
Analysis of an efficient reduction algorithm for
random regular expressions based on universality

detection

Florent Koechlin and Pablo Rotondo

LIGM, Univ Gustave Eiffel, CNRS, ENPC, name.surname@u-pem.fr

Abstract. In this article we study a very simple linear reduction al-
gorithm that is specific to regular expressions. It aims to detect, in a
bottom-up fashion, universal subtrees in regular expressions trees, and
replace them by the smallest equivalent to Σ∗. Of course, this does not
detect every universal subtree, as the universality problem is PSPACE-
complete. However, we prove that for the uniform random tree model,
this simple algorithm detects a large proportion of universal trees. Fur-
thermore, we prove that on average this algorithm reduces uniform regular
expressions to a constant size that is very small, and that can be computed
efficiently. For example, for two letters the limit expected size is ∼ 77.8.
Our theoretical constants are backed-up by the experimental evidence.
This confirms the phenomena reported in [13], and further it completely
discards the usefulness of the uniform distribution on regular expressions.

1 Introduction

Regular languages are ubiquitous in computer science. The natural way to specify
these languages, when it comes to programming, is through regular expressions.
Thus there are many algorithms taking regular expressions as inputs. A notable
case is the compilation of regular expressions into automata. There exist several
constructions of automata from regular expressions; for instance the Thompson
construction, the Glushkov position automaton, the partial derivative automaton
and the prefix automaton [1,2,16]. Faced with this choice, it is natural to wonder
which one performs better in practice. Average case analysis seeks to give an
answer by setting up a probabilistic model, hoping that this reflects real life inputs
well. In this context, a natural choice for the model is the uniform distribution
on the inputs. This distribution has two advantages: it maximizes the entropy,
and it is often susceptible to theoretical analysis.

Regular expressions are represented naturally as expression trees, see Figure 1.
The uniform distribution on the associated trees has been used with success in
the literature to study the complexity of automata constructions [5]. However,
this model has been recently put into question by the work in [13]. It is shown
that a uniform regular expression tree of size n over a two-letter alphabet is
expected to be equivalent to a tree of constant size 3, 624, 217, as n→∞. The
equivalent tree can be computed in a bottom-up fashion in linear time. Therefore,

•

+ ?

ba b

(a+ b) · b?

+

?•

+?

a

a

ab

(a · a?) + (b+ a)?

U{a, b, ε} •

?{a, b, ε} U ? {a, ε}

+{a, b} a

a b

(a+ b)? · a?

U{a, b, ε} ?

{a, b, ε} •

?{b, ε} + {a, ε}

a εb

(b? · (a+ ε))?

Fig. 1. Four regular expression trees and their associated formulas. The last three are
universal, i.e., they recognize every word on the alphabet {a, b}. Our linear simplification
algorithm (see Figure 2) will detect their universality. For example, the last two
expression trees are annotated with the subset (in blue) of symbols a, b, ε recognized
and (in green) whether the expression associated to the node is detected to be universal
by our algorithm.

+

U L
 U ,

+

L U
 U ,

•

U Tε
 U ,

•

Tε U
 U ,

?

TΣ
 U ,

?

U
 U .

Fig. 2. The bottom-up set of reduction rules. Here U is a special tree representing those
identified as universal. Then L denotes any tree, TΣ denotes any tree recognizing every
letter of Σ, and Tε denotes the class of trees recognizing the empty word ε. Note for
example that U ∈ Tε ∩ TΣ . Hence the last rule is redundant, but written for better
understanding.

the asymptotic average case analysis is doomed to be trivial once the expression
has been reduced (in time O(n)).

Even if the smaller equivalent expression obtained in [13] is constant size on
average, its size (≈ 3.6 · 106) is not small enough to exclude its usefulness in
random generation of regular expressions. But the size of the output expression
is likely overestimated due to the fact that the model considered in [13] is very
general; it applies to a large range of expression specified by expression trees
(e.g., logical formulas, artihmetic expressions, ...). Furthermore, several works on
boolean expressions trees [6,11] have shown that considering the finer details of
the semantic rules for a concrete case might lead to much stronger results (and a
smaller constant).

In this work, we study the application of a simplification algorithm that
is specific to regular expression trees and exploits their particular semantic
properties1. The procedure seeks to recognize when a tree represents a universal
expression (i.e., recognizing every possible word). The algorithm must be efficient
(linear time) as it is intended to be used in a pre-processing step to simplify the
expressions. In Figure 2 we show the schema of the reduction rules applied by
recognizing universality. The reduction works bottom-up. We record for eachThe complete code is

detailed in Appendix A. tree the subset of Σ∪{ε} that is recognized by the expression, depicted in blue in
Figure 1. In addition, the algorithm tries to detect if the expression is universal

1 However, this idea may be adaptable to other similar bottom-up procedures.

2

(i.e. accepts every word on the alphabet). As the universality problem for regular
expressions is PSPACE-complete [15], this detection (in linear time) is bound to be
incomplete. The reduction consists in replacing the identified universal subtrees
of the input expression by a fixed tree U representing the class of universal trees.
This tree U may be taken to be, for example, a universal one of minimal size
(e.g., (a+ b)? for two letters), or a completely new alphabet symbol.

It could be said that this is the most natural and simplest algorithm to detect
in linear time as many universal subtrees as possible. As mentioned previously,
this algorithm does not detect all universal trees; consider for instance the tree
associated with L = Σ ·Σ? + ε. The algorithm does not realize that Σ ·Σ? is
only missing ε to be universal. Note that the procedure detects the universality
of the three trees on the right of Figure 1, which in contrast cannot be reduced
at all by the absorbing-pattern procedure given in [13].

Our main contribution is showing, without a shadow of doubt, that the uniform
model is not apt for practical use. We already know due to [13] that the size
after reduction is bounded by a huge constant2. Note that the convergence of the
expected size is not immediate in our case because the reduction is significantly
different. In this article we prove that our algorithm yields a limit expected size
which is significantly smaller. We give a general method to compute this limit to
any arbitrary precision, that works for any alphabet size, and is efficient. The
limits for k = |Σ| from two to five are shown in Table 1, where we have taken U
to be a minimal universal tree of size 2k. For instance, for an alphabet on two
symbols (k = 2) this yields a constant ∼ 77.797, which is prohibitively small. This
is confirmed by our experiments (see Fig. 3) for a wide range of sizes. Further, the
experiments suggest that the limit might even be close to being an upper-bound.

23 26 29 212 215 218 221
0

0.1

0.2

0.3

size of the regular expression

p
ro
p
or
ti
o
n
of

d
et
ec
te
d
u
n
iv
er
sa
l

23 26 29 212 215 218 221
0

20

40

60

80

size of the regular expression

av
er
ag
e
si
ze

o
f
th
e
re
d
u
ce
d
ex
p
re
ss
io
n

Fig. 3. The proportion of universal expressions detected by the algorithm, and the
average size after reduction, observed experimentally3 on regular expressions on two
letters, with 10 , 000 samples for each size. The plots are in log-scale for the input sizes.
The theoretical limits are marked by green (dashed) lines.

2 Their algorithm is a sub-reduction of ours in the case of regular expressions.
3 For the simulations, the uniform trees were sampled using the algorithm in [7].

3

Theorem. Consider the simple variety of tree expressions encoding regular ex-
pressions for an alphabet of fixed size |Σ| = k, and σ the linear-time simplification
induced by the rules in Figure 2. Then the expected size of a uniform random
expression of size n after simplification tends to a constant as n tends to infinity.

|Σ| 2 3 4 5
limEn[|σ(T)|] 77.79724 . . . 495.59151 . . . 2 518.20513 . . . 11 694.43727 . . .

Table 1.
Moreover, Table 1 shows the limits, for alphabets of size k up to 5, computed

to five exact digits after the decimal point.
As a second result of independent interest, we provide bounds for the pro-

portion of universal expression trees. In Proposition 10, we show that there is
a high proportion of expression trees which represent universal expressions. In
particular, the proportion is asymptotically comprised between 0.31 and 0.46 for
an alphabet on two letters. See Fig. 3 for the lower bound. Thus the fact that the
reduced trees have a limit for their expected size can be thought of, intuitively,
as a consequence of the preponderance of universal expressions.

We conclude the introduction by giving a plan of the article. Section 2 intro-
duces the definitions and the basic techniques from Analytic Combinatorics [10]
that we will employ. In particular the reduction algorithm, and the main gen-
erating functions. Next, in Section 3 we study the generating functions of the
combinatorial classes associated with the algorithm, and the size after reduction.
Theorem 1 gives a recursive system of the combinatorial classes. Using marking
techniques on the system, we describe the reduced size in terms of a bivariate
generating function. Then Theorem 2 proves that these classes have a limit prob-
ability, and we conclude the section with Theorem 3 which describes the expected
values. Finally, in Section 4 we show how to compute the limits (probability and
expectation) efficiently to arbitrary precision4. This involves a rewriting of the
system in a simpler form (see Sec. 4.1). The procedure5 works for any value of
k = |Σ|.The proofs are provided

in the appendices. The proofs are either sketched or completely omitted in this extended abstract.

2 Model and definitions

2.1 Expression trees: definitions and counting

We introduce the family of trees representing regular expressions. The trees
considered throughout this article are rooted and planar:

op
/\

T1 T2
and

op
/\

T2 T1
do not

represent the same tree.

Definition 1. Given a finite alphabet A = {a1, . . . , ak}, we define the class of
regular expression trees LR = LR(A) on A inductively from the equation

LR = a1 + . . .+ ak + ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
. (2.1)

4 We could in fact compute them exactly, but their exact expression is not readable
5 The code is provided in Sage and Maple at https://igm.univ-mlv.fr/~koechlin/
csr_reduction_universality/

4

https://igm.univ-mlv.fr/~koechlin/csr_reduction_universality/
https://igm.univ-mlv.fr/~koechlin/csr_reduction_universality/

The size |T | of an expression tree T ∈ LR is defined to be its number of nodes.
In particular the leaves a1, . . . , ak and ε have size 1.

For n ∈ N, we note Ln the set of regular expressions of size n. In our model
we fix n the size of tree, and draw T ∈ Ln uniformly. The probability of picking
a particular T ∈ Ln is then 1/|Ln|. Now we show how to obtain the asymptotics
for |Ln|, and how to use this to obtain the probability of recognizing ε.

Formal generating series. In order to count the trees, and obtain asymptotics,
we make use of the framework of Analytic Combinatorics [10]. In particular, we
deal with ordinary generating functions (OGFs for short).

The ordinary generating function L(z) associated with LR is defined as the
formal power series L(z) :=

∑
T∈LR z

|T | =
∑
n≥0 `nz

n where `n = |Ln|.
The equation defining the class of expression trees LR translates into a

functional equation for its ordinary generating function:

L(z) = (k + 1)z + zL(z) + 2z(L(z))2 . (2.2)

This translation from the inductive equation, Eq (2.1), to the functional equation,
Eq (2.2), comes from general principles of Analytic Combinatorics: the disjoint
union of two classes is associated to the sum of their OGFs, and the cartesian
product of two classes translates into the product of their OGFs [10].

Transfer Theorem. This symbolic translation is the first of the two steps employed
in the Analytic Combinatorics study of the coefficients. For the second, we
consider the OGF C(z) =

∑
cnz

n as a function on the complex plane C. The
behaviour of C(z) at its dominant (closest to the origin) singularities translates
into asymptotics for its coefficients cn ≥ 0. We use the notation [zn]C(z) := cn,
for the coefficients of C(z). Pringsheim’s Theorem [10, Theorem IV.6] implies
that the radius of convergence ρ = ρC > 0 of C(z) is a dominant singularity.
Then the celebrated Transfer Theorem [10, Ch VI.3] states that, under certain
analytic conditions, if ρ is the only singularity on the circle |z| = ρ and we have
the local estimate C(z) ∼z→ρ λ(1 − z/ρ)−β , with β /∈ {0,−1,−2, . . .}, around
z = ρ, then we have the asymptotics [zn]C(z) ∼n→∞ λρ−nnβ−1/Γ (β), where Γ
is Euler’s gamma-function, for the coefficients of C(z).

Asymptotics for the number of trees. The Equation (2.2) is quadratic in L(z). Thus
we can solve for the generating function, obtaining L(z) =

(
1− z −

√
∆(z)

)
/(4z)

with ∆(z) := −(8k + 7) z2 − 2 z + 1, which is the only combinatorially sound
solution. Then L(z) presents a false singularity at z = 0, and a unique dominant
singularity ρ at the root of ∆(z) that is closest to the origin. The value of the
singularity ρ and the value of L(ρ) are characterized by

L(ρ) =

√
1 + k

2
, ρ =

1

1 + 4L(ρ)
.

5

Since ρ is a simple root of ∆(z), we derive that L(z) = hL − gL
√
1− z/ρ+

O
(∣∣1− z

ρ

∣∣) as z → ρ, where hL = L(ρ), and gL can be obtained by differentiation,

namely gL = 2ρ lim
z→ρ

L′(z) ·
√
1− z/ρ. Thus the Transfer Theorem6 yields

`n = [zn]L(z) ∼ −gLρ−nn−3/2/Γ (−1/2) = gLρ
−nn−3/2/(2

√
π) .

Probability of recognizing ε. We present a basic class of regular expressions that
intervene crucially in our work: the tree expressions recognizing the empty word.

The class Tε of tree expressions recognizing ε can be characterized inductively
by the following equation where the decomposition into sum of classes is disjoint:

Tε = ε+
?
|
LR

+
•
/\
Tε Tε

+
+
/\
Tε LR

+
+
/\

LR\Tε Tε
.

Thus we obtain the OGF Tε(z) by the principles of Analytic Combinatorics:

Tε(z) = z + zL(z) + 2zL(z)Tε(z) . (2.3)

Solving the linear equation, we can verify that Tε(z) = hTε − gTε
√

1− z/ρ +
O (1− z/ρ) as z → ρ, with a constant gTε 6= 0. Thus the number of tree
expressions of size n recognizing ε is asymptotically

[zn]Tε(z) ∼ gTερ−nn−3/2/(2
√
π) .

Normalizing by `n, we obtain the following proposition:For the proof, see An-
nex B.

Proposition 1. The probability of a random uniform tree of size n recognizing
ε converges, as n→∞, to a positive constant gTε/gL =

√
2 k+2+3/2

k+
√
2 k+2+3/2

.

2.2 The reduction process

We consider R a particular subclass of trees recognizing every word of Σ?:

Definition 2. The class R is defined inductively:

– if T recognizes every letter of the alphabet, then
?
|
T
∈ R;

– if at least one of T1 or T2 belongs to R, then
+
/\

T1 T2

∈ R;

– if T1 ∈ R and T2 ∈ Tε, then
•
/\

T1 T2
∈ R and

•
/\

T2 T1
∈ R.

In particular if T ∈ R, then
?
|
T
∈ R.

Note that R is the class of subtrees reduced to U by the algorithm. As
announced in the introduction, the tree associated with Σ ·Σ? + ε is not in R
whereas it is universal.
6 Strictly speaking, we should deal with the remainder term.

6

Recognizing letters. In order to decide whether a tree belongs to R, by using the
definition bottom-up, we must be able to decide (also bottom-up) whether a tree
T recognizes a given letter a. This is done as follows:

– if |T | = 1, then T recognizes a if and only if T = a,
– if the root of T is either ? or +, then T recognizes a if and only if one of its

children recognizes the letter a,
– if the root of T is •, then T recognizes a if and only if one of its children

recognizes the letter a and the other one recognizes ε.

Example 1. If T1 recognizes ε and a, while T2 recognizes ε and b, then
•
/\

T1 T2

recognizes a, b and ε.

Definition 3 (Reduction algorithm σ). Given a tree T , and a fixed tree U
representing Σ?, we produce the reduced tree σU (T) as follows. We begin bottom-up
from the leaves, and we keep track of whether the current tree: (1) recognizes each
letter of Σ, (2) recognizes ε, (3) is in R. The veracity of all of these predicates
is determined bottom-up as described above. Whenever a subtree is in R, we
substitute it by U . When U is clear by context, we simply write σ(T).

2.3 Generating functions with additional parameters

The generating function L(z) only counts the number `n of trees of a given size
n. To keep track of the reduced size of the trees at the same time, we introduce
a new “marking” variable u and consider the bivariate generating function

L(z, u) =
∑
T∈LR

z|T |u|σ(T)| . (2.4)

Then the expected size of a tree of size n after reduction can be expressed by:

En[|σ(T)|] =
[zn]∂uL(z, u)

∣∣
u=1

[zn]L(z)
. (2.5)

We need information about L(z, u) to evaluate the numerator in Eq. (2.5). In order
to find a suitable expression for L(z, u), we will split L into several subclasses.
These subclasses correspond to the different stages in building an element from
R, and take the reduction into account (see Section 3.1).

3 Analytic characterization of the limit

The objective of this section is to show that the expected size after reduction
σ(T) converges as the size n of the random tree tends to infinity. To do this, we
study the analytic properties of ∂uL(z, u)|u=1, the derivative in u of the bivariate
generating function defined in Eq. (2.4). The analytic properties presented here
will also be needed in Section 4, where we show how to exploit them to obtain an
efficient and high-precision procedure to compute the limit of the expectation.

7

3.1 Combinatorial system for the reduction

Following the construction of the class R, we introduce the following notation:
for every subset of letters X ⊆ Σ, TX,ε denotes the set of trees that recognize
the empty word, every letter in X, but no letter in Σ\X. Similarly we denote by
TX,ε the set of tree expression that recognize every letter in X, but no letter in
Σ\X, nor the empty word ε.

Example 2. For instance, T{a},ε contains the trees for a? and (a · (b?) + ε), but
does not contain the tree a.

Theorem 1. The combinatorial classes (TX,ε)X⊆Σ and (TX,ε)X⊆Σ satisfy the
inductive definition:

TX,ε = ε1X=∅ +
?
|
TX,ε

+
?
|
TX,ε

+
∑

(S,S′):S∪S′=X

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,

TX,ε = X1|X|=1 +
∑
S⊆Σ

•
/\

TX,ε TS,ε
+
∑
S⊆Σ

•
/\

TS,ε TX,ε
+ 1X=∅

∑
S,S′⊆Σ

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,

where the union S ∪ S′ need not be disjoint, but the sums + are all disjoint.

Proof (Sketch). This is just an exhaustive enumeration of every possible case
for a tree to recognize any set of letters and the empty word. We however have
to be careful to produce an unambiguous specification.

Adding R to the system. The class of fully reducible trees R satisfies the equation:

R =
?
|
TΣ,ε

+
?
|
TΣ,ε

+
+
/\
R L

+
+
/\

L\R R
+

•
/\
R Tε

+
•
/\

Tε\R R
, (3.1)

We want to add this equation to our system. For the terms to remain positive
we introduce the class TG := TΣ,ε \ R, namely, the class of trees recognizing
every letter and the empty word, that are not fully reducible. Then we have
the disjoint sum TΣ,ε = R + TG. Hence, in Eq. (3.1), we can expand L =∑
X(Σ TX,ε+TG+R+

∑
X⊆Σ TX,ε and Tε =

∑
X(Σ TX,ε+R+TG. In particular

this gives L \ R = TG +
∑
X(Σ TX,ε +

∑
X⊆Σ TX,ε, and similarly for Tε \ R.

For TG we have a similar equation, which we derive from expanding TΣ,ε =
R + TG in the equation for TΣ,ε and eliminating the terms involving R. In
particular there are no trees in TG having ? as root, and those having • as root
are ∑

S(Σ,S′(Σ:
S∪S′=Σ

•
/\

TS,ε TS′,ε
+
∑
S(Σ

•
/\

TG TS,ε
+

•
/\
TG TG

+
∑
S(Σ

•
/\

TS,ε TG
,

8

as we must prohibit the subtrees from being in R. For + to be the root, we must
prohibit having one subtree that recognizes ε and the other in R. This is easilyThe full specification of

TG can be found in An-
nex C

calculated but a bit long to write out in full.

3.2 Generating functions and probability of full reduction

From the combinatorial system of Theorem 1, in (TX,ε, TX,ε)X⊆Σ , we have
introduced a new one in (R, TG, TΣ,ε, (TX,ε, TX,ε)X(Σ). In this section we look
at the system of their generating functions and prove several basic properties.

We denote by yX,ε(z) (resp. yX,ε(z)) the generating series of TX,ε (resp. TX,ε).
Similarly, we denote by R(z) and yG(z) the OGFs of R and TG. Note in particular
that yΣ,ε(z) = R(z) + yG(z). Henceforth we will write as a column vector

y(z) = [R(z), yG(z), yΣ,ε(z), (yX,ε(z), yX,ε(z))X(Σ] .
The full proofs for this
subsection can be found
in Annex DProposition 2. The vector y(z) satisfies a vectorial system under the form:

y(z) = Φ(z;y(z)) (3.2)

where each component of Φ(z;y) is a polynomial of degree 2 in y, of degree 1 in
z, such that Φ(0;y) = 0.

Remark 1. If X,Y ⊆ Σ have the same number of letters |X| = |Y |, then
yX,ε(z) = yY,ε(z) and yX,ε(z) = yY,ε(z). This follows from picking any iso-
morphism permuting the letters of Σ and mapping X to Y . Thus in reality we
may rewrite the system in just 1 + 2× (k + 1) equations where k = |Σ|, rather
than the exponential 1 + 2k+1 we would have by considering every subset.

Proposition 3. Every coordinate of the solution y(z) of the system has ρ as a
unique dominant singularity, such that near z = ρ:

y(z) = h(z)− g(z)
√

1− z/ρ (3.3)

where h(z) and g(z) are two vectors of analytic functions in a neighbourhood of
z = ρ. Besides, every coordinate of g(ρ) is strictly positive.

Proof (sketch). We prove that the system (3.2) is strongly connected, so that
we can apply Drmota’s theorem [8]. The common singularity is already known
since it must coincide with the singularity of L(z).
Theorem 2. The probability that a random tree T of size n belongs to a class C
of the extended combinatorial system tends to a positive constant gC(ρ)/gL(ρ) as
n→∞. In particular, the limit probability of a full reduction (C = R) is positive.

Proof (Sketch). Proposition 3 implies that R(z) = hR(z) − gR(z)
√

1− z/ρ
around z = ρ, with gR(ρ) 6= 0. Since there is no other singularity on the circle
|z| = ρ, we obtain the asymptotics from the Transfer Theorem and the proof
follows as that of the probability of recognizing ε.

9

3.3 Extended system for the expected value

To deal with the expected value, as explained in Section 2.3, we introduce a
new variable u which will “mark” the size of the reduced expression. We extend
each generating function to two variables y(z, u). It is immediate to see that
R(z, u) = u|U|R(z). Note that for the other classes, the root always remains after
the reduction. Hence we almost have for them the same equations in two variables
than in one variable, with an additional factor u to count the root in the size of
the reduced tree. We summarize this discussion in the following proposition.

Proposition 4. Let us write y = (R, ỹ), and Φ = (ΦR, Φ̃). The vector of
bivariate generating functions ỹ(z, u) satisfies the vectorial system:

ỹ(z, u) = Φ̃(zu;upR(z), ỹ(z, u))

where Φ = (ΦR, Φ̃) is defined in Eq. 3.2, and p := |U|.
Notice that L(z, u) = upR(z) + (1, . . . , 1) · ỹ(z, u). Following Eq (2.5), we

need to differentiate L(z, u) on u then set u = 1 to find the expected value. For
notation convenience, we will write Qỹ(z) := ∂uỹ(z, u)

∣∣
u=1

.

Proposition 5. The vector Qỹ(z) = ∂uỹ(z, u)
∣∣
u=1

satisfies the linear system:

(Id−Jacỹ[Φ̃](z;R(z), ỹ(z)))Qỹ(z) = Φ̃(z;R(z), ỹ(z))+p∂RΦ̃(z;R(z), ỹ(z))R(z)

Proof. It is straightforward by differentiating Proposition 4. Note that z∂zΦ̃ = Φ̃.

Hence we can show that Qỹ(z) has a dominant square-root singularity at z = ρ:
Proposition 6. Every coordinate of the vector Qỹ(z) = ∂uỹ(z, u)

∣∣
u=1

has a
unique dominant singularity at z = ρ. Further, near z = ρ we may write:

Qỹ(z) = hQỹ(z)− gQỹ(z)
√

1− z/ρ
where hQỹ(z) and gQỹ(z) are two vectors of analytic functions in a neighbourhood
of z = ρ, such that every coordinate of gQỹ(ρ) is strictly positive.

Proof (Sketch). We prove that we can inverse the matrix in Proposition 5, andFor the full proofs for
this subsection, see An-
nex E.

use Proposition 3 to prove that the solution has the right form.

Using Eq (2.5) and the Transfer Theorem, we can finally conclude:

Theorem 3 (Limit of the expected size). Consider the simple variety of
tree expressions encoding regular expressions for an alphabet of fixed size |Σ| = k,
and the linear-time simplification algorithm σ. Then the expected size of a uniform
random expression of size n after simplification by σ tends to a constant as n
tends to infinity:

lim
n→+∞

En[|σ(T)|] =
|U|gR(ρ) + ‖gQỹ(ρ)‖1

gL(ρ)
(3.4)

where ‖(v1, . . . , vs)‖1 = |v1|+ . . .+ |vs|.
Remark 2 (size of U). A natural value for the size of U is |U| = 2k if we represent
universality by any minimal unary-binary tree for Σ?, or |U| = 1 if we use a
special symbol. We remark that one must be careful when changing U as the
vector (gR(z), gQỹ(z)), evaluated in Eq. (3.4), also depends on |U|.

10

4 Practical computation of the limit: a numerical study

The main goal of this section is to give an effective procedure to compute the
constant in Theorem 3, for any size of the alphabet.

According to Eq (3.4), we need to compute gR(ρ) and gQỹ(ρ). We notice that
for any analytic function w(z) under the form w(z) = h(z)− g(z)

√
1− z/ρ, then

w′(z) = O(1) + g(ρ)

2ρ
√

1−z/ρ
for z ∼ ρ. Hence g(ρ) = limz→ρ 2ρw

′(z)
√

1− z/ρ.
Differentiating in z the system in Prop. 5 leads to the following proposition: see Annex F for the

complete proofs of this
sectionProposition 7. The vector gQỹ(ρ) satisfies the equation:

gQỹ(ρ) =
(
Id− Jacỹ[Φ̃](ρ;y(ρ))

)−1
×KΦ(ρ;y(ρ), gy(ρ), Qỹ(ρ))

whereKΦ(z;y, g,h) depends on the derivatives of Φ, p = |U|, and it is polynomial
in its input vectors.

Hence we need to compute y(ρ), gy(ρ) and Qỹ(ρ). This is done in three steps:

1. To compute y(ρ), we rewrite the system in a “triangular form”. This is done by
exploiting the known functions L(z) and Tε(z). Then y(ρ) can be effectively
computed by dynamic programming. See Section 4.1 for details.

2. Then gy(ρ) is computed by solving a linear system, as it is an eigenvector of
the matrix Jacy[Φ](ρ,y(ρ)). This is explained in Section 4.2.

3. Finally, setting z = ρ in Prop. 5 yields a simple matrix formula for Qỹ(ρ).
The inverse of the matrix is well-defined, as shown in the proof of Prop. 6.

4.1 Triangular form of the system

Factorizing terms in the equations for the combinatorial classes for TX,ε in
Theorem 1, the combinatorial classes Tε and Tε := LR\Tε turn up. This is
summarized in the following proposition.

Proposition 8. The combinatorial class (TX,ε)X⊆Σ satisfies the inductive defi-
nition:

TX,ε = X1|X|=1 +
•
/\

TX,ε Tε
+

•
/\

Tε TX,ε
+ 1X=∅

•
/\
Tε Tε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
.

This yields a new triangular system for the generating functions: we obtain a
quadratic equation in yX,ε(z) whose coefficients involve only yS,ε with S (X,
similarly, we have a quadratic equation for yX,ε(z) whose coefficients involve
only yS,ε with S (X and also yX,ε. We can then compute fast the numerical
solution7 for y(ρ).
7 In fact, we can solve the system in y(z) exactly. However the closed-form solutions
become huge; for instance, for Σ = {a, b}:
yΣ,ε(z) =

1
4z

(
−
√
∆(z) + 2

√
(2z + 2)

√
∆(z)− 6z2 + 2−

√
(2z + 2)

√
∆(z) + 10z2 + 2− z − 1

)
.

11

Algorithm to compute y(ρ). First we compute L(ρ), Tε(ρ) and Tε(ρ) as explained
in Section 2.1. Then, given the triangular system, we compute the values of yX,ε(ρ)
and yX,ε(ρ) for each X ⊆ Σ by dynamic programming. Each step requires simple
operations (sums, products, and a single square-root) on previously computed
values. Finally, R(ρ) is computed from Eq. (3.1), while yG(ρ) = yΣ,ε(ρ)−R(ρ).

4.2 Limit probabilities as an eigenvector

The vector gy(ρ) is characterized in terms of a linear system of equations.

Proposition 9. The coefficients gy(ρ) constitute an eigenvector for λ = 1 for
the Jacobian matrix Jacy[Φ](ρ;y(ρ)) at z = ρ, namely

Jacy[Φ](ρ;y(ρ)) · gy(ρ) = gy(ρ) .

Furthermore, the eigenspace associated to λ = 1 has dimension 1 and gy(ρ) is
characterized as the only eigenvector satisfying ‖gy(ρ)‖1 = gL(ρ).

Probabilities of each class. In particular, for two letters we obtain limn Prn(R)
.
=

0. 310122 . . ., while limn Prn(TΣ,ε)
.
= 0. 457051 These constitute bounds for

the proportion of universal expressions. We summarize in the following:

Proposition 10. For all n large enough, the proportion Prn(univ.) of trees
representing universal expressions over a k-letter alphabet belongs to the intervals:

k 2 3 4 5
interval (0.31, 0.46) (0.13, 0.27) (0.062, 0.15) (0.028, 0.077)

5 Conclusion

We have provided a simple linear algorithm reducing a random regular expression
to an equivalent one that on average has a small constant size. This shows that
the uniform tree model is most definitely flawed when it comes to producing
random regular expressions, as it produces very limited languages.

An interesting aspect to highlight is the combinatorial system characterizing
the reduction process (see Sec. 3.1), in particular its simplicity, and the fact that
it allows for efficient computation and (big) exact solutions.

The simplification process relies on detecting universality. Our study reveals
that universality is abundant in the random uniform model. Moreover, the
proportion of universal trees is comprised in a small range (see Proposition 10).
We could refine the detection algorithm by considering slight improvements. The
goal is to, for instance, recognize the universality of L = Σ ·Σ? + ε. An idea is
to consider not only whether Σ? is recognized but also a ·Σ? and b ·Σ?. More
generally, one can consider for a given depth k, whether the words in Σ≤k are
recognized, and also the sets w ·Σ? for a prefix free set of w ∈ Σ≤k. For large k
this should lead to better upper and lower bounds for the asymptotic probability
of a tree being universal. Hopefully these bounds will coalesce as k →∞, which
would then prove the existence of the limit probability for universality.

12

References

1. Allauzen, C., Mohri, M.: A unified construction of the glushkov, follow, and antimirov
automata. In: Královič, R., Urzyczyn, P. (eds.) Mathematical Foundations of
Computer Science 2006. pp. 110–121. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

2. Antimirov, V.: Partial derivatives of regular expressions and finite automata con-
structions. In: Mayr, E.W., Puech, C. (eds.) STACS 95. pp. 455–466. Springer
Berlin Heidelberg, Berlin, Heidelberg (1995)

3. Apostol, T.: Calculus. Vol. II: Multi-variable Calculus and Linear Algebra, with
Applications to Differential Equations and Probability. Blaisdell international
textbook series, Xerox College Publ. (1969)

4. Bell, J.P., Burris, S., Yeats, K.A.: Characteristic points of recursive systems. Electr.
J. Comb. 17(1) (2010)

5. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of glushkov
and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984
(2012). https://doi.org/10.1142/S0129054112400400, https://doi.org/10.1142/
S0129054112400400

6. Chauvin, B., Gardy, D., Mailler, C.: The growing tree distribution on Boolean
functions., pp. 45–56. https://doi.org/10.1137/1.9781611973013.5, https://epubs.
siam.org/doi/abs/10.1137/1.9781611973013.5

7. Devroye, L.: Simulating size-constrained galton-watson trees. SIAM J. Com-
put. 41(1), 1–11 (2012). https://doi.org/10.1137/090766632, https://doi.org/10.
1137/090766632

8. Drmota, M.: Systems of functional equations. Random Struct. Algorithms 10(1-2),
103–124 (1997)

9. Drmota, M.: Random Trees: An Interplay Between Combinatorics and Probability.
Springer Publishing Company, Incorporated, 1st edn. (2009)

10. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

11. Gardy, D.: Random boolean expressions. In: DMTCS Proceedings vol. AF, Com-
putational Logic and Applications (CLA ’05). pp. 1–36. Discrete Mathematics &
Theoretical Computer Science, Episciences. org (2005)

12. Godsil, C.D., Royle, G.F.: Algebraic Graph Theory. Graduate texts in mathematics,
Springer (2001)

13. Koechlin, F., Nicaud, C., Rotondo, P.: Uniform random expressions lack expressivity.
In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International Symposium
on Mathematical Foundations of Computer Science, MFCS 2019, August 26-30,
2019, Aachen, Germany. LIPIcs, vol. 138, pp. 51:1–51:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

14. Koechlin, F., Nicaud, C., Rotondo, P.: On the degeneracy of random expressions
specified by systems of combinatorial equations. In: Jonoska, N., Savchuk, D. (eds.)
Developments in Language Theory - 24th International Conference, DLT 2020,
Tampa, FL, USA, May 11-15, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12086, pp. 164–177. Springer (2020)

15. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proceedings of the 13th Annual
Symposium on Switching and Automata Theory (Swat 1972). p. 125–129. SWAT
’72, IEEE Computer Society, USA (1972). https://doi.org/10.1109/SWAT.1972.29,
https://doi.org/10.1109/SWAT.1972.29

13

https://doi.org/10.1142/S0129054112400400
https://doi.org/10.1142/S0129054112400400
https://doi.org/10.1142/S0129054112400400
https://doi.org/10.1137/1.9781611973013.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611973013.5
https://epubs.siam.org/doi/abs/10.1137/1.9781611973013.5
https://doi.org/10.1137/090766632
https://doi.org/10.1137/090766632
https://doi.org/10.1137/090766632
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1109/SWAT.1972.29

16. Yamamoto, H.: A new finite automaton construction for regular expressions. In:
Bensch, S., Freund, R., Otto, F. (eds.) Sixth Workshop on Non-Classical Mod-
els for Automata and Applications - NCMA 2014, Kassel, Germany, July 28-29,
2014. Proceedings. books@ocg.at, vol. 304, pp. 249–264. Österreichische Computer
Gesellschaft (2014)

17. Yosida, K.: Functional analysis. Classics in Mathematics, Springer-Verlag, Berlin
(1995), reprint of the sixth (1980) edition

18. Zedek, M.: Continuity and location of zeros of linear combinations of polynomials.
Proceedings of the American Mathematical Society 16(1), 78–84 (1965)

14

A Detailed pseudo-code of the reduction algorithm σ

In this section we give the full pseudo-code of our reduction algorithm on the
alphabet Σ. The reduction corresponds to the first component of the return value
of the extended function reduce, which returns the pair

reduced(T) = (σ(T), ST) ,

where ST ⊆ {ε} ∪Σ denotes the set of leaves recognized by T .

function reduce(T):
if |T | = 1 then

return (T, {T});
if T = +

/\
TL TR

then
(T ′L, SL) := reduce(TL);
(T ′R, SR) := reduce(TR);
if T ′L = U or T ′R = U then

return (U , SL ∪ SR) ;

return (
+
/\

T ′L T ′R
, SL ∪ SR);

else if T = •
/\

TL TR
then

(T ′L, SL) := reduce(TL);
(T ′R, SR) := reduce(TR);
S := ∅;
if ε ∈ SR then

if T ′L = U then
return (U , SL) ;

S := S ∪ SL ;
if ε ∈ SL then

if T ′R = U then
return (U , SR) ;

S := S ∪ SR ;

return (
•
/\

T ′L T ′R
, S);

else if T = ?
|
T0
then

(T ′, S′) := reduce(T0);
if Σ ⊆ S′ then

return (U , {ε} ∪Σ) ;

return (
?
|
T ′
,{ε} ∪ S′);

B Proofs from Section 2.1

Proposition 1. The probability of a random uniform tree of size n recognizing
ε converges, as n→∞, to a positive constant gTε/gL =

√
2 k+2+3/2

k+
√
2 k+2+3/2

.

15

Proof. Recall that L(z) = hL−gL
√
1− z/ρ+O

(∣∣1− z
ρ

∣∣) as z → ρ. Hence plug-

ging this expression into Tε(z) =
z+zL(z)
1−2zL(z) , and using the asymptotic expansion

of (1− 2zL(z))−1 = (1− 2ρhL)
−1(1− 2zgL

1−2zhL

√
1− z/ρ+O(1− z/ρ)), we obtain

that gTε/gL = 4ρ(1+2ρ)
(1+ρ)2 . Plugging in the expression for ρ we get the result. ut

C Proofs from Section 3.1

Theorem 1. The combinatorial classes (TX,ε)X⊆Σ and (TX,ε)X⊆Σ satisfy the
inductive definition:

TX,ε = ε1X=∅ +
?
|
TX,ε

+
?
|
TX,ε

+
∑

(S,S′):S∪S′=X

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
+

∑
(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,

TX,ε = X1|X|=1 +
∑
S⊆Σ

•
/\

TX,ε TS,ε
+
∑
S⊆Σ

•
/\

TS,ε TX,ε
+ 1X=∅

∑
S,S′⊆Σ

•
/\

TS,ε TS′,ε

+
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
,

where the union S ∪ S′ need not be disjoint, but the sums + are all disjoint.

Proof. Let X ⊆ Σ, and let us consider TX,ε, the class of expression trees recog-
nizing every letter in X, the empty word, but no letter in Σ \X.

A leaf, which is always labelled by an element of Σ ∪ {ε}, is in TX,ε if and
only if X = ∅ and the leaf is labelled by ε. Hence the term ε1X=∅.

The rest of the terms are obtained by considering the root of the trees in
TX,ε:

– a tree
?
|
T
belongs to TX,ε if and only if T recognizes every letter of X and

no other one (it does not matter if T recognizes ε or not), i.e. T ∈ TX,ε or

T ∈ TX,ε. Both cases are disjoint, hence the term
?
|
TX,ε

+
?
|
TX,ε

;

– for a tree T =
•
/\

T1 T2

to belong to TX,ε, it is necessary that both T1 and T2
recognize ε, otherwise T would not recognize ε. Then T1 ∈ TS,ε and T2 ∈ TS′,ε
for some S, S′ ⊆ Σ. As ε is recognized by both tree, we have X = S ∪ S′.
Reciprocally the concatenation of T1 ∈ TS,ε and T2 ∈ TS′,ε for any sets S, S′
such that X = S ∪ S′ belongs to TX,ε. Noticing that every such pairs (S, S′)

enumerate disjoint cases, this leads to the term
∑

(S,S′):S∪S′=X

•
/\

TS,ε TS′,ε
;

– for a tree T =
+
/\

T1 T2

to belong to TX,ε, it is necessary that at least one of the
children T1 or T2 recognize ε. The disjonction whether it is T1, T2 or both
leads to the last three terms of the equation for TX,ε.

16

Let us consider now the set TX,ε of expression trees recognizing every letter
in X, no letter in Σ \X, nor the empty word ε.

A leaf, which is always labelled by an element of Σ ∪ {ε}, is in TX,ε if and
only if X = {x} and the leaf is labelled by x ∈ Σ. Hence the term X1|X|=1. The
rest of the terms are obtained by considering the root of the trees in TX,ε:

– a tree having ? as a root always recognizes ε, and hence can never be in TX,ε;

– for a tree T =
+
/\

T1 T2

to belong to TX,ε, it is necessary that none of its

children recognize ε. Hence T1 ∈ TS,ε and T2 ∈ TS′,ε for some S, S′ ⊆ Σ
such that S ∪ S′ = X. Reciprocally, trees of this form belong to TX,ε, and
the partitioning according to the pair S, S′ is unambiguous. Hence the term∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε
in the equation;

– for the case where the root is •, we notice that for T =
•
/\

T1 T2

to belong to
TX,ε, it is impossible that both T1 and T2 recognize ε, otherwise T would
recognize ε too. We then consider the three disjoint cases:

◦ if T1 ∈ TS′,ε and T2 ∈ TS,ε where S, S′ ⊆ Σ, then as their concatenation
belongs to TX,ε, we must have S′ = X. Reciprocally the concatenation of
T1 ∈ TX,ε and T2 ∈ TS,ε for any S ⊆ Σ belongs to TX,ε. Hence the term∑
S⊆Σ

•
/\

TX,ε TS,ε
;

◦ if T1 ∈ TS,ε and T2 ∈ TS′,ε where S, S′ ⊆ Σ, we have symmetric term;
◦ finally if neither T1 not T2 recognize ε, that is T1 ∈ TS,ε and T2 ∈ TS′,ε
for some S, S′ ⊆ Σ, then their concatenation cannot recognize any
letter nor ε, so X must be the empty set. Reciprocally, for X = ∅, the
concatenation of any T1 ∈ TS,ε and T2 ∈ TS′,ε belongs to T∅,ε. Hence the

term 1X=∅
∑
S,S′⊆Σ

•
/\

TS,ε TS′,ε
.

ut

Equation for TG. Remember that in the article we split the class TΣ,ε into two
disjoint classes, R and TG. We recall that a direct reasoning gives the equation
satisfied by R:

R =
?
|
TΣ,ε

+
?
|
TΣ,ε

+
+
/\
R L

+
+
/\

L\R R
+

•
/\
R Tε

+
•
/\

Tε\R R
, (3.1)

However the equation for TG is longer to write. In fact it is simply obtained from
the equation for TΣ,ε by removing the trees starting by a ?, and replacing every
occurrence of TΣ,ε by TG. We write here the equation for completeness:

17

TG =
∑

S(Σ,S′(Σ:
S∪S′=Σ

•
/\

TS,ε TS′,ε
+
∑
S(Σ

•
/\

TG TS,ε
+

•
/\
TG TG

+
∑
S(Σ

•
/\

TS,ε TG

+
∑

S(Σ,S′(Σ:
S∪S′=Σ

+
/\

TS,ε TS′,ε
+
∑
S(Σ

+
/\

TG TS,ε
+

+
/\
TG TG

+
∑
S(Σ

+
/\

TS,ε TG

+
∑

S(Σ,S′⊆Σ:
S∪S′=Σ

+
/\

TS,ε TS′,ε
+
∑
S⊆Σ

+
/\

TG TS,ε
+

∑
S⊆Σ,S′(Σ:
S∪S′=Σ

+
/\

TS,ε TS′,ε
+
∑
S⊆Σ

+
/\

TS,ε TG

D Proofs from Section 3.2

Removing any occurrence of TΣ,ε from Theorem 1 by replacing it by R+ TG, we
obtain a combinatorial system for the vector of classes

(R, TG, TΣ,ε, (TX,ε, TX,ε(z))X(Σ) .

We recall that we denote by yX,ε(z) (resp. yX,ε(z)) the generating series of
TX,ε (resp. TX,ε). Similarly, we denote by R(z) and yG(z) the OGFs of R and TG.
Remember in particular that yΣ,ε(z) = R(z)+yG(z). We introduce a vector-style
notation:

y(z) = [R(z), yG(z), yΣ,ε, (yX,ε(z), yX,ε(z))X(Σ] .

Proposition 2. The vector y(z) satisfies a vectorial system under the form:

y(z) = Φ(z;y(z)) (3.2)

where each component of Φ(z;y) is a polynomial of degree 2 in y, of degree 1 in
z, such that Φ(0;y) = 0.

Proof. The translation from the combinatorial description in Theorem 1, en-
hanced with the equations for R and TG, into a system over the OGF is straight-
forward. For completeness, we provide the equation for yX,ε(z), where X ⊆ Σ,
for which the combinatorial equation:

TX,ε = X1|X|=1 +
∑

(S,S′):S∪S′=X

+
/\

TS,ε TS′,ε

+
∑
S⊆Σ

•
/\

TX,ε TS,ε
+
∑
S⊆Σ

•
/\

TS,ε TX,ε
+ 1X=∅

∑
S,S′⊆Σ

•
/\

TS,ε TS′,ε

translates into the functional equation:

yX,ε(z) = z1|X|=1 + z
∑

(S,S′):S∪S′=X

yS,ε(z)yS′,ε(z)

+ z
∑
S⊆Σ

yX,ε(z)yS,ε(z) + z
∑
S⊆Σ

yS,εyX,ε(z) + z1X=∅
∑

S,S′⊆Σ

yS,ε(z)yS′,ε(z)

18

It suffices then to replace yΣ,ε(z) by R(z) + TG(z) to obtain an equation

yX,ε(z) = ΦX,ε(z,y(z))

where ΦX,ε(z,y) is a polynomial in z and y, of degree 1 in z, with z in factor,
and of degree 2 in y.

It is easy to see that the latter property is also satisfied for ΦX,ε,ΦR,ΦG.
This concludes the proof. ut

Now we move on to Prop. 3 which shows that the entries of y(z) satisfy the
hypothesis of the Transfer Theorem. More precisely we will show that ρ = ρL is
the sole ingularity of the entries and that they are of the form ∼ h− g

√
1− z/ρ

when z → ρ. In order to do this there is classical theorem by Drmota [9, Theorem
2.33]. Drmota’s Theorem yields the analytical properties of the solutions of a
combinatorial system of equations under good conditions that we will verify.

The result of applying Drmota is summarized in the following proposition.

Proposition 3. Every coordinate of the solution y(z) of the system has ρ as a
unique dominant singularity, such that near z = ρ:

y(z) = h(z)− g(z)
√

1− z/ρ (3.3)

where h(z) and g(z) are two vectors of analytic functions in a neighbourhood of
z = ρ. Besides, every coordinate of g(ρ) is strictly positive.

For the proof, as announced, we use a classical result of Drmota [9, Theorem
2.33] for strongly connected systems of polynomial equations. We need to verify
the hypotheses of the theorem, in particular we highlight the following ones which
correspond to lemmas below (the rest appear at the end of the proof):

– The underlying directed-graph GΦ is strongly connected (see definition next),
which we prove in Lemma 1.

– The solution generating functions are aperiodic, see Lemma 2.
– Drmota’s Theorem tells us that the components have all the same radius

of convergence, we prove in Lemma 3 that this coincides with the radius of
convergence of L, ρ = ρL.

To simplify the notations, we will sometimes enumerate the coordinates, and
write y = (yi)i=1...m and Φ = (Φi)i=1...m in this proof, where m = 2k+1 + 1.

We denote by GΦ the dependency graph associated with Φ: it has m nodes,
labelled by y1 . . . ym, and there is an oriented arc from yi to yj if the degree in
yj of the polynomial Φi(z,y) is bigger than 1: in other words we have yi → yj
whenever degyj (Φ) ≥ 1.

Lemma 1. The graph GΦ is strongly connected.

Proof. Let us look at the system from Theorem 1:

– for every X (Σ, TX,ε depends on T∅,ε (by taking S = ∅ in the last sum).
TG and R also depend in their equation on T∅,ε. Hence, for any node y ∈
{yG, yR, (yX,ε)X(Σ}, there is an arc from y to the node y∅,ε in GΦ.

19

– As in the expression of Φ∅,ε we have the polynomial z
∑
S,S′⊆Σ yS,εyS′,ε,

there is in GΦ an arc from y∅,ε to every yS,ε, for S ⊆ Σ.
– Finally, for any X ⊆ Σ, we have in ΦX,ε the expression zyX,ε(yR + yG) +
z
∑
S(Σ yX,εyS,ε, which leads to an arc from yX,ε to yR, yG and any yS,ε

with S (Σ.

Hence the graph GΦ is strongly connected. ut

Lemma 2. For all n sufficiently large, [zn]y(z) has strictly positive entries.

Proof. Since
?
|
R
⊂ R, and

?
|
TX,ε

⊂ TX,ε for any X ⊆ Σ, we have [zn+1]yR(z) ≥
[zn]yR(z) and [zn+1]yX,ε(z) ≥ [zn]yX,ε(z) for any X ⊆ Σ.

Besides, since
•
/\
TX,ε ε

⊂ TX,ε, for any X ⊆ Σ, we have [zn+2]yX,ε(z) ≥
[zn]yX,ε(z) for any X ⊆ Σ. The same inequality holds for the same reason
with yG(z).

The strict positivity of the Taylor coefficients of the solution y(z) follows by
computing their first terms, and recurrence. ut

Lemma 3. The series yR(z) and L(z) have the same radius of convergence ρ.

Proof. The expression for L(z) shows it has a unique dominant singularity at
z = ρ. By Pringsheim’s Theorem [10, Theorem IV.6]), it coincides with its radius
of convergence.

As R ⊂ L, it is immediate that [zn]yR(z) ≤ [zn]L(z). Hence the radius of
convergence of yR(z) is bigger than ρ. Reciprocally, let T ∈ R be a tree of size
2k representing Σ∗. Since

+
/\
T L
⊆ R, we have [zn−2k−1]L(z) ≤ [zn]yR(z). So the

radius of convergence of yR(z) is less than ρ. ut

We now finish the proof of Proposition 3.

Proof. We can now verify the hypotheses of Drmota’s theorem to finish the
proof of Proposition 6. We have already checked that GΦ is strongly connected.
The Taylor coefficients of y(z) are non negative, since it is a vector of counting
generating functions, and are all strictly positive after some point, by Lemma 2.
As each component of Φ(z,y) is a polynomial, it is analytic at (z,y) = (0,0).
Also, Φ(0,0) ≡ 0. As we have z in factor, Φ(0,y) ≡ 0, and Φ(z,0) 6≡ 0, since
for instance Φ∅,ε(z,0) = z. It is obvious that the system is not linear in y, since
each component of Φ(z,y) is of degree 2 in y.

Then by Drmota’s theorem (see Theorem 2.33 in [9], and a refinement in [4]),
all the yj ’s have a same unique singularity ρ̃, which coincide, by Pringsheim’s
Theorem [10, Theorem IV.6]), with their common convergence radius. So ρ̃ = ρ
by Lemma 3.

Furthermore, the theorem states that yj(ρ) := τj <∞. Since Φ is a polyno-
mial, (ρ, τ) is a characteristic point lying inside the radius of convergence of Φ,
so that τ = φ(ρ; τ) and 0 = det(Id− Jacy[φ](ρ; τ)).

Finally, the theorem proves that for every j, we can write yj(z) = hj(z) −
gj(z)

√
1− z/ρ locally around z = ρ, with z 6∈ [ρ,+∞), where hj(z) and gj(z)

20

are analytic around z = ρ, with gj(ρ) 6= 0. The Transfer Theorem then directly
yields that gj(ρ) > 0, since [zn]yj(z) ∼n→∞ gj(ρ)ρ

−nn−3/2/Γ (−1/2). ut

Theorem 2. The probability that a random tree T of size n belongs to a class C
of the extended combinatorial system tends to a positive constant gC(ρ)/gL(ρ) as
n→∞. In particular, the limit probability of a full reduction (C = R) is positive.

Proof. As we have already stated, the conclusion of Drmota’s Theorem in the
proof of Proposition 3 makes it possible to apply the Transfer Theorem to the
coordinates of y(z).

Let C be a class of our system. The number of trees of size n in C is equivalent by
the Transfer Theorem to gj(ρ)ρ−nn−3/2/Γ (−1/2) as n→∞. As [zn]L(z) ∼n→∞
gL(ρ)ρ

−nn−3/2/Γ (−1/2), the probability for a tree of size n to be in the class C
tends to gC(ρ)/gL(ρ) > 0, as n→∞. ut

E Proofs from Section 3.3

In this section we give the details regarding the expected values for the size
after reduction. First we give the proof of Proposition 6, which characterizes
the singularities of the generating function Qỹ(z) of the expected values, as well
as giving a local form around its dominant singularity. The proofs are given
in Section E.1. This local form is needed in the computations in Section 4.
Furthermore, this yields Theorem 3 (see Section E.2 below) which proves the
existence of the limits of the expected values.

We recall that Proposition 5 tells us that

Qỹ(z) =
(
Id− Jacỹ[Φ̃](z;y(z))

)−1
·
(
Φ̃(z;y(z)) + p∂RΦ̃(z;y(z))R(z)

)
.

In this section we show how to study the asymptotics of its coefficients, namely
the expected values En[|σ(T)|].

E.1 Proof of Proposition 6

We recall the full statement of the proposition.

Proposition 6. Every coordinate of the vector Qỹ(z) = ∂uỹ(z, u)
∣∣
u=1

has a
unique dominant singularity at z = ρ. Further, near z = ρ we may write:

Qỹ(z) = hQỹ(z)− gQỹ(z)
√

1− z/ρ

where hQỹ(z) and gQỹ(z) are two vectors of analytic functions in a neighbourhood
of z = ρ, such that every coordinate of gQỹ(ρ) is strictly positive.

To prove this proposition we require a series of lemmas. These are very close
to those we have used in the proofs of some results in [14], here adapted to a
slightly different system. The proof of Proposition 6 is given here in full, for the
sake of completeness, as the proofs of the results in [14] are not yet published.

21

In order to explain why we need the lemmas, we recall that Prop. 5 tells us
that

(Id−Jacỹ[Φ̃](z;R(z), ỹ(z)))·Qỹ(z) = Φ̃(z;R(z), ỹ(z))+p∂RΦ̃(z;R(z), ỹ(z))R(z) .

We already know that R(z) and the entries of ỹ(z) are of the form h(z) −
g(z)

√
1− z/ρ, with h and g analytic at z = ρ, due to Proposition 3. It turns

out, due to a result from Drmota [9, Lemma 2.26] that several operations among
functions of this form preserve the form h(z)−g(z)

√
1− z/ρ, with h and g analytic

at z = ρ. This is clearly the case of addition, subtraction and multiplication (they
form a ring), but also of the application of a function H(z) that is analytic at
z = hA(ρ) (see [9, Lemma 2.26]). The following Lemma then shows that division
also follows naturally from composition.

Lemma 4. Let A(z) be a functions of the following form around z = ρ

A(z) = hA(z)− gA(z)
√

1− z
ρ ,

where gA(z), hA(z) are analytic at z = ρ. Suppose further that A(ρ) 6= 0.
Then the quotient 1/A(z) has a local expansion 1/A(z) = h1/A(z)−g1/A(z)

√
1− z

ρ

around z = ρ, with g1/A(z) and h1/A(z) analytic at z = ρ.

Proof. Follows from Drmota [9, Lemma 2.26] by composing δ : z 7→ (hA(z)/hA(ρ)−
1)− gA(z)/gA(ρ)

√
1− z

ρ , which is 0 at z = ρ, with H(y) = 1
1+y = 1− y + y2 −

y3 ± . . . which is analytic for |y| < 1, and in particular at y = 0. ut

Since Φ̃ is polynomial in its entries, as well as its Jacobian, the only thing that
needs consideration is the inverse of the matrix (Id− Jacỹ[Φ̃](z;R(z), ỹ(z))).

We recall that there is a formula for the inverse of a matrix A in terms of its
adjugate matrix8 (see [3, Thm 3.12]) adj(A), namely

A−1 =
1

det(A)
adj(A) .

Since the determinant and (then) the adjugate matrix are polynomial in its
entries, what remains is to show that we may apply Lemma 4: namely that
det(Id− Jacỹ[Φ̃](z;R(z), ỹ(z))) 6= 0 at z = ρ. In order to do this, we will show
that the spectral radius of Jacỹ[Φ̃](ρ;R(ρ), ỹ(ρ)) is strictly less than 1.

Lemma 5. The spectral radius of Jacy[Φ](ρ;y(ρ)) is 1.

Proof. See Lemma 12, part (d) in [4]. ut

Lemma 6. The spectral radius of Jacỹ[Φ̃](ρ;R(ρ), ỹ(ρ)) is strictly less than 1.
In particular det(Id− Jacỹ[Φ̃](ρ;R(ρ), ỹ(ρ))) 6= 0.
8 The entries of the adjugate matrix are given by [adj(A)]i,j = (−1)i+j det(Aj,i), where
At,s is the squared matrix obtained by eliminating row t and column s from A.

22

Proof. The matrix Jacỹ[Φ̃](ρ;R(ρ), ỹ(ρ)) is a principal submatrix of Jacy[Φ](ρ;y(ρ))
where we have eliminated the row and the column corresponding to R. Since
the underlying graph of Jacy[Φ](ρ;y(ρ)) is strongly connected, taking a smaller
principal submatrix reduces the spectral radius strictly due to [12], Theorem
8.8.1 (b), page 178. ut

To complete the proof of Proposition 6, we must show that the matrix inverse
does not introduce new singularities on the circle |z| = ρ. This is done in the
following lemma.

Lemma 7. The entries of the function z 7→ (Id− Jacỹ[Φ̃](z;R(z), ỹ(z)))
−1 are

analytic on |z| ≤ ρ with the sole (possible) exception of z = ρ.

Proof. We notice that, as the coefficients of the matrix Jacỹ[Φ̃](z;y) and of the
generating functions in y(z) are non-negative, we have the inequalities

sp(Jacỹ[Φ̃](w;y(w))) ≤ sp(Jacỹ[Φ̃](|w|;y(|w|))) ≤ sp(Jacỹ[Φ̃](ρ;y(ρ))) < 1

where the first two follow from the triangular inequality for the corresponding
norms. Indeed, recalling Gelfland’s formula (see see [17, pp.209–212]) sp(A) =
lim ‖Ak‖1/k for a matrix norm ‖ · ‖, we obtain the inequality sp(A) ≤ sp(|A|) for
the spectral radius, where we define [|A|]i,j :=

∣∣[A]i,j∣∣.
For any w 6= ρ satisfying |w| ≤ ρ, the continuity of the spectral radius (see

[18]) implies that, for a certain δ < 1, sp(Jacỹ[Φ̃](z;y(z))) ≤ δ < 1 for z on a
small enough ball B(w) around w.

Thus the series

(Id− Jacỹ[Φ̃](z;R(z), ỹ(z)))
−1 =

∑
(Jacỹ[Φ̃](z;y(z)))

k

converges uniformly for z ∈ B(w), |w| ≤ ρ, w 6= ρ. Then the result follows as the
terms are analytic on B(w). ut

E.2 Proof of Theorem 3

Now we may prove Theorem 3. This follows from Proposition 6 by an application
of the Transfer Theorem.

Theorem 3 (Limit of the expected size). Consider the simple variety of
tree expressions encoding regular expressions for an alphabet of fixed size |Σ| = k,
and the linear-time simplification algorithm σ. Then the expected size of a uniform
random expression of size n after simplification by σ tends to a constant as n
tends to infinity:

lim
n→+∞

En[|σ(T)|] =
|U|gR(ρ) + ‖gQỹ(ρ)‖1

gL(ρ)
(3.4)

where ‖(v1, . . . , vs)‖1 = |v1|+ . . .+ |vs|.

23

Proof. Let us recall the definition of L(z, u):

L(z, u) =
∑
T∈LR

z|T |u|σ(T)| , (2.4)

and its relation with the expected size of a tree of size n after reduction:

En[|σ(T)|] =
[zn]∂uL(z, u)

∣∣
u=1

[zn]L(z)
. (2.5)

We have already stated that the Transfer Theorem yields

[zn]L(z) ∼ gLρ−nn−3/2/Γ (−1/2) .

As ∂uL(z, u)
∣∣
u=1

= |U|R(z) +
∑
iQỹi(z), from Proposition 6, we see that

∂uL(z, u)
∣∣
u=1

admits a unique dominant singularity at z = ρ, and that near
z = ρ:

∂uL(z, u)
∣∣
u=1

= h∂uL(z)− g∂uL(z)
√
1− z/ρ ,

where h∂uL(z) = |U|hR(z)+
∑
i hQỹi(z) and g∂uL(z) = |U|gR(z)+

∑
i gQỹi(z). In

particular g∂uL(z)(ρ) = |U|gR(ρ) + ‖gQỹ(ρ)‖1, as we have gQỹi(ρ) > 0 for every
index i. Therefore the Transfer Theorem yields:

[zn]∂uL(z, u)
∣∣
u=1
∼ (|U|gR(ρ) + ‖gQỹ(ρ)‖1)ρ−nn−3/2/Γ (−1/2) ,

and finally we obtain

lim
n→+∞

En[|σ(T)|] =
|U|gR(ρ) + ‖gQỹ(ρ)‖1

gL(ρ)
, (3.4)

thus concluding the proof. ut

F Proofs of Section 4

In this section we provide the proofs of Section 4. In particular we give the exact
formula for KΦ.

Proposition 7. The vector gQỹ(ρ) satisfies the equation:

gQỹ(ρ) =
(
Id− Jacỹ[Φ̃](ρ;y(ρ))

)−1
×KΦ(ρ;y(ρ), gy(ρ), Qỹ(ρ))

whereKΦ(z;y, g,h) depends on the derivatives of Φ, p = |U|, and it is polynomial
in its input vectors.

Proof. Differentiating the equation satisfied by Qỹ, and equating the terms in
(1− z/ρ)−1/2 (which are the dominant terms as z → ρ), we obtain

gQỹ(ρ) = Jacy[Φ̃](ρ; y(ρ)) · gy(ρ) + p · ∂RΦ̃(ρ; y(ρ)) · gR(ρ)
+ pR(ρ) · ∂RJacy[Φ̃](ρ, y(ρ)) · gy(ρ)
+ J(ρ; gy(ρ)) ·Qỹ(ρ) + Jacỹ[Φ̃](ρ;y(ρ)) · gQỹ(ρ)

where J(z;y) := Jacỹ[Φ̃](z;y)− Jacỹ[Φ̃](z;0). ut

24

Proposition 9. The coefficients gy(ρ) constitute an eigenvector for λ = 1 for
the Jacobian matrix Jacy[Φ](ρ;y(ρ)) at z = ρ, namely

Jacy[Φ](ρ;y(ρ)) · gy(ρ) = gy(ρ) .

Furthermore, the eigenspace associated to λ = 1 has dimension 1 and gy(ρ) is
characterized as the only eigenvector satisfying ‖gy(ρ)‖1 = gL(ρ).

Proof. Differentiating y(z) = Φ(z;y(z)) in z we obtain y′(z) = Jacy[Φ](z;y(z))y
′(z)+

∂zΦ(z;y(z)). As y(z) = y(ρ)+o(1) and y′i(z) =
gi(ρ)
2ρ (1− z/ρ)−1/2+O(1) around

z = ρ, identifying terms in (1− z/ρ)−1/2 →∞, we obtain the equation for gy(ρ).
For the dimension of the eigenspace we note that 1 is the dominant eigenvalue
(the spectral radius) due to Lemma 12, part (d) in [4]. Since the underlying
graph of the matrix Jacy[Φ](ρ;y(ρ)) is strongly connected due to Lemma 1,
the Perron-Frobenius Theorem [12, Thm. 8.8.1] asserts that the eigenspace has
dimension one, completing the proof. ut

25

	Analysis of an efficient reduction algorithm for random regular expressions based on universality detection

