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Abstract5

This article extends the work of Flajolet [10] on the relation between generating series and inherent6

ambiguity. We first propose an analytic criterion to prove the infinite inherent ambiguity of7

some context-free languages, and apply it to give a purely combinatorial proof of the infinite8

ambiguity of Shamir’s language. Then we show how Ginsburg and Ullian’s criterion on unambiguous9

bounded languages translates into a useful criterion on generating series, which generalises and10

simplifies the proof of the recent criterion of Makarov [21]. We then propose a new criterion based11

on generating series to prove the inherent ambiguity of languages with interlacing patterns, like12

{anbmapbq |n 6= p or m 6= q, with n, m, p, q ∈ N∗}. We illustrate the applicability of these two13

criteria on many examples.14
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1 Introduction19

A context-free grammar G is said to be unambiguous if for any word w recognized by G,20

there exists exactly one derivation tree for w. A context-free language is called inherently21

ambiguous if it can not be recognized by any unambiguous grammar. Proving that a language22

is inherently ambiguous is a difficult question, as it is an impossibility notion, and it is23

undecidable in general [14, 15]. In practice, three different methods have emerged to prove24

the inherent ambiguity of some context-free languages: an approach based on iterations on25

derivation trees [25, 26], an other based on iterations on semilinear sets [14, 16, 29], and26

finally an approach based on generating series [10, 17, 21, 28]. The first two approaches are27

best suited for (and for the second, limited to) bounded languages.28

In this article, we provide new sufficient criteria to prove inherent (infinite) ambiguity,29

answering two questions of Flajolet [10]. Our main result is an interpretation, in the world of30

generating series of Ginsburg and Ullian’s criteria [14] on semilinear sets. It rediscovers and31

generalises the criterion recently developped by Makarov [21], while opening the way to new32

techniques to prove the inherent ambiguity of unbounded languages or bounded languages33

with an interlacing pattern. In a different direction, we also provide a criterion for inherent34

infinite ambiguity.35

1.1 Motivation and background36

Deciding if a grammar is ambiguous is undecidable [6], as well as deciding if a context-free37

language is inherently ambiguous [14, 15]. However, detecting ambiguity in context-free38

grammars has strong implications for compilers and parsers. Therefore, identifying inherently39

ambiguous languages is an important step towards our understanding of the limits of the40

model of context-free languages to describe natural or programming languages. Let us start41

with some context on the methods developed so far to establish the inherent ambiguity of a42

language.43
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23:2 New analytic techniques for proving the inherent ambiguity of context-free languages

Bounded languages. The first techniques developed to prove inherent ambiguity dealt44

with bounded languages. A language L is called bounded if there exist words w1, . . . , wd with45

d ≥ 1 such that L ⊆ w∗1 . . . w∗d. Despite its apparent simplicity, the class of bounded languages46

is rich enough to provide a large variety of inherently ambiguous languages; furthermore it is47

often possible to deduce the inherent ambiguity of a context-free language from the inherent48

ambiguity of a bounded language, using the stability of unambiguous context-free languages49

under intersection with a regular language [14].50

Iteration on derivation trees. In 1961, Parikh was the first to exhibit an inherently51

ambiguous context-free language, the bounded language L = {anbmapbq |n = p or m =52

q, with n,m, p, q ∈ N>0} (see [26] and [27, Theorem 3]). Parikh’s proof relies on an iteration53

argument over the derivation trees of any unambiguous grammar recognising L. A few years54

later, Ogden generalised this method and published his famous lemma [25], which drastically55

simplified the identification of iterating pairs in derivation trees. Since then, these iterations56

techniques have been very popular to study several inherently ambiguous languages (see for57

instance [7, 24, 30, 32]). However, they remain subtle and difficult to set up in general; hence58

they are sometimes unsuitable to study complex context-free languages.59

Iteration on semilinear sets. In 1966, after Parikh’s article but before Ogden’s lemma,60

Ginsburg and Ullian succeeded in using strong iterations arguments on derivation trees to61

characterise exactly the inherent ambiguity of bounded context-free languages in terms of62

their associated semilinear sets [14]. Their result made it possible to prove the inherent63

ambiguity of bounded languages using iterations on semilinear sets instead of derivation trees64

[14, 16, 29]. Unfortunately, iterations on semilinear sets turned out to be almost as laborious65

as on derivation trees. The simplicity of the proof and the strong applications of Ogden’s66

lemma severely contrasted with Ginsburg and Ullian’s criterion1 that was complex to use67

and required a lot of case analysis. It may explain why iterations on semilinear sets were68

supplanted by iterations on derivation trees.69

Generating series method. In 1987, Flajolet [10] proposed a conceptually new approach,70

based on generating series and the contraposition of the Chomsky-Schützenberger theorem71

[6]. The generating series of a language L is the formal series
∑
n `nx

n where `n denotes72

the number of words of length n in L. Flajolet’s idea consists in showing that a language is73

inherently ambiguous by computing its generating series – which is a purely combinatorial74

question, for which there are many techniques [11] – and showing that this series is not75

algebraic – for which there are also several mathematical characterisations [10]. This method76

turned out to be very successful, as Flajolet was able to easily prove the inherent ambiguity77

of a dozen languages in his article. It complemented very well the previous techniques used78

for proving ambiguity: whereas iterations arguments are rather efficient and fast for proving79

the inherent ambiguity of languages with a simple structure, which tend to have an algebraic80

generating series2, on the opposite side, the generating series approach allows to deal with81

complex languages that have a transcendental (i.e. non-algebraic) generating series and seem82

out of reach of iterations techniques.83

Limits. Nevertheless, the three presented approaches sometimes fail on very simple84

context-free languages expected to be inherently ambiguous, like the language L′ := {anbmcp :85

n 6= m or m 6= p}. It has a rational – hence algebraic – generating series, and iterations86

arguments (whether on trees or semilinear sets) struggle to handle the inequality condition87

1 In his book [12, p.211], Ginsburg wondered whether there was a simpler technique to prove the inherent
ambiguity of L := {anbmcp : n = m or m = p}, and in a sense Ogden answered in the positive.

2 For example, all bounded context-free languages have a rational generating series
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that does not constrain anymore the form of iterating pairs. It is not very surprising that88

those methods do no cover every language, as hinted by the fact that deciding inherent89

ambiguity is undecidable.90

1.2 Problem statement and contributions91

At the end of his article [10], Flajolet raised several open questions about the relation92

between inherent ambiguity and generating series: is it possible to capture the inherent93

infinite ambiguity of some context-free languages using analytic tools on generating series?94

Can rational generating series still be useful to prove the inherent ambiguity of languages like95

L′ = {anbmcp : n 6= m or m 6= p}? Recently, Makarov [21] answered the second question by96

using new ideas coming from the generating series of GF (2) grammars. He provided a simple97

criterion on rational series to prove the inherent ambiguity of some bounded languages on98

a∗1 . . . a
∗
d, where the ai’s are distinct letters, and proved the inherent ambiguity of L′.99

In this article, we give new answers to the two open questions of Flajolet about inherent100

ambiguity and infinite inherent ambiguity. We first propose an analytic technique to101

prove the infinite inherent ambiguity of context-free languages (Theorem 4), and apply102

it to give a purely combinatorial proof of the infinite ambiguity of Shamir’s language103

(Corollary 7). Then we use Ginsburg and Ullian’s characterisation to derive a simple104

criterion (Theorem 12) on generating series to prove the inherent ambiguity of some bounded105

languages, which both generalises and simplifies the proof of an analogous criterion recently106

found by [21]. We then propose a new criterion based on generating series to prove the107

inherent ambiguity of languages with an interlacing pattern, that are not covered by [21],108

like L′′ = {anbmapbq |n 6= p or m 6= q, with n,m, p, q ∈ N∗} (Theorem 21). To make them109

amenable to the wider audience possible, these criteria only require a basic knowledge in110

combinatorics and in polynomials in several variables.111

1.3 Related work112

To the author’s knowledge, since Flajolet’s article, and until Makarov’s new criterion [21],113

no real new successful approach based on generating series has been proposed to prove114

the inherent ambiguity of languages. Several years after Flajolet’s article, a subclass of115

unambiguous context-free language (called slender languages) has been shown to be associated116

to rational series [17], but their criterion can be in fact interpreted as a shortcut of Flajolet’s117

technique3. More recently [1], the class of generating series associated to unambiguous118

context-free grammars, called N-algebraic series, has been precisely described as well as119

their asymptotic behaviour. This class of generating series does, however, enjoy less closure120

properties than algebraic series, which makes them less applicable for proving inherent121

ambiguity.122

If the techniques developed in this article are based on generating series and hence lie123

in the continuity of Flajolet’s method [10], they can also be seen as a nice alliance of the124

three historical techniques presented in this introduction: we use Flajolet’s idea to study125

ambiguity through generating series [10], in order to revisit from this point of view Ginsburg126

and Ullian’s criteria [14], whose proof relies on iterations in derivation trees.127

3 By [2], if the generating series of a slender language is not rational then it is also not algebraic

CVIT 2016
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2 Preliminaries128

Context-free languages. A context-free grammar (CFG for short) is a tuple G =129

(N,Σ, S,D), where Σ is a finite set of terminal symbols, N is a finite set of non-terminal130

symbols, S ∈ N is the axiom, and D ⊆ N × (N ∪ Σ)∗ is the finite set of derivation rules. A131

rule (A,w) ∈ D is usually written A→ w, with A ∈ N and w ∈ (N ∪ Σ)∗. The derivation132

rules of D can be seen as rewriting rules affecting only non terminal symbols. Let w,w′ be133

two words in (N ∪Σ)∗. The application of a rewriting rule of D to a non-terminal symbol of134

w is called a derivation step of G from w. If w′ is derived from w after one derivation step,135

we write w →G w′. A derivation from w to w′ is a (possibly empty if w = w′) sequence of136

consecutive derivation steps w →G w1 →G . . .→G w′, denoted by w →∗G w′. As the order of137

the application of the derivation rules is not canonical, a derivation is rather described as a138

tree, called a derivation tree. For instance, if D = {S → AB,A→ a,B → b}, the derivations139

S → AB → aB → ab and S → AB → Ab→ ab have the same derivation tree
S

A B

a b

and can140

be identified. A word is called terminal if it contains only terminal symbols. The language of141

G, denoted by L(G) ⊆ Σ∗, is the set of terminal words that can be derived from the axiom142

S. The grammar G is said to be unambiguous if for any word w ∈ L(G), there exists exactly143

one derivation tree for w. A context-free language (CFL) is a language recognized by a CFG.144

A CFL is called inherently ambiguous if it is not recognisable by any unambiguous CFG.145

Univariate series. Let N = {0, 1, 2, . . .} be the set of non-negative integer, Q the set of146

rational numbers, F2 the field with two elements, and K an arbitrary field (in practice, K = Q147

or K = F2 in this article). The set of polynomials with coefficients in K and indeterminate148

x is denoted by K[x]. We denote by K[[x]] the set of formal series with coefficients in K,149

which is the set of infinite polynomials of the form
∑
n∈N anx

n, with an ∈ K. We recall that150

(K[[x]],+, ·) has a ring structure, with respect to the addition and the Cauchy product. The151

series S(x) =
∑
n∈N x

n satisfies the equation (1 − x)S(x) = 1, and is hence written 1
1−x .152

The set K(x) denotes the set of rational fractions, which is formally the set of fractions of153

the form p(x)/q(x) where p, q are both polynomials in K[x], with q(x) 6= 0. A univariate154

series f(x) ∈ K[[x]] is rational if it satisfies an equation of the form q(x)f(x) = p(x), where155

p, q ∈ K[x], q 6= 0. In this case f(x) is written p(x)/q(x). It is called algebraic over K if156

there exists a non null polynomial P (x, Y ), with coefficients in K, such that P (x, f(x)) = 0.157

Let n ∈ N. If L is a language, we define `n the number of words in L of length n. The158

generating series L(x) of L is the formal series L(x) :=
∑
n∈N `nx

n ∈ Q[[x]]. If G is a CFG159

recognising L, we denote by gn the number of derivation trees of terminal words of length160

n. If gn is finite for all n ∈ N, the generating series of the derivation trees of G, defined by161

the formal series G(x) :=
∑
n∈N gnx

n, is well-defined. In this case, the description of the162

grammar G translates directly into a polynomial system satisfied by G(x), which implies163

that G(x) is algebraic over Q. If G is unambiguous, then G(x) is well-defined and coincides164

with L(x), so the generating series of an unambiguous CFL is algebraic over Q: this is the165

Chomsky-Schützenberger theorem [6]. The subset of series that are the generating series166

of the derivation trees of a CFG is called the set of N−algebraic series, and it is strictly167

included in the set of algebraic series over Q [1].168

Multivariate polynomials. For every d ∈ N>0, Nd denotes the set of vectors with d169

coordinates in N. A vector (v1, . . . , vd) ∈ Nd will be freely written in a condensed notation170

v. Similarly, the tuple of d variables (x1, . . . , xd) is written x. The notation K[x] denotes171

the ring of multivariate polynomials with indeterminates x = (x1, . . . , xd) and coefficients in172

K. For v = (v1, . . . , vd) ∈ Nd, the monomial xv1
1 . . . xvd

d is written xv. The total degree of173
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xv1
1 . . . xvd

d is the number v1 + . . .+ vd. A polynomial is called homogenous if its monomials174

have the same total degree (for instance x2 + xy is homogenous but 1 + xy is not). A175

polynomial is called irreducible if it is non constant and cannot be decomposed as the product176

of two non constant polynomials. The set K(x) denotes the field of rational fractions of177

K[x], that is the set of quotients p(x)/q(x) where p, q ∈ K[x] and q 6= 0.178

I Remark 1 (Arithmetic of K[x]). We chose to use as little mathematical notion of K[x]179

as possible, to keep our criteria useful for people that are not familiar with multivariate180

polynomials. To understand the proofs, it is useful to remember that K[x] is factorial (see for181

instance [20, Corrolary 2.4 p 183]): any polynomial in K[x] admits a unique factorization as182

a product of irreducible polynomials. However, K[x] is not principal in general (even when183

K = Q), nor euclidian; in particular, the Bezout identity does not hold anymore. Hence184

there is no canonical multivariate equivalent to the euclidian division, and similarly there is185

no canonical partial fraction decomposition.186

Multivariate series. We write K[[x]] for the ring of formal multivariate series with187

(commutative) indeterminates x and coefficients in K, which is the set of infinite polynomials188

of the form189 ∑
v∈Nd

avxv :=
∑

v1,...,vd∈Nd

av1,...,vd
xv1

1 . . . xvd

d , with av ∈ K for all v ∈ Nd.190

The series
∑
n,m x

nym satisfies the equation (1− x)(1− y)S(x, y) = 1 and hence is written191

1
(1−x)(1−y) . Similarly, for every monomial xv, the series

∑
n∈N xnv is written 1

1−xv ; for192

instance, the series
∑
n,m x

nyn is written 1
1−xy . A series f(x) is called algebraic over K if193

there exists a non null multivariate polynomial P (x, Y ) ∈ K[x, Y ] such that P (x, f(x)) = 0.194

Semilinear sets. Let d ∈ N. A set L ⊆ Nd is called linear if there exists a vector c ∈ Nd,195

and a finite set of vectors P = {p1, . . . ,ps}, called periods, such that196

L = {c + λ1p1 + . . .+ λsps : λ1, . . . , λs ∈ N} .197

We will denote such a set under the condensed form c + P ∗. A semilinear set S ⊆ Nd is a198

finite union of linear sets in Nd. The generating series of a semilinear set is defined by the199

multivariate series S(x) =
∑

v∈S xv. In the particular case where S = c + P ∗ is a linear set,200

with P = {p1, . . . ,ps} a set of linearly independent periods over Q, then the decomposition201

of a vector v ∈ S under the form v = c + λ1p1 + . . .+ λsps is unique, hence:202

S(x) =
∑

λ1,...,λr∈Nr

xc+λ1p1+...+λsps = xc
∑
λ1∈N

(xp1)λ1 . . .
∑
λs∈N

(xpr )λr = xc∏
p∈P (1− xp) .203

Note that by [8, 18], it is always possible to find a representation of a semilinear S under the204

form S =
⊎r
i=1(ci+P ∗i ), where the union is disjoint, and the vectors are linearly independent205

over Q in each Pi. Hence the generating series of a semilinear set is rational and can be206

deduced from such a presentation by S(x) =
r∑
i=1

xci∏
p∈Pi

(1− xp) .207

Computing generating series of semilinear sets. In practice, for the examples of208

this article, we will not need a representation of S of the previous form, and can compute209

the generating series of such sets by hand. For instance, the generating series of N2 is210 ∑
n,m x

nym = 1
(1−x)(1−y) , the generating series of S1 = {(n,m) : n = m} is

∑
n x

nyn =211

1
1−xy , the generating series of S2 = {(n,m) : n 6= m} = N2 \ S1 is 1

(1−x)(1−y) −
1

1−xy . For a212

union, we can add the generating series, but we need to be careful to subtract the intersection,213

otherwise the vectors of the intersection would be counted twice. For instance, the generating214

series of S3 = {(n,m, p) : n = m or n = p} is 1
(1−xy)(1−z) + 1

(1−yz)(1−x) −
1

1−xyz .215

CVIT 2016
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3 Infinite ambiguity216

Let L be a context-free language. For n ∈ N, we recall that `n denotes the number of words217

in L of length n. In this section, we show how the asymptotic behaviour of `n can sometimes218

be sufficient to prove the inherent infinite ambiguity of L.219

I Definition 2 (finite degree of ambiguity). Let k ∈ N. A context-free grammar G is said to220

be k-ambiguous if every word w ∈ L(G) admits at most k different derivation trees. Similarly221

a context-free language L is k-ambiguous if it can be recognized by a k-ambiguous CFG.222

If such a finite k exists, then L is said to be of bounded ambiguity, or finitely ambiguous;223

otherwise, L is said to be of unbounded ambiguity, or infinitely ambiguous.224

Infinitely ambiguous languages can arise from the concatenation of simple unambiguous225

languages; for instance, the language Pal of palindromes is unambiguous, but the language226

Pal2 = {w1w2 : w1, w2 ∈ Pal} is infinitely ambiguous [7]. For infinitely ambiguous227

grammars, the functions f(n) upper-bounding the number of different derivations of words228

of length n have been well studied [31, 32, 33]. Note that deciding infinite ambiguity is also229

undecidable [15]. The usual studies on finite or infinite ambiguity rely generally on iterations230

with Ogden’s lemma or Ullian and Ginsburg’s criteria (see for instance [29] which gives231

examples, for each k ∈ N, of arbitrary inherently k-ambiguous on a∗b∗c∗). In this section we232

propose a novel approach based on generating series and their asymptotic behaviour.233

3.1 An analytic criterion for infinite ambiguity234

Let G be a context-free grammar such that every word w ∈ L(G) has a finite number of235

derivation. We call G(x) =
∑
n∈N gnx

n the generating series of the derivation trees of G,236

where gn denotes the number of derivation trees for words of L(G) of length n. Then, by the237

Chomsky-Schützenberger theorem [6], G(x) is algebraic. More precisely, G(x) belongs to a238

more restrictive class of algebraic series, called N-algebraic series, for which the asymptotic239

behaviour of the coefficient has been well studied:240

I Proposition 3 (Critical exponents of N-algebraic series [1]). Let G(z) =
∑
n gnz

n be an241

N-algebraic series. If G has a unique singularity on its circle of convergence |z| = 1/β, then242

gn ∼n→∞
C

Γ(1 + α)n
αβn , (1)243

where C, β are non negative algebraic constants, and α belongs to the following set:244

D2 := {−1− 2−(k+1) : k ≥ 0} ∪
{
−1 + r

2k : k ≥ 0, r ≥ 1
}
.245

If G(z) has several dominant singularities, then there exists a non negative integer p such246

that for every s ∈ [0, p − 1], either gs+np = 0 for all n sufficiently large, or gs+np has an247

asymptotic behaviour of the form of (1), where each constant depends on s.248

We now derive the following criterion for infinite ambiguity, where we recall that D2 is249

defined in Proposition 3, and n ≡ s[p] means that n is congruent to s modulo p:250

I Theorem 4. Suppose that it is not possible to find an integer p ∈ N>0 such that for all251

integer s ∈ {0, . . . , p − 1}, for all n ≡ s[p], `n = 0 or `n satisfies a relation of the form252

`n = Θ(βns nαs) with βs > 0 algebraic, and α ∈ D2. Then L is infinitely ambiguous.253
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Proof. We prove the contraposition: assume that L is k-ambiguous for some k ∈ N>0, and254

let us show that it is possible to find an integer p > 0 such that for all s ∈ [0, p− 1], for all255

n ≡ s[p], `n = 0 or `n satisfies a relation of the form `n = Θ(βns nαs) with βs > 0 algebraic,256

and α ∈ D2.257

Let L(x) =
∑
n `nx

n the generating series of L, and G(x) =
∑
n gnx

n the generating series258

of the derivations of G. Then by definition of k-ambiguity, for every n ∈ N, `n ≤ gn ≤ k`n.259

In other words, gn

k ≤ `n ≤ gn, which implies that `n = Θ(gn), where gn is the coefficient260

of an N-algebraic series. By Proposition 3, there exists a non negative integer p such that261

for every s ∈ {0, . . . , p − 1}, either gs+np = 0 for all n sufficiently large, or gs+np has an262

asymptotic behaviour of the form of (1).263

If gs+np = 0 for all n sufficiently large, then so is `s+np. If gs+np 6= 0 for n sufficiently264

large, then there exist C a constant, βs a non negative algebraic number, and αs ∈ D2 such265

that gn ∼ C
Γ(1+αs)n

αsβns when n→∞ with n ≡ s[p]. Hence `n = Θ(βns nαs). J266

I Corollary 5. Let L be a context-free language such that, as n→ +∞, `n = Θ(βnnα log(n)s).267

If β is not algebraic, or if s 6= 0, or if α /∈ D2, then L is inherently infinitely ambiguous.268

Proof. By hypothesis, there exist two constants b1, b2 > 0 such that for n large enough,269

b1β
nnα log(n)s ≤ `n ≤ b2βnnα log(n)s .270

In particular, for n sufficiently large, `n > 0. Without loss of generality, we can modify271

its first terms, and suppose that `n > 0 for every n ∈ N. Let us prove that the hypotheses of272

Theorem 4 are satisfied in the case where β is not algebraic, or s 6= 0, or α /∈ D2.273

As `n > 0 for every n ∈ N, suppose by contradiction that there exists an integer p > 0 such274

that for all n ≡ 0[p], `n can be expressed as `n = Θ(βn0 nα0), with β0 a non negative algebraic275

constant, and α0 ∈ D2. Hence there exists two constants c1, c2 > 0 such that, for every276

n ≡ 0[p] sufficiently large, c1βn0 nα0 ≤ `n ≤ c2βn0 nα0 , and combining the two inequalities:277

0 < c1
b2
≤
(
β

β0

)n
nα−α0 log(n)s ≤ c2

b1
.278

By predominance of the growth of the exponential, if β0 6= β, the term in the middle279

either tends to 0 or +∞ and cannot be bounded by two strictly positive constants. Hence if280

β is not algebraic, β0 6= β and we obtain a contradiction, so that L is infinitely ambiguous by281

Theorem 4. Otherwise if β is algebraic, β = β0 and for all n sufficiently large with n ≡ 0[p]:282

0 < c1
b2
≤ nα−α0 log(n)s ≤ c2

b1
.283

Similarly, the only way for nα−α0 log(n)s to be bounded by two strictly positive constants is284

to have both α = α0 and s = 0, hence if s 6= 0 or α /∈ D2, we obtain a contradiction, so that285

L is infinitely ambiguous by Theorem 4. J286

3.2 Application to Shamir’s language287

Let us illustrate the method given in the previous section on Shamir’s language. Let288

Σ = {#, a1, . . . , ak} be an alphabet of k + 1 letters, with k ≥ 2. We consider the extended289

Shamir language Lk defined by :290

Lk = {w ∈ Σ |w = s#usRv with s, u, v ∈ {a1, . . . , ak}∗ and s 6= ε},291

CVIT 2016
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where the letter # serves only as a separator, and sR denotes the mirror4 of s. This language292

is easily recognised by the ambiguous context-free grammar defined by the rules S → AB293

and {A→ aAa|a#Ba, B → aB|ε : a ∈ Σ \ {#}}.294

For k = 2, the language L2 is one of the languages showed to be infinitely ambiguous by295

Shamir [30], using iterations on derivations similar to Ogden’s lemma (the author actually296

shows the finer result that most words in the language of the form s#w have as many297

derivation trees as there are instances of sR in w).298

We propose here an analytic proof of the infinite ambiguity of the language Lk. In the299

following, `n denotes the number of words of Lk of length n. The whole proof relies on the300

following bounds:301

I Proposition 6. There exist constants b1, b2 > 0 such that for n sufficiently large,302

b1 logk n ≤
`n
kn−1 ≤ b2 logk n .303

In other words, `n = Θ(kn−1 logk(n)).304

Applying Corollary 5 provides an analytic proof of the infinite ambiguity of Shamir’s305

language:306

I Corollary 7. The Shamir language Lk is infinitely ambiguous.307

I Remark 8. In [10], the series of a weaker version of Shamir’s language is shown to have308

infinitely many singularities. We could wonder if the number of singularities of the generating309

series of a language was correlated to its degree of ambiguity. This is not the case: Flajolet310

[10] gave examples of 2-ambiguous languages with an infinite number of singularities; on the311

other hand, the language L∗ with L = {anbmcp : n = m or n = p} has a rational generating312

series, hence a finite number of singularities, but is infinitely ambiguous [24, Satz 4.2.1].313

4 Two simple criteria on generating series for proving the inherent314

ambiguity of bounded languages315

In this section, we revisit Ginsburg and Ullian’s criteria with generating series. We develop316

simple methods to prove the inherent ambiguity of bounded languages without any iteration317

argument. Let us fix a dimension d ≥ 1, and Σ an alphabet5 of cardinality more than 2.318

4.1 Bounded languages and Ullian and Ginsburg’s criteria319

Let us fix a tuple of d words w1, . . . , wd ∈ Σ∗, denoted by 〈w〉 := 〈w1, . . . , wd〉. We use the320

same notation and definition of [14]. A language L is called bounded with respect to 〈w〉 if321

L ⊆ w∗1 . . . w∗d. The fonction f〈w〉 : Nd → w∗1 . . . w
∗
d is defined by f〈w〉(p1, . . . , pd) = wp1

1 . . . wpd

d322

for every p ∈ Nd. Notice that if every wi is a distinct letter of Σ, then the function f〈w〉323

is bijective, and its inverse is the Parikh image on w∗1 . . . w∗d. A bounded language L with324

respect to 〈w〉 is called semilinear if f−1
〈w〉(L) is a semilinear set. By [14], every bounded325

context-free language is semilinear. In practice, most bounded languages are defined by326

giving explicitly their semilinear set f−1
〈w〉(L). For instance, if L = {aibjck : i = j or j = k},327

then f−1
〈a,b,c〉(L) = {(i, j, k) ∈ N3 : i = j or j = k}.328

The following definition introduces a crucial class of sets associated to bounded languages:329

4 If s = s1s2 . . . sn−1sn, then sR = snsn−1 . . . s2s1.
5 Context-free languages on an alphabet of size 1 are regular languages by Parikh theorem [27].
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I Definition 9 (Stratified set, [13, 14]). A subset X ⊆ Nd is stratified if :330

1. every element of X has at most two non-zero coordinates ;331

2. it is not possible to find four integers 1 ≤ i < j < k < m ≤ d and two vectors x,x′ ∈ X332

such that xix′jxkx′m 6= 0 . In other words, two distinct elements of X cannot have333

"interlacing" nonzero coordinates.334

We sometimes say abusively that a linear set is stratified if its set of periods is stratified.335

Stratified sets of periods play a fundamental role in the form of the semilinear sets described336

by context-free grammars. In [13], Ginsburg and Ullian show that a bounded language L337

with respect to a∗1 . . . a∗d, where 〈a〉 = 〈a1, . . . , ad〉 are distinct letters, is context-free if and338

only if f−1
〈a〉(L) is a finite union of linear sets, each with a stratified set of periods. They339

specialized this result for unambiguous bounded languages:340

I Theorem 10 (Ginsburg and Ullian criteria, [14]). Let L be a context-free language bounded341

with respect to 〈w〉 = 〈w1, . . . , wd〉. Then L is inherently ambiguous if and only if f−1
〈w〉(L) is342

not a finite union of disjoint linear sets, each with a stratified set of periods whose vectors343

are linearly independent.344

I Remark 11. Note that it is not necessary, in order to use this criterion, to impose the345

decomposition of a word of L into w∗1 . . . w∗d to be unambiguous.346

One direction of the equivalence can be easily understood in the case where every wi are347

distinct symbols and the semilinear set associated to L is a disjoint union of linear sets with348

linearly independent stratified set of periods. One can easily build an unambiguous grammar349

recognising the language of each linear set (the non-interlacing condition makes it possible350

to order the vectors of the periods according to their non-zero pairs of coordinates, in a way351

that they are well nested). The other direction is the heart of Ginsburg and Ullian’s theorem,352

and is based on deep arguments6 about derivation trees.353

As we mentioned it in the introduction, these criteria are powerful as they succeeded in354

leaving the world of grammars and derivation trees, to focus on the semilinear set behind355

the language. However, this characterisation of inherent ambiguity does not provide any tool356

to prove that a given semilinear set cannot be written as a finite union of disjoint stratified357

linear sets with independent periods. Hence, most proofs based on this result (see for instance358

[14, 16, 29]) mimicked on semilinear sets the iteration arguments that worked on derivation359

trees, without taking fully advantage of the fact that Nd and its semilinear sets are much360

more amenable to techniques of analysis or algebra than derivation trees.361

The next sections are devoted to show how Ginsburg and Ullian’s theorem actually362

translates nicely in the world of generating series, and thus allows to derive very simple363

criteria to prove the inherent ambiguity of many bounded languages.364

4.2 The three variables criterion365

The theorem of this section is a simple criterion to prove the inherent ambiguity of bounded366

languages using generating series. The proof relies on the criteria of Ginsburg and Ullian,367

and some arithmetic in K[x], including the unicity of the decomposition into irreducible368

factors. Even if we only need K = Q to apply the theorem to the examples of this article,369

we state it in the general case where K is an arbitrary field. In particular, with K = F2, it370

generalises the criterion of [21], which only deals with bounded languages on distinct letters.371

6 As one of the authors admits it in his book [12, p. 188], "The proof of the necessity is extremely
complicated".

CVIT 2016



23:10 New analytic techniques for proving the inherent ambiguity of context-free languages

I Theorem 12 (Three variables criterion). Let L ⊆ w∗1 . . . w
∗
d be a context-free language372

bounded with respect to 〈w〉. Let S = f−1
〈w〉(L) its associated semilinear set, and let373

S(x1, . . . , xd) = P (x1, . . . , xd)
Q(x1, . . . , xd)

∈ K(x1, . . . , xd)374

be the generating series of S, such that P and Q are polynomials of K[x1, . . . , xd] (that need375

not to be coprime). Suppose that there exists an irreducible polynomial D ∈ K[x1, . . . , xd]376

that divides Q, does not divide P , and depends on more than three variables (in other words377

D 6∈ K[xi, xj ] for all 1 ≤ i, j ≤ d). Then L is inherently ambiguous.378

Proof. Suppose that L in unambiguous. By Ginsburg et Ullian’s criteria (Theorem 10), the379

semilinear set S can be written under the form S =
⊎r
i=1(ci+P ∗i ), where the union is disjoint,380

each Pi is stratified, and the vectors in each set of periods Pi are linearly independent.381

The disjoint union as well as the independent periods mean that this is an unambiguous382

description of S, such that its generating series is given by:383

P (x)
Q(x) = S(x) =

r∑
i=1

xci∏
p∈Pi

(1− xp) = P2(x)
Q2(x) , with Q2(x) =

r∏
i=1

∏
p∈Pi

(1− xp) ,384

where P2, Q2 are obtained by writing the sum of fractions on the same denominator. Hence385

PQ2 = P2Q. The irreducible polynomial D divides Q, so it divides P2Q, hence it divides386

PQ2; as D is irreducible and does not divide P , it divides Q2.387

However, as S is stratified, no period vector p in any Pi has more than two non zero388

coordinates. This means that Q2 is a product of polynomials of the form (1 − t) where389

t is a monomial with at most two variables. Each of these polynomials admits a unique390

factorization in irreducible polynomials, each of them having at most two variables. By391

the unicity of the irreducible factorization in K[x1, . . . , xd], D cannot divide Q2 since it is392

irreducible with more than three variables. Contradiction. J393

I Remark 13. As seen in the preliminaries, every semilinear set can be described unambigu-394

ously [8, 18], so that it is always possible to compute its generating series.395

I Proposition 14. The following context-free languages are inherently ambiguous:396

1. L1 = {aibjck with i = j or j = k} and L′1 = {aibajbakb with i = j or j = k}397

2. L2 = {aibjck with i 6= j or j 6= k} and L′2 = {aibajbakb with i 6= j or j 6= k}398

3. L3 = {aibjck with i = j or j 6= k} and L′3 = {aibajbakb with i = j or j 6= k}399

4. C := {w1w2 : w1, w2 ∈ {a, b}∗ are palindromes}400

Proof. We apply Theorem 12 (with K = Q) by exhibiting three-variables irreducible factors401

in the denominator of the generating series of the semilinear sets under irreducible form.402

1. The generating series S(a, b, c) of the semilinear set associated to L1 is:403

1
(1−ab)(1−c) + 1

(1−bc)(1−a)−
1

1−abc = 1−3 a2b2c2+2 a2b2c+2 ab2c2+2 a2bc−ab2c+2 abc2−a2b+2 abc−bc2−ac
(1−a)(1−bc)(1−c)(1−ab)(1−abc)404

The polynomial 1 − abc in the denominator is irreducible in Q[a, b, c], and has three405

variables. Furthermore, 1− abc does not divide the numerator (it can be checked with406

a computer algebra software, or by hand: in Q[a, b][c], the numerator is of degree 2 in407

c, so if 1 − abc divided it, the numerator would be of the form (1 − abc)(λc + µ) with408

λ, µ ∈ Q[a, b], so that each monomial in c2 in the numerator should have ab in factor,409

which is not the case of the monomial −bc2). Hence L1 is inherently ambiguous by410

Theorem 12. Notice that the generating series of the semilinear set associated to L′1411

is simply b1b2b3S(a1, a2, a3) where b1, b2, b3 are associated to the three letters b, and412

a1, a2, a3 are associated to the groups of a′s. Hence L′1 is also inherently ambiguous.413
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2. The associated generating series is 1
(1−a)(1−b)(1−c) −

1
1−abc = a+b+c−ab−ac−bc

(1−a)(1−b)(1−c)(1−abc) . The414

irreducible polynomial 1− abc has three variables, and does not divide the numerator,415

since its total degree is 3, whereas the numerator is of total degree 2. Hence L2, and416

similarly L′2 are inherently ambiguous.417

I Remark 15. The languages L1 and L2 were already proved to be inherently ambiguous418

in [21] with the same argument. Our criterion makes it possible to extend the criterion419

on word-bounded languages, to prove that L′1 and L′2 are also inherently ambiguous.420

3. The generating series of the semilinear set associated to L3 is421

1
(1−a)(1−b)(1−c)−

(
1

(1−a)(1−bc) −
1

1−abc

)
= 3 ab2c2−2 ab2c−2 abc2−b2c2+b2c+bc2+ab+ac−2 bc−a+1

(1−a)(1−b)(1−c)(1−bc)(1−abc)422

and the proof is similar as before for both L3 and L′3.423

4. This example illustrates why criteria on bounded languages on words are more useful424

than on distinct letters. The language C is known to be infinitely ambiguous [7]. Let425

us propose a new elementary proof of just its inherent ambiguity. Suppose that C is426

unambiguous. Then C̃ := C ∩ ba+ba+abbaa+ba+b would be unambiguous, by stability of427

unambiguous context-free languages under intersection with a regular language [14]. As428

C̃ = {banbambbapbaqb : (n = q ∧m = p) or (n = m ∧ p = q), n,m, p, q ∈ N>0}429

is bounded with respect to 〈b, a, b, a, b, a, b, a, b〉, we associate the variables x, y, z, t to430

the a′s, and ui for i = 1 . . . 5 for the five b’s. The generating series associated to431

S′ = {(n,m, p, q) ∈ N4
>0 : (n = q ∧ m = p) or (n = m ∧ p = q)} is S′(x, y, z, t) =432

xyzt( 1
(1−xt)(1−yz) + 1

(1−xy)(1−zt) −
1

1−xyzt ). Then the generating series associated to C̃ is:433

S(u1, x, u2, y, u3, z, u4, t, u5) = u1u2u
2
3u4u5xyzt

−3 x2z2t2y2+2 x2zt2y+2 xz2t2y+2 y2tx2z+2 y2txz2...
(1−xt)(1−yz)(1−xy)(1−zt)(1−xyzt)434

where we truncated the numerator due to lack of space. We can verify that the irreducible435

4-variables polynomial 1− xyzt does not divide the numerator, which proves that C̃ is436

inherently ambiguous. Contradiction. So C in inherently ambiguous. J437

I Remark 16. To check if a polynomial of the form π = 1− xv with v ∈ (N>0)d does not438

divide the numerator P , we could also have introduced d− 1 new variables yi, and perform439

the substitution x1 ← y−v2
1 , xd ← y

vd−1
d−1 and for 1 < i < d, xi ← y

vi−1
i−1 y

−vi+1
i . After this440

substitution, π vanishes, so if after the substitution P is not the null fraction, then it is441

not divisible by π. This chained substitution aims specifically at cancelling π, and it is not442

difficult to show that if π′ = 1−xv′ vanishes after the substitution, then v′ and v are linearly443

dependent over Q. This trick will be used with d = 2 for the second criterion of this article.444

The last language of the previous proposition shows that our criteria can also be useful to445

prove the inherent ambiguity of non bounded languages. Here we give an other example. The446

language of primitive words P , defined formally by P = {w ∈ Σ∗ | ∀u ∈ Σ∗, w ∈ u∗ ⇒ u = w},447

is the set of words that are not the power of a smaller word. This language is challenging,448

as it is still an open question to know if it is context-free. In 1994, [28] showed that the449

generating series of P is not algebraic, and hence that if it was context-free, then it would be450

inherently ambiguous. We propose a new proof of this fact.451

I Proposition 17 ([28]). The language of primitive words in not an unambiguous context-free452

language.453

Proof. The language P ∩ a∗ba∗ba∗b = {anbambapb : n 6= m or m 6= p} = L′2 is inherently454

ambiguous by Proposition 14. J455
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Related work. A special case of Theorem 12 has already been proved by [21], in the456

case where each wi is a distinct letter and K = F2, using completely different techniques:457

the author focused on GF (2) grammars, a class of context-free grammars for which union is458

replaced by symmetric difference, and the concatenation of two languages K and L is replaced459

by a special concatenation K � L which keeps only the words w of K · L which admit an460

odd number of decompositions of the form w = wkw` with wk ∈ K and w` ∈ L. In [21], the461

author studies the generating series associated to bounded languages in a∗1 . . . a∗d recognized462

by a GF (2) grammar, and shows that the irreducible polynomials at their denominator can463

only have at most two variables. The author proves with this criterion the inherent ambiguity464

of the language {aibjck with i 6= j or j 6= k}. At the end of the article, the author mentions465

Ginsburg and Ullian’s criteria, saying that it would be possible to use them to prove the466

inherent ambiguity of the language L, but explains that the proof would not be simpler.467

We showed in this section that the equivalence of Ginsburg and Ullian actually translates468

directly into the criterion found by [21], while generalising it to bounded languages on words.469

4.3 The interlacing criterion470

The three variables criterion of Theorem 12 does not exploit the non interlacing condition of a471

stratified set. In particular, it fails on the language L = {anbmapbq | n = p or m = q}, as the472

denominator of the series of its semilinear set is (1− ac) (1− bd) (1− a) (1− b) (1− c) (1− d),473

which only contains irreducible polynomials of at most two variables. But (1− ac) (1− bd)474

presents two irreducible polynomials with interlaced variables, hence it is natural to wonder475

if this could be a sign of inherent ambiguity. If so, we need however additional conditions, as476

such a pattern can also occur in unambiguous languages, such as in the language {ancn :477

n ≥ 0} ∪ {bndn : n ≥ 0} whose associated series is 1
1−ac + 1

1−bd = 2−ac−bd
(1−ac)(1−bd) .478

In this section, we establish a second criterion dealing with the interlacing condition479

(Theorem 21). We will use several technical lemmas: Lemmas 18 and 19 are classical480

algebra lemmas on polynomials, while Lemma 20 studies precisely the shape of irreducible481

polynomials dividing the denominators of series associated to stratified linear sets.482

I Lemma 18 (Irreducibility of 1 − xnym). Let n,m ∈ N. The polynomial 1 − xnym is483

irreducible in Q[x, y] if and only if n ∧m = 1.484

I Lemma 19. Let n,m ∈ N>0. Then 1− xnym = (1− xαyβ)P (x, y) where α ∧ β = 1, and485

P (x, y) is a non zero polynomial whose coefficients are in {0, 1} . Furthermore α = n/(n∧m)486

and β = m/(n ∧m).487

I Lemma 20. Let S = c + P ∗ a stratified linear set with linearly independent periods. Let488

k ≥ 1, n,m ≥ 1 be three integers such that n ∧m = 1, and i 6= j be two indices of variables,489

and y a fresh new variable. Then :490

if (1− xni xmj )k |
∏

p∈P (1− xp), then k = 1;491

if (1− xni xmj ) -
∏

p∈P (1−xp), then
∏

p∈P (1−xp)|xi=ym,xj=y−n 6= 0, seen as en element492

of Q(y)[x], the ring of polynomials over the field Q(y).493

The following theorem is our second criterion for proving the inherent ambiguity of494

bounded languages using the non-interlacing condition.495

I Theorem 21 (Interlacing criterion). Let L ⊆ w∗1 . . . w
∗
d a context-free language bounded496

with respect to 〈w〉. Let us denote by S = f−1
〈w〉(L) its semilinear set, and S(x1, . . . , xd) =497

P (x1,...,xd)
Q(x1,...,xd) ∈ Q[x1, . . . , xd] its generating series, with P and Q two polynomials, non neces-498

sarily coprime. Suppose that:499
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1. Q is divided by two non-univariate irreducible polynomials D(xj , x`) and π(xi, xk) with500

interlaced indices j < ` and i < k (i.e. i < j < k < ` or j < i < ` < k);501

2. π(xi, xk) is of the form π(xi, xk) = (1− xni xmk ), with n,m ≥ 1 and n ∧m = 1 ;502

3. finally, D - P |xi=ym,xk=y−n in Q(y)[x], where y is a fresh new variable.503

Then L is inherently ambiguous.504

Proof. Toward a contradiction, suppose that L is unambiguous. By Theorem 10, S can be505

written under the form S =
⊎r
s=1(cs + P ∗s ), where the union is disjoint, the periods Pi are506

stratified, and the vectors in each Pi are linearly independent. Its generating series is then:507

P (x)
Q(x) = S(x) =

r∑
s=1

xcs∏
p∈Ps

(1− xp)508

By hypothesis, P |xi=ym,xk=y−n 6= 0 (as D always divides 0), so π(xi, xk) does not divide509

P , and D does not divide P (otherwise D would divide P |xi=ym,xk=y−n as it is not affected510

by the substitution). Hence both π and D are irreducible polynomials of Q, that stay in the511

denominator after writing the fraction S(x) under irreducible form. Hence they divide the512

least common multiple of every
∏

p∈Ps
(1−xp). Let us write Q = (1− xni xmk )D(xj , x`)Q̃(x).513

Note that by Lemma 20, no irreducible factor of Q̃(x) that stays after writing P/Q under514

irreducible form cancels at xi = ym, xk = y−n. Hence if Q̃(x)|xi=ym,xk=y−n = 0, this means515

that an irreducible factor common between Q̃ and P cancels with the substitution, but this516

is not possible since P |xi=ym,xk=y−n 6= 0. So Q̃(x)|xi=ym,xk=y−n 6= 0.517

Let us write I1 the set of indices s such that (1 − xni xmk ) |
∏

p∈Ps
(1 − xp), and I2 its518

complement. For every s ∈ I1, let us write
∏

p∈Ps
(1−xp) = (1−xni xmk )Rs(x). By Lemma 20,519

Rs|xi=ym,xk=y−n 6= 0, and by the non interlacing condition, no irreducible factor of Rs is a520

polynomial in exactly both variables xj , x`. Hence, no irreducible factor7 of Rs|xi=ym,xk=y−n521

in Q(y)[x] is a polynomial in exactly both variables xj and x`.522

By multiplying everything by π, we obtain the following equality in Q(x):523 ∑
s∈I1

xcs

Rs(x) + (1− xni xmk )
∑
s∈I2

xcs∏
p∈Ps

(1− xp) = P (x)
D(xj , x`)Q̃(x)

.524

For every s ∈ I2,
∏

p∈Ps
(1−xp)|xi=ym,xk=y−n 6= 0 since π -

∏
p∈Ps

(1−xp), by Lemma 20.525

Consequently, for every s ∈ I2, xcs∏
p∈Ps

(1−xp)

∣∣∣∣
xi=ym,xk=y−n

is a well defined rational fraction526

on x with coefficients in Q(y). Hence, by evaluating at xi = ym, xk = y−n, we obtain the527

following equality on Q(y)(x):528 ∑
s∈I1

xcs |xi=ym,xk=y−n

Rs(x)|xi=ym,xk=y−n

=
P (x)|xi=ym,xk=y−n

D(xj , x`)Q̃(x)|xi=ym,xk=y−n

.529

As D(xj , x`) has exactly two variables xj and x`, it is unchanged by the substitution.530

Furthermore, it is easy to see that an irreducible polynomial of Q[x] remains irreducible in531

Q(y)[x]. As D - P |xi=ym,xk=y−n , D stays an irreducible factor in Q(y)[x] of the denominator532

of the fraction
∑
s∈I1

xcs |xi=ym,xk=y−n

Rs|xi=ym,xk=y−n
once put under irreducible form.533

However, none of the polynomials Rs|xi=ym,xk=y−n have irreducible factors that depend534

on both variables xj , x`. We obtain a contradiction when reducing the sum on the same535

denominator. So L is inherently ambiguous. J536

7 As Q(y) is a field, Q(y)[x] is also factorial.
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I Remark 22. The last condition can be in practice replaced by the weaker condition that537

there exists a rational number α ∈ Q>0 \ {1} such that D - P |xi=αm,xk=α−n .538

I Remark 23. If D is of the form 1−xpjx
q
` , by Remark 16 the last condition can be in practice539

replaced by the weaker condition that P |xi=ym,xj=zq,xk=y−n,x`=z−p is a non-null fraction,540

with y, z two fresh variables.541

We now use the interlacing criterion to prove the following proposition:542

I Proposition 24. The following context-free languages are inherently ambiguous:543

1. L1 = {aibjckd` : i = k or j = `}544

2. L2 = {aibjckd` : i 6= k or j 6= `}545

3. L3 = {aibjckd` : i = k or j 6= `} (and similarly L4 = {aibjckd` : i 6= k or j = `})546

4. L′2 = {aibjckd` : 3i 6= 5k or 2j 6= 3`}547

5. L4 = {aibjckd` : i < k or i+ j < k + l}548

Proof. We illustrate in the proofs several ways of verifying the hypotheses of our criterion.549

1. The generating series of the semilinear set is:550

1
(1−ac)(1−b)(1−d) + 1

(1−bd)(1−a)(1−c) −
1

(1−ac)(1−bd) = 1−ab−ac−ad−bc−bd−cd+2 abc+2 abd+2 acd+2 bcd−3 abcd
(1−ac)(1−bd)(1−a)(1−b)(1−c)(1−d)551

Then define D(b, d) := 1− bd and π(a, c) := 1− ac, which are both irreducible and their552

variables are interlaced. Let P be the numerator 1− ab− ac− ad− bc− bd− cd+ 2 abc+553

2 abd+ 2 acd+ 2 bcd− 3 abcd.554

As P |a=y,c=1/y = 2 y2bd−4 ybd−y2b−y2d+2 bd+2 yb+2 yd−b−d
y , is of degree 1 in b, it is not555

divisible by 1− bd in Q(y)[b, d]. By Theorem 21, L1 is inherently ambiguous.556

2. The generating series of the semilinear set is:557

1
(1−a)(1−b)(1−c)(1−d) −

1
(1−ac)(1−bd) = abc+abd+acd+bcd−ab−2 ac−ad−bc−2 bd−cd+a+b+c+d

(1−ac)(1−bd)(1−a)(1−b)(1−c)(1−d)558

Still define π := 1− ac, D := 1− bd and P be the numerator. As (1− bd) - P |a=2,c=1/2 =559

1
2 (bd− b− d− 1), L2 is inherently ambiguous by Theorem 21 and Remark 22.560

3. The generating series of the semilinear set is8:561

1
(1−a)(1−b)(1−c)(1−d) −

1
1−bd ( 1

(1−a)(1−c) −
1

(1−ac) ) = 3 abcd−2 abc−abd−2 acd−bcd+ab+ac+ad+bc−bd+cd−a−c+1
(1−a)(1−b)(1−c)(1−d)(1−bd)(1−ac)562

Still define π = (1 − ac), D = (1 − bd), and P be the numerator. For y, z two new563

variables, let us compute P |a=y,b=z,c=y−1,d=z−1 = y2z2−2 y2z−2 yz2+y2+4 yz+z2−2 y−2 z+1
yz564

which is a non null fraction. By Remark 23 and Theorem 21, L3 is inherently ambiguous.565

4. The associated generating series is 1
(1−a)(1−b)(1−c)(1−d) −

1
(1−b3d2)(1−a5c3) , that is:566

S(a, b, c, d) = a5b3c3d2−a5c3−b3d2−abcd+abc+abd+acd+bcd−ab−ac−ad−bc−bd−cd+a+b+c+d
(1−a)(1−b)(1−c)(1−d)(1−b3d2)(1−a5c3) .567

Define π = (1 − a5c3) and D = (1 − b3d2), which are both irreducible with interlaced568

variables. Let P be the numerator. Let us choose α = 2. As (1− b3d2) - P |a=8,c=1/32 =569

217
32 (bd− b− d+ 1), L′2 is inherently ambiguous9.570

5. With a little more effort, we can check that the generating series associated to L4 is571

abcd2−acd−bd−cd+c+d
(1−ac)(1−ad)(1−bd)(1−d)(1−c)(1−b) . Still define D = 1 − bd, π = 1 − ac and P be the572

numerator. Let us choose α = 2. As P |a=2,c=1/2 = bd2 − bd− d/2 + 1/2 is not divisible573

by D, by Theorem 21 and Remark 22, L4 is inherently ambiguous. J574

I Remark 25. The previous proofs are based on the form of the semilinear set, and also work575

for their word-variant, like {aibajbakba`b : i 6= k or j 6= `}.576

8 Because i = k ∨ j 6= ` is equivalent to ¬(¬(i = k) ∧ j = `)
9 We could also have checked that P |a=y3,b=z2,c=y−5,d=z−3 is not the null fraction.
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4.4 An application to the complement of walks in the quarter plane577

We consider the quarter plane N2 immersed in Z2. We represent symbolically every vector of578

infinite norm 1 by an arrow symbol: ← represents (−1, 0), ↘ represents (1,−1), etc. The579

set of all these symbols S = {←,↙, ↓, ↘,→,↗, ↑,↖} is called the set of small steps of Z2.580

A word in S∗ can be represented by a walk in the plane, starting from (0, 0), and following581

the vector represented by each letter. It is confined in the quadrant if every point of the582

path stays in the quarter plane N2. For Σ ⊆ S, we call WΣ the language of words that583

are confined in the quarter plane. The study of such walks is an active domain of research584

in combinatorics (see for instance [3, 4, 5, 19, 22, 23]), as they provide a large diversity of585

generating series. Most of these walks are however not context-free languages, as there are586

two degrees of liberty. However, for every Σ, the language Σ∗ \WΣ of walks on Σ that leave587

the quadrant is context-free: a pushdown automaton non deterministically chooses one axis588

and accepts the word if the walk leaves this axis. A walk is called singular if Σ is a subset of589

one of the following sets10 [22]:590

It is easy to see that singular walks are in fact unidimensional: their steps constrain the591

walk so that it cannot cross one of the two axes (except at (0, 0)), so that both WΣ and592

Σ∗ \WΣ are easily unambiguous context-free [22]. On the contrary, with the two criteria of593

this section, we can prove the following proposition:594

I Proposition 26. The complement of every non-singular walk on the quarter plane is an595

inherently ambiguous context-free language.596

5 Conclusion597

In conclusion, generating series are a beautiful and useful tool to study the question of598

inherent ambiguity on context-free languages. It would be interesting to find other criteria599

to study the inherent infinite ambiguity of languages that have simple asymptotic behaviour.600

Can we detect the infinite ambiguity of L∗, with L = {anbmcp : n = m or n = p} [24,601

Satz 4.2.1] using generating series? One lead would be to start by proving the inherent602

k-ambiguity of bounded languages, for a given k. For instance, if we can show that Lk is603

inherently f(k)-ambiguous with f(k)→k→∞ ∞ using generating series, then we could prove604

that L∗ is inherently infinitely ambiguous. Ginsburg and Ullian’s criteria (see [14, 29]) give605

a characterisation of the degree of ambiguity of bounded languages: a bounded context-free606

language is recognized by a k-ambiguous grammar if and only if its semilinear set can be607

decomposed as a finite union of stratified linear set, each with independent sets of periods,608

such that every intersection of l > k of these linear sets is empty. This implies that the609

generating series of the semilinear set can be expressed by inclusion-exclusion as a sum of610

generating series of linear stratified sets and their Hadamard’s product. It looks challenging to611

find a pattern that can only occur in the intersection of k stratified linear sets, or equivalently612

in the Hadamard’s product of k of their generating series.613

As for inherent ambiguity of bounded languages, finding inherently ambiguous languages614

that are not covered by Theorems 12 and 21 would be a nice challenge to improve them. We615

hope that having a stronger understanding on their series would help to determinate whether616

inherent ambiguity is decidable or not on bounded context-free languages.617

10The last set is not called singular nor considered in [22], since walks with such steps leave the quadrant
at the first step.
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A Proofs of Section 3695

A.1 Proof of Proposition 6696

I Proposition 6. There exist constants b1, b2 > 0 such that for n sufficiently large,697

b1 logk n ≤
`n
kn−1 ≤ b2 logk n .698

In other words, `n = Θ(kn−1 logk(n)).699

Proof. For a given prefix s ∈ Σ∗, we denote `sn the number of words of size n in Lk of the700

form s#w, and for r ≥ 1, `rn =
∑
|s|=r−1 `

s
n denotes the number of words in Lk of the form701

s#w, of length n, and such that |s| = r − 1 ≥ 1.702

Upper bound. Let us fix a word s, of length r− 1. We recall that `sn counts the number703

of words of length n of the form s#w , such that w contains the factor sR. By removing this704

last constraint on w, we easily obtain that `sn ≤ kn−r.705

Moreover, by partitioning according to the position j in the word w where the factor sR706

appears, we also deduce `sn ≤
∑n−2r+1
j=0 kjkn−2r+1−j = (n− 2r + 2)kn−2r+1 ≤ nkn−2r+1.707

Hence `sn ≤ min(kn−r, nkn−2r+1) .708

Note that min(kn−r, nkn−2r+1) = kn−r if r ≤ logk n + 1. Finally, for all r ≥ 2, `rn =709 ∑
|s|=r−1 `

s
n ≤ kr−1 min(kn−r, nkn−2r+1), and so we have:710

`rn ≤
{
kn−1 if r < logk n+ 1
nkn−r if r ≥ logk n+ 1711

Majoring `n by the sum of all `rn, and partitioning according to the position of r with712

respect to logk n+ 1, we obtain:713

`n ≤
∑

2≤r<logk n+1
`rn +

∑
r≥logk n

`rn ≤ kn−1(logk n− 1) + nkn
∑

r≥logk n+1
k−r714

≤ kn−1(logk n− 1) + nknk− logk n−1 k

k − 1715

= kn−1(logk n− 1) + kn−1 k

k − 1 ∼n→∞ kn−1 logk n716
717

So there exists a constant b2 > 0 such that for n large enough, `n ≤ b2kn−1 logk n.718

Lower bound. We still look at a word of size n of Lk of the form s#w, with s of size719

|s| = r − 1. We split w into t consecutive blocks of size r − 1, with t = bn−rr−1 c. Note that the720

last remaining block is of size r1 = (n− r)− (r − 1)t.721

We want to lower-bound the number of words of Lk associated with a prefix s of size722

r − 1 by looking only at the words w having sR as one of their t blocks. Thus:723

`sn ≥ card{w : sR appears in one of the t blocks of w, with |w| = n− r}724

= kn−r − card{w : sR does not appear in any of the t blocks of w, with |w| = n− r}725

= kn−r − kr1(kr−1 − 1)t = kn−r
(

1−
(

1− 1
kr−1

)t)
726

727

since r1 − (n− r) = −t(r − 1). As this bound depends only on |s| = r, we deduce that728

`rn ≥ kn−1
(

1−
(

1− 1
kr−1

)t)
.729



F. Koechlin 23:19

Notice that
(
1− 1

kr−1

)t = exp
(
bn−rr−1 c ln

(
1− 1

kr−1

))
≤ exp

(
−bn−rr−1 c

1
kr−1

)
.730

Fix r such that r ≤ 1 + logk n
2 . Then − 1

kr−1 ≤ − 1√
n
. Besides, for n ≥ 4, n − r ≥ n

2731

and n − logk n ≥ n
2 . Hence

⌊
n−r
r−1

⌋
≥ n−r

r−1 − 1 ≥ n
logk n

− 1 ≥ n
2 logk n

. Consequently for732

r ≤ logk n
2 + 1:733

1− (1− 1
kr−1 )t ≥ (1− exp(−

√
n

2 logk n
)) ,734

where the right side does not depend on r, and tends to 1 when n→∞. So for n sufficiently735

large, we can lower-bound it by 1/2. Thus there exists a rank n0 > 0 independent of r such736

that for every n ≥ n0 and r ≤ logk n
2 + 1, we have `rn ≥ 1

2k
n−1.737

Hence, for n ≥ n0, `n ≥
∑
r−1≤ 1

2 logk n
`rn ≥ 1

4k
n−1 logk n. J738

B Proofs of Section 4739

B.1 Proof of Lemma 18740

We need the following classical folklore lemma:741

I Lemma 27. If f ∈ Q[x, y] is homogenous, so is any of its divisors.742

Proof. Let us factorize f = gh, with g, h ∈ Q[x, y]. We can decompose g =
∑r
i=s gi and743

h =
∑r′

i=s′ hi as a sum of homogenous polynomials where for every i, hi and gi are either zero744

or of total degree i. Furthermore, let us suppose that gs, gr, hs′ and hr′ are non zero. Hence745

f = (
∑r
i=s gi)(

∑r′

i=s′ hi), and the highest total degree term of f is grhr′ , of total degree746

r + r′, and the lowest total degree term is gshs′ , of total degree s+ s′. As f is homogenous,747

r + r′ = s+ s′, and as s ≤ r and s′ ≤ r′, we get that s = r and s′ = r′; this means that g748

and h are homogenous. J749

The following lemma is also folklore, the proof is given for completeness.750

I Lemma 18 (Irreducibility of 1 − xnym). Let n,m ∈ N. The polynomial 1 − xnym is751

irreducible in Q[x, y] if and only if n ∧m = 1.752

Proof. If n and m are not coprime, let δ > 1 be a common divisor. Then 1 − xnym =753

1− (xn/δym/δ)δ = (1− xn/δym/δ)
∑δ−1
k=1 x

kn/δykm/δ is not irreducible.754

If n and m are coprime, we adapt the nice proof of [9], by making it a little more755

elementary and thus a little less elegant. Let us write f = 1− xnym, and decompose f = gh.756

Without loss of generality, g = (a0 + . . .+ ar′x
ryr

′) with a0 6= 0, ar′ 6= 0, r′ is the degree757

of g in the variable y, and r is the degree in x of the polynomial that is the coefficient of758

yr
′ . Similarly, h = (a−1

0 + . . .+−a−1
r′ x

sys
′) with a0 6= 0, ar′ 6= 0, s′ the degree of h in the759

variable y, and s the degree in x of the coefficient of ys′ . Then r′ + s′ = m, and we can760

suppose without loss of generality that r′ 6= 0.761

The polynomial Y nm −Xnm = Y nmf(Xm, Y −n) = Y nr
′
g(Xm, Y −n)Y ns′h(Xm, Y −n) is762

homogenous. As Y nr′g(Xm, Y −n) and Y ns′h(Xm, Y −n) are both polynomials in K[X,Y ],763

they are homogenous by Lemma 27.764

Hence a0Y
nr′ + . . .+ ar′X

mr is homogenous, and mr = nr′. As m and n are coprime,765

m divides r′, and as r′ 6= 0, m ≤ r′, and consequently m = r′ and s′ = 0. So h(x, y) is a766

polynomial h̃(x) in x only, but Y ns′h(Xm, Y −n) = Y ns
′
h̃(Xm) is homogenous, so h̃(Xm) is767

homogenous too. As a0 6= 0, h is a constant. So f is irreducible. J768
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B.2 Proof of Lemma 19769

I Lemma 19. Let n,m ∈ N>0. Then 1− xnym = (1− xαyβ)P (x, y) where α ∧ β = 1, and770

P (x, y) is a non zero polynomial whose coefficients are in {0, 1} . Furthermore α = n/(n∧m)771

and β = m/(n ∧m).772

Proof. Let us write δ = n ∧m. Then 1− xnym = (1− xn/δym/δ)P (x, y), where P (x, y) =773 ∑δ−1
k=1 x

kn/δykm/δ is non zero polynomial whose coefficients are in {0, 1}. By definition of774

gcd, (n/δ) ∧ (m/δ) = 1 . J775

B.3 Proof of Lemma 20776

I Lemma 20. Let S = c + P ∗ a stratified linear set with linearly independent periods. Let777

k ≥ 1, n,m ≥ 1 be three integers such that n ∧m = 1, and i 6= j be two indices of variables,778

and y a fresh new variable. Then :779

if (1− xni xmj )k |
∏

p∈P (1− xp), then k = 1;780

if (1− xni xmj ) -
∏

p∈P (1−xp), then
∏

p∈P (1−xp)|xi=ym,xj=y−n 6= 0, seen as en element781

of Q(y)[x], the ring of polynomials over the field Q(y).782

Proof. As the period vectors are linearly independent, there exist at most two vectors783

p1,p2 ∈ P such that (1− xp1) and (1− xp2) are in Q[xi, xj ].784

Let us write (1− xp1) = (1− xn1
i x

m1
j ) = (1− xn1/d1

i x
m1/d1)
j )P1(xi, xj), with n1,m1 ≥ 1,785

P1(xi, xj) which is a non zero polynomial with coefficients in {0, 1}, and d1 = n1 ∧ m1.786

In particular, P1(1, 1) 6= 0. Similarly, let us write (1 − xp2) = (1 − xn2
i x

m2
j ) = (1 −787

x
n2/d2
i x

m2/d2
j )P2(xi, xj) with the same conditions and notations.788

As P1(1, 1) can not be zero, P1 is not divisible by any polynomial of the form (1−xp) (and789

the same holds for P2). Furthermore, the other factors in the denominator
∏

p∈P (1− xp)790

are not divisible by the irreducible polynomials (1− xn1/d1
i x

m1/d1
j ) et (1− xn2/d2

i x
m2/d2
j ), as791

they do not depend on simultaneously xi and xj .792

Finally, (n1/d1,m1/d1) 6= (n2/d2,m2/d2), as otherwise we would have d2p1 = d1p2,793

implying that p1 and p2 would be linearly dependent.794

Hence, every irreducible polynomial of the form (1−xni xmj ) with n∧m = 1 has multiplicity795

at most 1 in the unique irreducible factorization of
∏

p∈P (1− xp). The first point is796

proved. Note that every other irreducible factor depending on both xi and xj are divisors of797

polynomials with coefficients in {0, 1}.798

The second point comes from the following additional observations:799

a non null polynomial with coefficients in {0, 1}, and consequently its divisors, does not800

become the null fraction by replacing some of its variables by ym or y−n. Indeed, when801

we write the rational fraction after the substitution on irreducible form, the denominator802

is a power of y, and the numerator is a sum of polynomials with positive coefficients.803

for s /∈ {i, j}, 1−xps
s stays the same after the substitution, while (1−xpi

i )|xi=ym = 1−ympi804

is a non null polynomial in y, and (1 − xpj

j )|xj=y−n = ynpj−1
ynpj is a non null element of805

Q(y).806

similarly a polynomial of the form (1 − xpt

t x
ps
s ) with pt, ps ≥ 1 and {xt, xs} 6= {xi, xj}807

does not vanish by replacing xi by ym and xj by y−n. For instance, for s /∈ {i, j},808

(1− xpj

j x
ps
s )|xj=y−n = ynpj−xps

s

ynpj is a non null fraction.809

By the previous observations, the only irreducible factors of
∏

p∈P (1−xp) that risk canceling810

after the substitution xi = ym, xj = y−n are of the form (1 − xn1
i x

m1
j ) with n1, n2 ≥ 1,811

n1∧n2 = 1 and (n,m) 6= (n1, n2). Then, the substitution replaces such a polynomial with the812
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fraction (1−ymn1−nm1) in Q(y), which becomes null if and only if mn1−nm1 = 0, if and only813

if n = n1 et m = m1 (as n ∧m = 1 and n1 ∧ n2 = 1). Consequently, no irreducible factor of814 ∏
p∈P (1−xp) becomes zero in Q(y)[x] after the substitution, so

∏
p∈P (1−xp)|xi=ym,xj=y−n815

is a product of non-null polynomials in Q(y)[x], hence is non null. J816

B.4 Computation of the last series of Proposition 24817

Let us explain how we computed the series of the semilinear set associated to L4 = {aibjckd` :818

i < k or i+ j < k+ l}. Let us notice that i < k or i+ j < k+ l⇔ ¬(i ≥ k and i+ j ≥ k+ l).819

Hence S(a, b, c, d) = 1
(1−a)(1−b)(1−c)(1−d) −

∑
n≥p and n+m≥p+q a

nbmcpdq. Let us write820

S2(a, b, c, d) =
∑

n≥p and n+m≥p+q
anbmcpdq =

+∞∑
n=0

an
n∑
p=0

cp
+∞∑
m=0

bm
(n−p)+m∑
q=0

dq .821

Then822

S2(a, b, c, d) = 1
1− d

+∞∑
n=0

an
n∑
p=0

cp
+∞∑
m=0

bm(1− dn−p+m+1)823

= 1
(1−b)(1−c)(1−d)

+∞∑
n=0

an(1− cn+1)− d
(1−d)(1−bd)

+∞∑
n=0

(ad)n
n∑
p=0

(c/d)p824

= 1
(1−b)(1−c)(1−d) ( 1

1−a −
c

1−ac )−
d

(1−d)(1−c/d) ( 1
1−ad −

c/d
1−ac )825

826

Hence, we obtain after simplification that S(a, b, c, d) = abcd2−acd−bd−cd+c+d
(1−ac)(1−ad)(1−bd)(1−d)(1−c)(1−b) .827

B.5 Extra properties828

I Lemma 28 (Announced in Remark 16). Let π be polynomial of the form π = 1− xv1
1 . . . xvk

k829

with v1, . . . , vd > 0 and vk+1 = . . . = vd = 0 (we can without loss of generality rename830

the variables). We introduce k − 1 new variables yi, and perform the substitution x1 ←831

y−v2
1 , xd ← y

vk−1
k−1 and for 1 < i < k, xi ← y

vi−1
i−1 y

−vi+1
i . Notice that after this substitution, π832

vanishes. Suppose that a polynomial of the form π′ = 1− xv′ vanishes after the substitution.833

Then v′ and v are linearly dependent over Q.834

Proof. It is easy to see that in the case where π′ has a non null degree in xi for i > k,835

then it does not vanish after the substitution. Hence π′ only depends on x1, . . . , xk, and836

v′k+1 = . . . = v′d = 0. After performing the substitution on xv′ , we hence obtain:837

F (y) =
(

1
yv2

1

)v′1 (yv1
1
yv3

2

)v′2
. . .

(
y
vk−2
k−2
yvk

k−1

)v′k−1 (
y
vk−1
k−1

)v′k
838

For π′ to be zero, the valuation of every variable yi must be zero in F . For 1 ≤ i ≤ k − 1,839

we notice that the valuation of yi is equal to viv′i+1 − vi+1v
′
i, hence using a determinant840

notation,
∣∣∣∣vi vi+1
v′i v′i+1

∣∣∣∣ = 0. This means that for all 1 ≤ i ≤ k − 1, there exists λi such that841 (
vi
v′i

)
= λi

(
vi+1
v′i+1

)
, with λi 6= 0 since all the vi’s are non null. Hence every vector

(
vi
v′i

)
842

is colinear to
(
v1
v′1

)
, hence the matrix

(
v1 . . . vd
v′1 . . . v′d

)
has rank 1: v and v′ are linearly843

dependent on Q. J844
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I Lemma 29. If D is an irreducible polynomial of Q[x], and y is a fresh new variable, then845

D is also an irreducible polynomial of Q(y)[x].846

Proof. By contradiction suppose that D = fg, with f, g two non constant polynomials of847

Q(y)[x]. Each coefficient of f is a rational fraction of y, of the form p(y)/q(y), for which848

both p and q has a finite set of roots in Q – and the same holds for g. Hence we can find a849

rational number α ∈ Q that is not among these roots; when evaluating the equality D = fg850

at y = α, then D stays the same, and f and g becomes non constant polynomials in Q[x],851

contradicting the irreducibility of D. J852

C Proof sketch of Proposition 26853

I Proposition 26. The complement of every non-singular walk on the quarter plane is an854

inherently ambiguous context-free language.855

Proof sketch. For Σ ⊆ P = {←,→, ↑, ↓,↗,↘,↖,↙}, let us denote by LΣ = Σ∗ \ WΣ856

the language describing walks with steps in Σ that leave the quarter plane. Notice that if857

Σ1 ⊆ Σ2 ⊆ P, as LΣ2 ∩ Σ∗1 = LΣ1 , if LΣ1 is inherently ambiguous, so is LΣ2 .858

Let us denote by σ the letter-morphism representing the axial symmetry of axis y = x859

(for instance, σ(→) = ↑, σ(↗) =↗, and σ(↖) =↘). It is easy to see that for Σ ⊆ P and860

w ∈ Σ∗, w ∈ LΣ if and only if σ(w) ∈ Lσ(Σ), so that LΣ is inherently ambiguous if and only861

if Lσ(Σ) is.862

We then enumerate all non-singular sets Σ ⊆ P , keep the minimal ones for inclusion, and863

choose arbitrarily one set per symmetry class with respect to σ. Then only nine sets remain864

to study:865

866

We can divide those sets in three cases. In this sketched proof, we only detail the first case.867

Case Σ = {←, ↓,↗}, Σ = {↖, ↓,↗} and Σ = {→, ↑,←, ↓}868

If Σ = , notice that LΣ ∩ ↗∗↓∗←∗= {↗n↓m←p : n < m ∨ n < p}.869

If Σ = , notice that LΣ ∩ ↗∗↓∗↖∗= {↗n↓m↖p : n < m ∨ n < p}.870

If Σ = , notice that LΣ ∩ (↑→)∗ ↓∗←∗= {(↑→)n ↓m←p : n < m ∨ n < p}.871

Let us call S = {(n,m, p) : n < m ∨ n < p}. As n < m ∨ n < p⇔ ¬(n ≥ m ∧ n ≥ p)⇔872

¬(n ≥ m ≥ p ∨ n ≥ p > m), we have:873

S(a, b, c) = 1
(1−a)(1−b)(1−c) −

1
(1−abc)(1−ab)(1−a) −

ac
(1−abc)(1−ac)(1−a)874

= a2b2c2−2 abc−cb+b+c
(1−ac)(1−ab)(1−abc)(1−c)(1−b)875

876

We can check that 1 − abc does not divide the numerator. Hence by Theorem 12, LΣ is877

inherently ambiguous for every set Σ of this section.878

The remaining two cases are similar: we can associate to Σ = {→, ↑,↙}, Σ = {→,↗,879

←,↙} and Σ = {→,↖,↙} the semilinear set S = {(n,m, p) : n < p ∨ m < p}, of880

generating series (1−ab)c
(1−c)(1−a)(1−b)(1−abc) ; and to Σ = {↓,→,↖}, Σ = {↘,→,↖} and Σ =881

{↘,↗,↖} the semilinear set S = {(n,m, p) : n < m ∨ m < p}, of generating series882

a2b2c−abc−ab−bc+b+c
(1−abc)(1−a)(1−ab)(1−b)(1−c) . J883
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