

Triad Participation Ratio (T) also exhibits desirable behavior.

On the other hand, Modularity (M) score does not change

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.1  0.2  0.3  0.4  0.5  0.6

Z
-s

co
re

Perturbation intensity

C
T
M
F
D

CR

(a) NODESWAP

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6

Z
-s

co
re

Perturbation intensity

C
T
M
F
D

CR

(b) RANDOM

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.1  0.2  0.3  0.4  0.5  0.6

Z
-s

co
re

Perturbation intensity

C
T
M
F
D

CR

(c) EXPAND

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5  0.6

Z
-s

co
re

Perturbation intensity

C
T
M
F
D

CR

(d) SHRINK

Figure 3. Z-scores as a function of the perturbation intensity. Conductance
(C) and Triad Participation Ratio (T) best detect the perturbations of
LiveJournal ground-truth communities.

Scoring function NodeSwap Random Expand Shrink

Conductance (C) 1.06 1.59 0.50 0.45

Flake-ODF (F) 0.51 1.15 0.11 0.41

FOMD (D) 0.18 0.57 0.19 0.12

TPR (T) 0.37 1.85 0.74 0.21

Modularity(M) 0.23 0.14 0.03 0.15

CutRatio (CR) 0.53 0.83 0.13 0.43
Table III

AVERAGE ABSOLUTE INCREMENT OF THE Z-SCORE BETWEEN SMALL

AND LARGE COMMUNITY PERTURBATIONS. BEST PERFORMING SCORES

ARE BOLDED.

much as we perturb the ground-truth communities. This

means that Modularity is not good at distinguishing true

communities from randomized sets of nodes. We note very

similar results on all of the remaining datasets considered in

this study. Refer to the extended version for details [31].

Sensitivity of community scoring functions. We also

quantify the sensitivity of community scoring functions by

computing the increase of the Z-score between small (p =
0.05) and large perturbations (p = 0.2). As noted above, we

prefer a community scoring function with fast increase of the

Z-score as the community perturbation intensity increases.

Table III displays the difference of the Z-score between a

large and a small perturbation: Z(f, h, 0.2)−Z(f, h, 0.05).
We compute the average increment across all the 230

networks. A high value of increment means that the score is

both robust and sensitive. The score is robust because even

at small perturbation (p = 0.05) it maintains low Z-value,

while at large perturbation (p = 0.2) it has high Z-value and

thus the overall Z-score increment is high.

Conductance is the most robust score under NODESWAP

and SHRINK. The Triad Participation Ratio (T) is the most

robust under RANDOM and EXPAND. In both cases Conduc-

tance follows them closely.



Algorithm 1 Community detection from a seed node

Require: Graph G(V,E), seed node s, scoring function f
(1) Compute a random walk scores ru from seed node s
using PageRank-Nibble [2].

(2) Order nodes u by the decreasing value of ru/d(u),
where d(u) is the degree of u.

(3) Compute the community scoring function f(Sk) of

the first k nodes fk = f(Sk = {ui|i ≤ k}) for every k.

(4) Detect local minimal of f(Sk) and detect one or more

communities

if we want to detect one community then

Find the index k∗ at the first local optima of fk.

return Ŝ = {vi|i ≤ k∗}
else

Find the indices k∗j at every local optima of fk.

return Ŝj = {vi|i ≤ k∗j }
end if

V. DISCOVERING COMMUNITIES FROM A SEED NODE

Now we focus on the task of inferring communities given

a single seed node. We consider two tasks that build on

two different viewpoints. The first task is motivated by a

community-centric view where we discover all members of

community S given a single member s ∈ S. The second

task is motivated by a node-centric view where we want to

discover all communities that a single node s belongs to.

This means we discover both the number of communities s
belongs to as well as the members of these communities.

Proposed method. We extend the local spectral clustering

algorithm [28], [3] into a scalable parameter-free community

detection method. The benefits of our method are: First, the

method requires no input parameters and is be able to auto-

matically detect the number of communities as well as the

members of those communities. Second, the computational

cost of our method is proportional to the size of the detected

community (not the size of the network). Thus, our method

is scalable to networks with hundreds of millions of nodes.

Our method (Algorithm 1) builds on the findings in Sec-

tions III and IV: First, we aim to find sets of well-connected

nodes around node s. We achieve this by defining a local

partitioning method based on random walks starting from a

single seed node [2]. In particular, we use the PageRank-

Nibble random walk method that computes the PageRank

vector with error < ε in time O(1/ε) independent of the

network size [3]. The nodes with high PageRank scores

from s correspond to the well-connected nodes around

s. Moreover, the random work is “truncated” as it sets

PageRank scores ru to 0 for nodes u with ru < ε, for some

small constant ε [2]. This way the computational cost is

proportional to the size of the detected community and not

the size of the network.

After the PageRank-Nibble assigns the proximity scores
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Figure 4. Two community scoring functions f (Conductance) and f ′

(Triad Participation Ratio) evaluated on a set Sk of top k nodes with
highest random walk proximity score to seed node s. Local optima of
f(Sk) correspond to detected communities.

ru, we sort the nodes in decreasing proximity ru and

proceed to the second step of our algorithm which extends

the approach of Spielman and Teng [28]. We evaluate the

community score on a set Sk of all the nodes up to k-th one

(note that by construction Sk−1 ⊂ Sk). This means that for

a chosen community scoring function f we compute f(Sk)
of the set Sk that is composed of the top k nodes with

the highest random walk score ru. The local minima of the

function f(Sk) then correspond to extracted communities.

We detect local minima of f(Sk) using the following

heuristic. For increasing k = 1, 2, . . ., we measure f(Sk).
At some point k∗, f(Sk) will stop decreasing and this k∗

becomes our “candidate point” for a local minimum. If

f(Sk) keeps increasing after k∗ and eventually becomes

higher than αf(Sk∗), we take k∗ as a valid local mini-

mum. However, if f(Sk) goes down again before it reaches

αf(Sk∗), we discard the candidate k∗. We experimented

with several values of α and found that α = 1.2 gives good

results across all the datasets.

For example, Fig. 4 plots f(Sk) for two community scor-

ing functions f (Conductance) and f ′ (Triad Participation

Ratio). We identify the local optima (denoted by stars and

squares) and use the nodes in the corresponding sets Sk as

the detected communities.

Note that our method can detect multiple communities

that the seed node belongs to by identifying different local

minima of f(Sk). However, we assume that the communities

are nested (smaller communities are contained in the larger

ones) even though the ground-truth communities may not

necessarily follow such a nested structure. Also, note that

our method is parameter-free. Our method differs from local

graph clustering approaches [2], [28] in two important as-

pects. First, instead of sweeping only using Conductance, we

consider sweeping using other scoring functions. Second, we

find the local optima of the sweep curve instead of the global

optimum — this change gives a large improvement over the

conventional local spectral clustering approaches [2], [28].

Detecting a community from a single member. We first

consider the task where we aim to reconstruct a single

ground-truth community S based on one member node s.

For each community S, we pick a random member node s



F1-score C F D T M CR LC CPM

LJ 0.64 0.64 0.62 0.57 0.15 0.61 0.54 0.43

FS 0.23 0.22 0.24 0.25 0.24 0.18 0.13 0.14

Orkut 0.21 0.19 0.19 0.18 0.20 0.09 0.20 0.13

Ning 0.24 0.19 0.10 0.19 0.08 0.19 0.17 0.11

Amazon 0.87 0.75 0.73 0.79 0.06 0.85 0.74 0.85

DBLP 0.61 0.61 0.65 0.66 0.04 0.61 0.46 0.53

Avg. F1 0.46 0.43 0.42 0.44 0.13 0.42 0.37 0.36

Avg. Prec 0.50 0.53 0.52 0.55 0.13 0.53 0.49 0.38

Avg. Rec 0.60 0.47 0.51 0.47 0.71 0.49 0.65 0.69

Table IV
PERFORMANCE OF OUR 6 METHODS AND 2 BASELINES (LC, CPM) AT

DETECTING COMMUNITIES FROM A SEED NODE.

as a seed node and compare the community we detect from

s with the ground-truth community S. Starting from node

s, we generate a sweep curve f(Sk). Let k∗ be the value

of k where f(Sk) achieves the first local minima. We then

use the set Sk∗ as the detected community. Now, given the

ground-truth community S and the detected community Sk∗ ,

we evaluate the precision, the recall and the F1-score. We

consider 6 community scoring functions f(·). We compare

the performance of our method to two standard community

detection methods: Local Spectral clustering (LC) [2], and

the 3-clique Clique Percolation Method (CPM) [23].

Table IV shows the performance of the proposed method

for each scoring function and for the two baselines. First

5 rows show the F1-score for each of the datasets, and

the last 3 rows show the average F1-score, precision and

recall over all the datasets. We observe that the Conduc-

tance (C) gives the best average F1-score, and outperforms

all other scores on LiveJournal (LJ), Orkut, Amazon, and

Ning. For Friendster (FS) and DBLP, the Triad participation

ratio (T) performs best. This agrees with our intuition that

for networks, like LiveJournal, that have fewer community

overlaps scoring functions that focus on good separability

perform well. In networks where nodes belong to multiple

communities (like DBLP where authors publish at multiple

venues), the Triad participation ratio (T) performs best. We

also note that the average F1-score of Conductance is 0.46,

while the baselines CPM and LC achieve F1-score of only

0.36 and 0.37, respectively. Note this is 10% absolute and

30% relative improvement over the state of the art baselines.

Last, we observe that some methods detect larger commu-

nities than necessary (higher recall, lower precision). Mod-

ularity (M) most severely overestimates community size.

Conductance (C) and both baselines (CR and CPM) exhibit

similar behavior but to a lesser extent. On the contrary,

Flake-ODF (F), Fraction over median (D), Triad Participa-

tion Ratio (T), and CutRatio (CR) tend to underestimate the

community size (higher precision than recall).

Detecting all communities that a seed node belongs to. We

also explore the second task where we want to detect all the

communities to which a given seed node s belongs. In this

task, we are given a node s that is a member of multiple

communities, but we do not know which and how many

g 1 2 3 4 ≥ 5 All nodes

LJ 0.52 0.59 0.52 0.42 0.38 0.53

FS 0.13 0.10 0.08 0.05 0.02 0.13

Orkut 0.21 0.17 0.13 0.11 0.10 0.20

Ning (225 nets) 0.11 0.09 0.07 0.06 0.05 0.11

Amazon 0.59 0.73 0.69 0.66 0.55 0.61

DBLP 0.34 0.24 0.20 0.21 0.16 0.33

Table V
AVERAGE F-SCORE BETWEEN DETECTED COMMUNITIES AND THE

GROUND-TRUTH COMMUNITIES TO WHICH A SEED NODE BELONGS TO,
WHEN THE SEED NODE BELONGS TO g DIFFERENT COMMUNITIES.

communities s belongs to. We detect multiple communities

by detecting all the local minima (and not just the first one)

of the sweep curve. This way our method both detects the

number as well as the members of communities.

For each data set, we sample a node s, detect communities

Ŝj , and compare them to the ground-truth communities Si

that node s belongs to. To measure correspondence between

the true and the detected communities, we match ground-

truth communities to detected communities by the Hungarian

matching method [15]. We then compute the average F1-

score over the matched pairs. We use Conductance as the

community scoring function and report results in Table V.

Note that this task is harder than the previous one as here

we aim to discover multiple communities simultaneously.

Whereas the previous task evaluated our method for each

ground-truth community, here we first sample node s and

then search for the communities Si that s belongs to.

Therefore, larger ground-truth communities will be included

in Si more often. Since larger ground-truth communities are

less well separated [18] this makes the task harder.

Table V reports the average F1-score as a function of

the number of communities g that the seed node s belongs

to. Given that this is a harder task, we observe lower

values of the F-score. Intuitively we also expect that the

task becomes harder as s belongs to more communities.

In fact we observe that the performance degrades with

increasing g. Interestingly, in LiveJournal and Amazon it

appears to be easier to detect communities of nodes that

belong to 2 communities than to detect a community of a

node that belongs to only a single community. This is due

to the fact that single community nodes reside on the border

of the community and consequently Conductance produces

communities that are too small [18].

VI. CONCLUSION

The lack of reliable ground-truth gold-standard communi-

ties has made network community detection a very challeng-

ing task. In this paper, we studied a set of 230 different large

social, collaboration and information networks in which we

defined the notion of ground-truth communities by nodes

explicitly stating their group memberships.

We developed an evaluation methodology for comparing

network community detection algorithms based on their

accuracy on real data and compared different definitions



of network communities and examined their robustness.

Our results demonstrate large differences in behavior of

community scoring functions. Last, we also studied the

problem of community detection from a single seed node.

We examined class of scalable parameter-free community

detection methods based on Random Walks and found that

our methods reliably detect a ground-truth communities.

The availability of ground-truth communities allows for a

range of interesting future directions. For example, further

examining the connectivity structure of ground-truth com-

munities could lead to novel community detection meth-

ods [30]. Overall, we believe that the present work will

bring more rigor to the evaluation of network community

detection, and the datasets publicly released as a part of this

work will benefit the research community.
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[23] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering
the overlapping community structure of complex networks in
nature and society. Nature, 435(7043):814–818, 2005.

[24] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and
D. Parisi. Defining and identifying communities in networks.
PNAS, 101(9):2658–2663, 2004.

[25] Y. Ren, R. Kraut, and S. Kiesler. Applying common identity
and bond theory to design of online communities. Organiza-
tion Studies, 28(3):377–408, 2007.

[26] S. Schaeffer. Graph clustering. Computer Science Review,
1(1):27–64, 2007.

[27] J. Shi and J. Malik. Normalized cuts and image segmentation.
IEEE PAMI, 22(8):888–905, 2000.

[28] D. Spielman and S.-H. Teng. Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems. In STOC ’04, pages 81–90, 2004.

[29] D. Watts and S. Strogatz. Collective dynamics of small-world
networks. Nature, 393:440–442, 1998.

[30] J. Yang and J. Leskovec. Community-Affiliation Graph Model
for Overlapping Network Community Detection In ICDM
’12, 2012.

[31] J. Yang and J. Leskovec. Defining and Evaluating Network
Communities based on Ground-truth. Extended version, 2012.


