
January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Simplifications of Uniform Expressions Specified by Systems

Florent Koechlin

LIGM, Univ Gustave Eiffel, 5 boulevard Descartes,
Champs-sur-Marne, 777454, France

florent.koechlin@u-pem.fr

Cyril Nicaud

LIGM, Univ Gustave Eiffel, 5 boulevard Descartes,

Champs-sur-Marne, 777454, France

cyril.nicaud@u-pem.fr

Pablo Rotondo

LITIS, Univ Rouen Normandie, 685 avenue de l’université,

Saint-Étienne-du-Rouvray, 76800, France
pablo.rotondo@univ-rouen.fr

Received (Day Month Year)

Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

In this article, we study the impact of applying simple reduction rules to random syntac-

tic formulas encoded as trees. We assume that there is an operator that has an absorbing

pattern and prove that if we use this property to simplify a uniform random expression
with n nodes, then the expected size of the result is bounded by a constant. The same

holds for higher moments, establishing the lack of expressivity of uniform random ex-

pressions. Our framework is quite general as we consider expressions defined by systems
of combinatorial equations.

Keywords: Random expressions; simplification of expressions; analytic combinatorics.

1. Introduction

This article is the full version of the extended abstract [13]. It is the sequel of

the work started in [12], where we investigate the lack of expressivity of uniform

random expressions. In our settings, we use the natural encoding of expressions

as trees, which is a convenient way to manipulate them both in theory and in

practice. In particular, it allows us to treat many different kinds of expressions at a

general level (see Fig. 1 below): regular expressions, arithmetic expressions, boolean

formulas, LTL formulas, . . .

Under this encoding, some classical questions are solved using a simple traversal

of the tree, e.g. testing whether the language of a regular expression contains the

empty word, or formally differentiating a function. Sometimes however, the tree is

1

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

2 F. Koechlin, C. Nicaud, P. Rotondo

∧

∨ ¬

x1x2 ¬

x3

(x2 ∨ ¬x3) ∧ ¬x1

?

+

b •

a a

(b+ aa)?

⇒

� #

∨ ¬

a b c

�(a ∨ b)⇒ #¬c

cos

×

x +

1 x

cos(x(1 + x))

Fig. 1. Four expression trees and their associated formulas. From left to right: a logical formula, a

regular expression, an LTL formula and a function.

not the best choice, and it is first transformed into an equivalent adequate structure;

in the context of formal languages, a regular expression (encoded using a tree) is

typically transformed into an automaton, using one of the many known algorithms

such as Thompson’s construction or Glushkov automaton.

In our settings, we assume that one wants to estimate the efficiency of an algo-

rithm, or a tool, whose inputs are expressions. The classical theoretical framework

consists in analyzing the worst case complexity, but there are often some discrep-

ancy between this measure of efficiency and what is observed in practice. A practical

approach consists in using benchmarks to test the tool on real data. But in many

contexts, having access to good benchmarks is quite difficult. Considering the aver-

age complexity of the algorithm is a classical alternative: it is sometimes amenable

to a mathematical analysis, and it can be studied experimentally, provided there

is a random generator at hand. Going that way, we have to choose a probability

distribution on size-n inputs, which can be difficult: we want to study a “realistic”

probability distribution that is also mathematically tractable. When no specific ran-

dom model is available, it is classical to consider the uniform distribution, where

all size-n inputs are equally likely. In many frameworks, such as sorting algorithms,

studying the uniform distribution yields useful insights on the algorithms.

Following this idea, several works have been undertaken on uniform random ex-

pressions, in various contexts. Some are done at a general level: the expected height

of a uniform random expression [15] always grows in Θ(
√
n), if we identify com-

mon subexpressions then the expected size of the resulting acyclic graph [8] is in

Θ(n√
logn

), . . . There are also more specific results on the expected size of the automa-

ton built from a uniform random regular expression, using various algorithms [4,17].

In another setting, the expected cost of the computation of the derivative of a ran-

dom function was proved to be in Θ(n3/2), both in time and space [9]. There are

also many results on random boolean formulas, but the framework is a bit different,

see Gardy’s survey [10] for a more detailed account on this topic.

In [12], we questioned the model of uniform random expressions. Let us illustrate

the main result of [12] on the example of regular expressions over the alphabet {a, b}.
The set LR of regular expressions is inductively defined by

LR = a+ b+ ε+
?
|
LR

+
•
/\

LR LR
+

+
/\

LR LR
. (?)

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 3

+

+ ?

ab +

c d

(b+ (c+ d)) + a?

+

+ ?

a

b

+

c

d

((b+ c) + d) + a?

+

+ +

db c ?

a

(b+ c) + (d+ a?)

Fig. 2. Regular expressions denoting the same language by associativity of the union.

The formula above is an equation on trees, where the size of a tree is its number of

nodes. In particular a, b and ε represent trees of size 1, reduced to a leaf, labeled

accordingly. As one can see from the specification (?), leaves have labels in {a, b, ε},
unary nodes are labeled by ? and binary nodes by either the concatenation • or the

union +. Observe that the regular expression P corresponding to (a + b)? denotes

the regular language {a, b}? of all possible words. This language is absorbing for the

union operation on regular languages. So if we start with a regular expression R (a

tree), identify every occurrence of the pattern P (a subtree), then rewrite the tree

(bottom-up) by using inductively the simplifications
+
/\
X P
→ P and

+
/\
P X
→ P, this

results in a simplified tree σ(R) that denotes the same regular language. Of course,

other simplifications could be considered, but we just focus on this particular one.

The main theorem of [12] implies that if one takes uniformly at random a regular

expression of size n and applies this simplification algorithm, then the expected

size of the resulting equivalent expression tends to a constant! It means that the

uniform distribution on regular expressions produces a degenerated distribution on

regular languages. More generally, we proved that: For every class of expressions

that admits a specification similar to Eq. (?) and such that there is an absorbing

pattern for some of the operations, the expected size of the simplification of a uniform

random expression of size n tends to a constant as n tends to infinity.a This negative

result is quite general, as most examples of expressions have an absorbing pattern:

for instance x ∧ ¬x is always false, and therefore absorbing for ∧.

The statement of the main theorem of [12] is general, as it can be used to discard

the uniform distribution for expressions defined inductively as in Eq. (?). However

it is limited to that kind of simple specifications. And if we take a closer look at

regular expressions in LR, we observe that nothing prevents, for instance, useless

sequences of nested stars as in (((a+ bb)?)?)?. It is natural to wonder whether the

result of [12] still holds when we forbid two consecutive stars in the specification.

We could also use the associativity of the union to prevent different representations

of the same language, as depicted in Fig. 2, or many other properties, to try to

reduce the redundancy at the combinatorial level.

aThe starting point of our work is a very specific analysis of and/or formulas established in Nguyên

Thê PhD’s dissertation [16, Ch 4.4].

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

4 F. Koechlin, C. Nicaud, P. Rotondo

This is the question we investigate in this article: does the degeneracy phe-

nomenon of [12] still hold for more advanced combinatorial specifications? More

precisely, we now consider specifications made using a system of (inductive) com-

binatorial equations, instead of only one as in Eq. (?). For instance, we can forbid

consecutive stars using the combinatorial system:LR =
?
|
S

+ S,

S = a+ b+ ε+
+
/\

LR LR
+

•
/\

LR LR
.

(??)

The associativity of the union (Fig. 2) can be taken into account by preventing the

right child of any +-node from being also labeled by +. Clearly, systems cannot

be used for forbidding intricated patterns, but they still greatly enrich the families

of expressions we can deal with. Moreover that kind of systems, which has strong

similarities with context-free grammars, is amenable to analytic techniques as we

will see in the sequel; this was for instance used by Lee and Shallit to estimate the

number of regular languages in [14].

Our contributions can be described as follows. We consider expressions defined

by systems of combinatorial equations and establish a universal degeneracy result:

if there is an absorbing pattern, then the expected reduced size of a uniform ran-

dom expression of size n is upper bounded by a constant as n tends to infinity.

The result holds for natural yet technical conditions on the system. Hence, even if

we use the system to remove redundancy from the specification (e.g., by forbidding

consecutive stars), uniform random expressions still lack expressivity. Technically,

we once again rely on the framework of analytic combinatorics for our proofs. How-

ever, the generalization to systems induces two main difficulties: First, we are not

dealing with the well-known varieties of simple trees anymore [7, VII.3], so we have

to rely on much more advanced techniques of analytic combinatorics; this is detailed

in Section 5. Second, some work is required on the specification itself, to identify

suitable hypotheses for our theorem; for instance, it is easy from the specification

to prevent the absorbing pattern from appearing as a subtree at all, in which case

our statement does not hold anymore, since there is no simplification.

An extended abstract of this work appeared in the proceedings of DLT’20 [13].

This version includes all the technical proofs of our results, and naturally focuses

on a detailed study of systems of combinatorial equations using complex analysis.

2. Basic Definitions

For a given positive integer n, [n] = {1, . . . , n} denotes the set of the first n positive

integers. If E is a finite set, |E| denotes its cardinality.

A combinatorial class is a set C equipped with a size function | · | from C to N
(the size of C ∈ C is |C|) such that for any n ∈ N, the set Cn of size-n elements of

C is finite. Let Cn = |Cn|, the generating series C(z) of C is the formal power series

defined by C(z) =
∑
C∈C z

|C| =
∑
n≥0 Cnz

n. Generating series are tools of choice

to study combinatorial objects. When their radius of convergence is not zero, they

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 5

can be viewed as analytic function from C to C, and very useful theorems have been

developed in the field of analytic combinatorics [7] to, for instance, easily obtain

an asymptotic equivalent to Cn. We rely on that kind of techniques in Section 5 to

prove our main theorem.

If C(z) =
∑
n≥0 Cnz

n is a formal power series, let [zn]C(z) denote its n-th

coefficient Cn. Let ξ be a parameter on the combinatorial class C, that is, a mapping

from C to N. Typically, ξ stands for some statistic on the objects of C: the number

of cycles in a permutation, the number of leaves in a tree, . . . We define the bivariate

generating series C(z, u) associated with C and ξ by: C(z, u) =
∑
C∈C z

|C|uξ(C) =∑
k,n≥0 Cn,kz

nuk, where Cn,k is the number of size-n elements C of C such that

ξ(C) = k. In particular, C(z) = C(z, 1). Bivariate generating series are useful to

obtain information on ξ, such as its expectation or higher moments.b Indeed, if

En[ξ] denotes the expectation of ξ for the uniform distribution on Cn, i.e. where all

the elements of size n are equally likely, a direct computation yields:

En[ξ] =
[zn]∂uC(z, u)

∣∣
u=1

[zn]C(z)
, (1)

where ∂uC(z, u)
∣∣
u=1

consists in first differentiating C(z, u) with respect to u, and

then setting u = 1.

In the sequel, the combinatorial objects we study are trees, and we will have

methods to compute the generating series directly from their specifications. Then,

powerful theorems from analytic combinatorics will be used to estimate the ex-

pectation, using Eq. (1). So we delay the automatic construction and the analytic

treatment to their respective sections.

3. Combinatorial Systems of Trees

3.1. Definition of combinatorial expressions and of systems

In the sequel the only combinatorial objects we consider are plane trees. These are

trees embedded in the plane, which means that the order of the children matters:

the two trees
•
/\
◦ •

and
•
/\
• ◦

are different. Every node is labeled by an element in a set

of symbols and the size of a tree is its number of nodes.

More formally, let S be a finite set, whose elements are operator symbols, and

let a be a mapping from S to N. The value a(s) is called the arity of the operator s

(we do not use the term degree, because if the tree is viewed as a graph, the degree

of a node is its arity plus one, except for the root). An expression over S is a plane

tree where each node of arity i is labeled by an element s ∈ S such that a(s) = i,

in particular, leaves symbols have arity 0.

Example 1. In Fig. 1, the first tree is an expression over S = {∧,∨,¬, x1, x2, x3}
with a(∧) = a(∨) = 2, a(¬) = 1 and a(x1) = a(x2) = a(x3) = 0.

bRecall that the j-th moment of a random variable ξ is by definition E[ξj] (when it exists). In

particular, the first moment of ξ is its expectation.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

6 F. Koechlin, C. Nicaud, P. Rotondo

An incomplete expression over S is an expression where (possibly) some leaves

are labeled with a new symbol 2 of arity 0. Informally, such a tree represents part of

an expression, where the 2-nodes need to be completed by being substituted by an

expression. An incomplete expression with no 2-leaf is called a complete expression,

or just an expression. If T is an incomplete expression over S, its arity a(T) is its

number of 2-leaves. It is consistent with the definition of the arity of a symbol,

by viewing a symbol s of arity a(s) as an incomplete expression made of a root

labeled by s with a(s) 2-children: ∧ is viewed as
∧
/\

2 2. Let T2(S) and T (S) be the

set of incomplete and complete expressions over S. As incomplete expressions can

be complete, we have T (S) ⊆ T2(S).

If T is an incomplete expression over S of arity t, and T1, . . . , Tt are ex-

pressions over S, we denote by T [T1, . . . , Tt] the expression obtained by sub-

stituting the i-th 2-leaf in depth-first order by Ti, for i ∈ [t]. This notation

is generalized to sets of expressions: if T1, . . . , Tt are sets of expressions then

T [T1, . . . , Tt] = {T [T1, . . . , Tt] : T1 ∈ T1, . . . , Tt ∈ Tt}.
A rule of dimension m ≥ 1 over S is an incomplete expression T ∈ T2(S) where

each 2-node is labelled by an integer of [m]. Alternatively, a rule can be seen as

a tuple M = (T, i1, . . . , it), where T is an incomplete expression of arity t and

i1, . . . , it are the values labelling its 2-leaves in depth-first order. The arity a(M)

of a rule M is the arity of its incomplete expression, and ind(M) = (i1, . . . , it) is

the tuple of integer values obtained by a depth-first traversal ofM. A combinatorial

system of trees E = {E1, . . . , Em} of dimension m over S is a system of m class

equations describing complete trees in T (S): each Ei is a non-empty finite set of

rules over S, and the system in variables L1, . . . , Lm is:



L1 =
⋃

(T,i1,...,it)∈E1

T [Li1 , . . . ,Lit]

...

Lm =
⋃

(T,i1,...,it)∈Em

T [Li1 , . . . ,Lit].

(2)

Example 2. To specify the system given in Eq. (??) using our formalism, we

have m = 2. Its tuples representation is: E1 =
{(

?
|
2
, 2
)
, (2, 2)

}
, and E2 ={(•

/\
2 2

, 1, 1
)
,
(

+
/\

2 2
, 1, 1

)
, (a), (b), (ε)

}
, and its equivalent tree representation is E1 ={

?
|
2
, 2

}
, and E2 =

{ •
/\

1 1
,

+
/\

1 1
, a, b, ε

}
, which corresponds to Eq. (??) with

LR = L1 and S = L2. In practice, we prefer descriptions as in Eq. (??), which

are easier to read, but the tuple formalism is more convenient for the proofs.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 7

3.2. Generating series

If the system is not ambiguous, that is, if L1, . . . ,Lm is thec solution of the system

and every tree in every Li can be uniquely built from the specification, then the

system can be directly translated into a system of equations on the generating series.

This is a direct application of the symbolic method in analytic combinatorics [7, Part

A] and we get the system

L1(z) =
∑

(T,i1,...,ia(T))∈E1

z|T |Li1(z) · · ·Lia(T)
(z)

...

Lm(z) =
∑

(T,i1,...,ia(T))∈Em

z|T |Li1(z) · · ·Lia(T)
(z).

(3)

where Li(z) is the generating series of Li. If the system is ambiguous, the Li(z)’s

still have a meaning: each expression of Li accounts for the number of ways it can

be derived from the system. When the system is unambiguous, there is only one

way to derive each expression, and Li(z) is the generating series of Li.

3.3. Designing practical combinatorial systems of trees

Systems of trees such as Eq. (2) are not always well-founded. Sometimes they are,

but still contain unnecessary equations. It is not the topic of this article to fully

characterize when a system is correct, but we nonetheless need sufficient conditions

to ensure that our results hold: in this section, we just present examples to un-

derline some bad properties that might happen. For a more detailed account on

combinatorial systems, the reader is referred to [1, 9, 20].

Ambiguity. As mentioned above, the system can be ambiguous, in which case

the combinatorial system cannot directly be translated into a system of generating

series. This is the case for the system
{
L1 = a +

?
|
L1

+
?
|
L2

;L2 =
?
|
L1

+ a + b + ε
}

as

the expression
?
|
a

can be produced in two ways for the component L1.

Empty components. Some specifications produce empty Li’s. For instance, con-

sider the system
{
L1 =

•
/\
L1 L2

; L2 = a+ b+ ε+L1

}
: its only solution is L1 = ∅ and

L2 = {a, b, ε}.

Cyclic unit-dependency. The unit-dependency graph G2(E) of a system E is the

directed graph of vertex set [m], with an edge i → j whenever (2, j) ∈ Ei. Such

a rule is called a unit rule. It means that Li directly depends on Lj . For instance

LR directly depends on S in Eq. (??). We can work with systems having unit

cIn all generalities, there can be several solutions to a system, but the conditions we will add

prevent this from happening.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

8 F. Koechlin, C. Nicaud, P. Rotondo

dependencies, provided the unit-dependency graph is acyclic. If it is not, then the

equations forming a cycle are useless or badly defined for our purposes. Consider

for instance the system and its unit-dependency graph:{
L1 = L2 +

?
|
L1

L2 = a+ b+ ε+ L1

1 2

The unit-dependency graph is not acyclic, and there are infinitely many ways to

derive a from L2: L2 → a, L2 → L1 → L2 → a. . .

Not strongly connected. The dependency graph G(E) of the system E is the

directed graph of vertex set [m], with an edge i → j whenever there is a rule

M ∈ Ei such that j ∈ ind(M): Li depends on Lj in the specification. Some parts

of the system may be unreachable from other parts, which may bring up difficulties.

A sufficient condition to prevent this from happening is to ask for the dependency

graph to be strongly connected; it is not necessary, but this restriction will also

be useful in the proof of our main theorem (non-strongly connected systems are

discussed in the conclusion). In Fig. 3 is depicted a system and its associated graph.



L1 =
?
|
L2

+
?
|
L3

L2 = a+ b+ ε+
•
/\
L4 L4

L3 =
+
/\
L4 L1

+
+
/\
L4 L2

L4 = L1 + L2 + L3

1 2

3 4

Fig. 3. A system and its associated dependency graph, which is strongly connected.

4. Settings, working hypothesis and simplifications

4.1. Framework

In this section, we describe our framework: we specify the kind of systems we are

going to work with, and the settings for describing syntactic simplifications.

Let E be a combinatorial system of trees over S of dimension m of solution

(L1, . . . ,Lm). A set of expressions L over S is defined by E if there exists a non-

empty subset I of [m] such that L = ∪i∈ILi.
From now on we assume that we are using a system E of dimension m over S

and that S contains an operator ~ of arity at least 2. We furthermore assume that

there is a complete expression P, such that when interpreted, every expression of

root ~ having P as a child is equivalent to P: the interpretation of P is absorbing

for the operator associated with ~. The expression P is the absorbing pattern and

~ is the absorbing operator.

Example 3. Our main example is L defined by the system of Eq. (??) with L = LR,

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 9

the regular expressions with no two consecutive stars. As regular expressions, they

are interpreted as regular languages. Since the language (a+b)? is absorbing for the

union, we set the associated expression as the absorbing pattern P and the operator

symbol + as the absorbing operator.

The simplification of a complete expression T is the complete expression σ(T)

obtained by applying bottom-up the rewritting rule, where a is the arity of ~:
~

C1
. . . Ca

 P , whenever Ci = P for some i ∈ {1, . . . , a}.

More formally, the simplification σ(T,P,~) of T , or just σ(T) when the context

is clear, is inductively defined by: σ(T) = T if T has size 1 and

σ((⊕, C1, . . . , Cd)) =

{
P if ⊕ = ~ and ∃i, σ(Ci) = P,

(⊕, σ(C1), . . . , σ(Cd)) otherwise.

A complete expression T is fully reducible when σ(T) = P.

We also need some conditions on the system E . Some of them come from the

discussion of Section 3.3, others are needed for the techniques from analytic com-

binatorics used in our proofs. A system E satisfies the hypothesis (H) when:

(H1) The graph G(E) is strongly connected and G2(E) is acyclic.

(H2) The system is aperiodic: there exists N such that for all n ≥ N , there is at

least one expression of size n in every coordinate of the solution (L1, . . . ,Lm)

of the system.

(H3) For some j, there is a rule T ∈ Ej of root ~, having at least two children

T ′ and T ′′ such that: there is a way to produce a fully reducible expression

from T ′ and a(T ′′) ≥ 1.

(H4) The system is not linear : there is a rule of arity at least 2.

(H5) The system is unambiguous: each complete expression can be built in at most

one way.

Conditions (H1) and (H5) were already discussed in Section 3.3. Condition (H4)

prevents the system from generating only lists, i.e. trees whose internal nodes have

arity 1, or more generally families that grow linearly as in L =
+
/\
L a

+ b, which are

degenerated. Without Condition (H3) the system could be designed in a way that

prevents simplifications, in which case our result does not hold, of course. Finally,

Conditions (H1) and (H2) are necessary to keep the analysis manageable.

4.2. Proper systems and system iteration

A combinatorial system of trees E is said to be proper if it contains no unit rules and

when the 2-leaves of all its rules have depth one (they are children of a root). The

goal of this section is to prepare E for analytic analysis, by making it proper. Indeed

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

10 F. Koechlin, C. Nicaud, P. Rotondo

the lack of unit rules is crucial for applying Drmota’s theorem, and the depth one

2-leaves make it possible to specify more easily the reduction process by focusing

only on the roots of the tree rules.

One key tool to transform a system into a proper one is the notion of system

iteration, which consists in substituting in each rule simultaneously every 2-leaf

labelled by an integer i by all the rules of Ei. For instance, if we iterate once our

recurring system {L1 =
?
|
L2

+ L2; L2 = a+ b+ ε+
+
/\
L1 L1

+
•
/\
L1 L1

}, we getd

L1 =
?
|
a

+
?
|
b

+
?
|
ε

+

?
|
+
/\
L1 L1

+

?
|
•
/\
L1 L1

+ a+ b+ ε+
+
/\
L1 L1

+
•
/\
L1 L1

L2 = a+ b+ ε+
+
/\
L2 L2

+

+
/ \
? L2

|
L2

+

+
/ \
L2 ?
|
L2

+

+
/ \
? ?
| |
L2 L2

+
•
/\
L2 L2

+

•
/ \
? L2

|
L2

+

•
/ \
L2 ?
|
L2

+

•
/ \
? ?
| |
L2 L2

.

Formally, if we iterate E = {E1, . . . , Em} once, then for all i ∈ [m] we have

Li =
⋃

(T,i1,...,it)∈E1

T

 ⋃
(T1,j1)∈Ei1

T1[Lj1,1 , . . . ,Lj1,t1], . . . ,
⋃

(Tt,jt)∈Eit

Tt[Ljt,1 , . . . ,Ljt,tt]


where j1 = (j1,1, . . . , j1,t1), . . . , jt = (jt,1, . . . , jt,tt).

Let E2 denote the system obtained after iterating E once; it is called the system of

order 2 (from E). More generally Et is the system of order t obtained by iterating

t− 1 times the system E . From the definition we directly get:

Lemma 4. If L is defined by a system E, it is also defined by all its iterates Et.
Moreover, if E satisfies (H), every Et also satisfies (H), except that G(Et) may not

be strongly connected.

In order to transform E into a proper system, we proceed in two steps: we first

prove that the unit rules can be removed in Lemma 5, then explain how to bring

up the 2-leaves in Lemma 6.

Lemma 5 (elimination of unit rules) If the system E verifies (H), then there

is an iteration E ′of E, defining the same expression trees, that still verifies (H) and

such that there is no unit rule in any E′ ∈ E ′.

Proof. By Lemma 4, all (H)-conditions are still satisfied after iteration except,

possibly, the strong connectedness. We want to prove that there is an iteration of E
that also preserves strong connectedness. Observe that the edges of the dependency

graph of the system Ek correspond to paths of length k in the original dependency

dObserve that the iterated system is not strongly connected anymore. It also yields two ways of
defining the set of expressions using only one equation: it is very specific to this example, no such

property holds in general.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 11

graph G(E). Therefore, as G2(E) is acyclic by (H1), if k is larger than the number

of set equations m, then the iterate Ek does not contain unit rules anymore.

Let N > m be an integer that is coprime with the lengths of the elementary

cycles of G(E). As explained above, EN does not contain any unit rule since N > m.

We are going to prove that the graph G(EN) associated with the system iterated

N times is strongly connected. Consider two indices i, j ∈ [m]. By the strong-

connectedness of G(E), both of them belong to an elementary cycle. If i and j

belong to the same elementary cycle C of length `, they will still be in the same

cycle in GN iterations because N is coprime with `. Suppose now that i and j belong

to different elementary cycles Ci and Cj . Using the previous statement, we just have

to prove that there is a path from i to Cj in G(EN). The original graph G(E) is

strongly connected, thus there is a simple path connecting i to j with less than m

edges. Let t be the length of this simple path. Since N > m > t, once we arrive at

j we can continue for N − t steps in the elementary cycle Cj . This means that i has

an edge to some node of Cj in the graph G(EN), concluding the proof.

The following lemma explains how a system E can be transformed into a new

one E ′ that has all its 2-leaves at depth exactly 1. The idea is to decrease the height

of the 2-leaves by splitting the rules into smaller ones, like in this example:

L1 =
?
|
L3

+

•
/ \
? L2

|
L1

→

L1 =
?
|
L3

+
•
/ \
K L2

K =
?
|
L1

.

For convenience, we choose for this transformation to describe the system by its

tree representation: every tuple (T, i1, . . . , it) ∈ Ej is represented as a single tree T ,

where the k-th 2-leaf has been labelled by the number ik, where k corresponds to

the order of the leaf in depth-first order. This labelled leaf is denoted by ik in the

tree. It allows us to manipulate the rules derived from subtrees of the elements of

Ej more easily, without having to explicitly give the indices. With this notation, we

recall that ind(T) = (i1, . . . , it) denotes the tuple of label-leaves ik ∈ [m] obtained

when reading T in depth-first order.

Lemma 6 (bringing up the squares) Every system that satisfies (H) is equiv-

alent to a system that satisfies (H) and where every 2-leaf is at depth 1.

Proof. By Lemma 5, we assume that the system contains no unit rule. We define

a new system E ′ from our original one E as follows: let T ∈ Ej(E), for some j ∈ [m],

be a rule with a 2-leaf at depth more than 1. Let T1, . . . , Ts be the children of

the root of T that have arity at least 1 and that are not 2-leaves. Let T̃ be the

tree obtained from T by replacing Ti by the new 2-leaf m+ i . The new system

is obtained from E by replacing T by T̃ in Ej , and adding Em+i(E ′) = {Ti}. Note

that E ′ has m+ s components now, and that we do not introduce unit rules.

This process is repeated as long as there are rules T having children of arity at

least 1 that are not 2-leaves: the process halts since the sum of the depths (summed

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

12 F. Koechlin, C. Nicaud, P. Rotondo

over all rules) of the 2-leaves that are at depth strictly greater than 1 decreases at

each iteration. After each repetition, the number of equations increases. However,

the first m equations still describe the languages L1, . . . ,Lm, by direct induction.

Observe also that (H) is clearly satisfied after each iteration. This concludes the

proof.

As the construction of Lemma 6 does not introduce any unit-rule, the following

proposition is a direct consequence of applying Lemma 5 then Lemma 6.

Proposition 7. If L is defined by a system E that satisfies (H), then there exists

a proper system E ′ that satisfies (H) such that L is defined by E ′.

5. Main result

Our main result establishes the degeneracy of uniform random expressions when

there is an absorbing pattern, in our framework:

Theorem 8. Let E be a combinatorial system of trees over S, of absorbing operator

~ and of absorbing pattern P, that satisfies (H). If L is defined by E then there

exists a constant C > 0 such that, for the uniform distribution on size-n expressions

in L, the expected size of the simplification of a random expression is at most C.

The remainder of this section is devoted to the proof of Theorem 8. Thanks to

Proposition 7, we can assume that E is a proper system. By Condition (H5), it

is unambiguous so we can directly obtain a system of equations for the associated

generating series, as explained in Section 3.2. From now on, for readability and

succinctness, we use the vector notation (with bold characters): L(z) denotes the

vector (L1(z), . . . , Lm(z)), and we rewrite the system of Eq. (3) in the more compact

form

L(z) = zφ(z;L(z)), (4)

where φ = (φ1, . . . , φm) and φi(z;y) =
∑

(T,i1,...,ia(T))∈Ei

z|T |−1
∏a(T)
j=1 yij . Note that

the factor z in Eq. (4) corresponds to counting the root of each rule (there is always

a root since unit rules have been eliminated).

For the proof we rely on Eq. (1) to estimate the asymptotic expected size of

the trees after reduction, by introducing the bivariate generating series L(z, u) =

(L1(z, u), . . . , Lm(z, u)) associated with the size of the simplified expression. The

study of the denominator is simpler and can be found in Section 5.1. Then, the study

of the numerator, which is the central part of the proof, is done in Section 5.2.

5.1. Analysis of the denominator

Proposition 9 below describes the number of trees of each type Lj . As announced,

this corresponds to the denominator of Eq. (1). Here Jacy[φ](z;y) is the Jacobian

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 13

matrix of the system, which is the m × m matrix such that Jacy[φ](z;y)i,j =

∂yjφi(z;y). As usual, it plays a central role in the analysis of systems.

We will use several times a classical result from Analytic Combinatorics to obtain

the asymptotics of the coefficients of generating series: the Transfer Theorem [7,

Ch VI.3]. This theorem states that, if L(z) of dominant singularity ρ verifies some

analytic conditions, and L(z) ∼z→ρ λ(1 − z/ρ)−α with α /∈ {0,−1,−2, . . .}, then

[zn]L(z) ∼ λρ−nnα−1/Γ(α), where Γ is Euler’s gamma-function, the generalization

of the factorial. In our case, we will mainly apply this Theorem with α = −1/2.

Proposition 9. As E satisfies (H), the solution L(z) of the system of equations (4)

is such that all its coordinates Lj(z) share the same dominant singularity ρ ∈ (0, 1],

and we have τj := Lj(ρ) < ∞. The singularity ρ and τ = (τj)j verify the charac-

teristic system {τ = ρφ(ρ; τ),det(Idm×m − ρ Jacy[φ](ρ; τ)) = 0}. Moreover, for

every j, there exist two functions gj(z) and hj(z), analytic at z = ρ, such that

locally around z = ρ, with z 6∈ [ρ,+∞),

Lj(z) = gj(z)− hj(z)
√

1− z/ρ , with hj(ρ) 6= 0 .

Lastly, we have the asymptotics [zn]Lj(z) ∼ Cjρ−n/n3/2 for some positive Cj.

Proof. We just need to check that the hypotheses of Drmota’s multidimensional

theorem [6, Theorem 2.33] are verified.

Following the notation of Drmota [6], we rewrite the system [L1, . . . , Lm] =

f(z;L1, . . . , Lm), where f(z; y1, . . . , ym) := zφ(z; y1, . . . , ym).

f(z,y) is analytic at (z,y) = (0,0), since each component is a polynomial,

and f(0,0) ≡ 0. The dependency graph of f in y is strongly connected by (H1).

The Taylor coefficients of f are non negative, f(0,y) ≡ 0 as we have z as factor,

f(z,0) 6≡ 0 since there are leaves in at least one equation, and the system is not

linear due to (H4). Finally the Taylor coefficients Li,n = [zn]Li(z) of the solutions

of the system are non-zero for n big enough by (H2), so the Li(z)’s are aperiodic.

Then by Drmota’s theorem (Theorem 2.33 in [6], refined in [3]), all the Lj ’s have

a same unique singularity ρ at their common convergence radius (by Pringsheim’s

Theorem [7, Theorem IV.6]), with 0 < ρ ≤ 1, and Lj(ρ) = τj < ∞. As f is a

polynomial, (ρ, τ) is a characteristic point lying inside the radius of convergence of

f , so that τ = ρφ(ρ; τ) and 0 = det(Idm×m − ρ Jacy[φ](ρ; τ)).

Finally for every j, there exist two functions gj(z) and hj(z) that are analytic

around z = ρ and that satisfy Lj(z) = gj(z)−hj(z)
√

1− z/ρ locally around z = ρ,

with z 6∈ [ρ,+∞) and hj(ρ) 6= 0. The Transfer Theorem then yields the asymptotics,

concluding the proof.

5.2. Analysis of the numerator

In this section, instead of an asymptotic equivalent we just establish an upper

bound for the numerator: for each j ∈ [m], [zn]∂uLj(z, u)|u=1 ≤ αρ−nn−3/2, for

some positive α. This is sufficient to prove our main theorem. We proceed in two

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

14 F. Koechlin, C. Nicaud, P. Rotondo

steps, corresponding to Propositions 10 and 11 below. The formal proofs can be

found in Section 6; we just give an overview of the main ideas for now.

First we split the system φ into φ = φ +A +B where: φ corresponds to the

rules of φ whose root is not ~ and B gathers the rules of root ~ with a constant

fully reducible child; if necessary, we iterate the system to ensure that B is not

constant as a function of y. This leads to a recursive equation defining L(z, u) in

terms of two key classes: the fully reducible expressions and its complement. For

example, note that the rules from B always produce fully reducible expressions.

Differentiating this equation yields the Jacobian matrices for φ and A. We then

bound the generating series of the key classes with the whole series L(z), whose

behaviour is well-known thanks to Proposition 9. We obtain the following bound:

Proposition 10. For some C > 0, the following coordinate-wise bound holds:

[zn]
{
∂uL(z, u)

∣∣
u=1

}
≤ C · [zn]

{(
Idm×m − z · Jacy[φ+A](z;L(z))

)−1 ·L(z)
}
.

Then we switch to the analysis of the right hand term in the inequality of

Proposition 10. It looks complicated, but its dominant singularities are easier to

study than those of ∂uL|u=1. We do so by examining the spectrum of the matrix

J(z) = Jacy[φ+A](z;L(z)). Even if the matrix (Idm×m − z · Jacy[φ](z;L(z))) is

not invertible at z = ρ (see Lemma 19), the fact that φ +A = φ −B, where the

Jacobian of B is not 0, will imply that
(
Idm×m−z ·J(z)

)
is invertible at z = ρ (see

Lemma 20). Thus the behaviour at the dominant singularity comes purely from

that of L(z), and not from the inverse of the matrix, as stated in the following

proposition.

Proposition 11. The dominant singularity of F : z 7→ (Id− z · J(z))
−1 · L(z) is

ρ = ρL. Furthermore, for every index j, around z = ρ there exist analytic functions

g̃j , h̃j such that Fj(z) = g̃j(z)− h̃j(z)
√

1− z/ρ with h̃j(ρ) 6= 0. Moreover, we have

the asymptotics [zn]Fj(z) ∼ Djρ
−nn−3/2, for some positive Dj.

5.3. Proof of the main theorem

We use the results we just obtained on Eq. (1). By Propositions 10 and 11, we have

[zn]∂uLi(z, u)|u=1 = O

(
ρ−n

n3/2

)
,

for every i ∈ [m]. By Proposition 9, we have the same asymptotics (with different

multiplicative constants) for [zn]Li(z) ∼ Ciρ
−n/n3/2. This concludes the proof of

Theorem 8.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 15

6. Proof of the two technical propositions

6.1. Proof of Proposition 10

6.1.1. Symbolic part: bivariate generating series

To better understand the process of reduction, we need to identify several relevant

subclasses of trees. First, for every j ∈ [m], we separate each Lj into a disjoint

union of two classes Rj := {T ∈ Lj : σ(T) = P} and Gj := Lj \ Rj , where Rj
corresponds to the trees T ∈ Lj that reduce completely to P. An expression of Rj
is fully reducible.

To prove our theorem, we use bivariate generating series, for all i ∈ [m]:

Li(z, u) =
∑
L∈L

z|L|u|σ(L)| ; Ri(z, u) =
∑
R∈Ri

z|R|u|σ(R)| ; Gi(z, u) =
∑
G∈Gi

z|G|u|σ(G)| .

Let L(z, u), R(z, u), and G(z, u) be the corresponding vectors of generating series.

To construct these classes and relate to the generating series, for every j ∈ [m],

we classify the tree rules from Ej into the partition Ej = Ej] Aj] Bj , where:

• Ej contains all the trees of Ej whose root is not ~;

• Bj is the set of all T ∈ Ej having ~ as root and such that one of the children

of the root is a fully reducible complete tree T ′, i.e. σ(T ′) = P;

• Aj is the set of all other elements of T ∈ Ej , their root is necessarily ~.

We introduce multivariate generating series for the decomposition of the rules,

counting in u the size of the reduced incomplete tree (not counting the root). These

generating series will actually be polynomials in z, u, y1, . . . , ym as we have finitely

many rules. For the class Ai we define:

Ai(z, u; y1, . . . , ym) =
∑
T∈Ai

z|T |−1u|σ(T)|−1
∏

j∈ind(T)

yj ,

where we have extended the reduction σ to non-complete tree rules by setting σ to be

the identity over the 2-nodes, so that, in particular, for every tree T ∈ Bj , σ(T) = P.

Similarly we define the polynomials Bi(z, u; y1, . . . , ym) (resp. φ
i
(z, u; y1, . . . , ym))

in the same manner by taking the sum over all T ∈ Ai (resp. all T ∈ Ei).
Let also A(z, u; y1, . . . , ym), B and φ denote the corresponding vectors of gen-

erating series. Notice that plugging u = 1, we obtain the relation φ = φ+A+B.

To get a formula for L(z, u) we apply the technique of marking, see our previous

work [12] for an explanation of this technique for tree simplifications.

Lemma 12. The following equation is satisfied by L(z, u):

L(z, u) = up (R(z)− P (z)) + zu
(
φ(z, u;L(z, u)) +A(z, u; G(z, u))

)
,

where P (z) = (a1z
p, . . . , amz

p) where ai is either 0 or 1.

Proof. We mark with u the nodes that are kept for the reduced tree σ(T). To

know if the simplification applies, we exploit our classification of the rules from Ej .

Recall that the system is proper, so that every 2-leaf is at depth 1.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

16 F. Koechlin, C. Nicaud, P. Rotondo

• For the trees in T ∈ Ej there is no possible reduction at the root, no matter

the children. Hence their roots are still here after reduction and counts for

zu, leading to the term zuφ
j
(z, u;L(z, u)).

• Since the 2-leaves are at depth 1, the only way to avoid a reduction at the

root for the trees in Aj is by replacing every 2-leaf by a tree in G, thus we

add a term zuA(z, u;G(z, u)) .

• For the trees in Bj , there is no way to avoid reduction at the root.

The trees that are fully reducible come from Bj , and also from Aj (whenever one

child is fully reducible). Together they contribute to a term Rj(z, u) = upRj(z)

in the equation. Note that to avoid counting P twice, we have to be careful and

subtract a term upPj(z), where Pj(z) = zp if P is constructible from Ej or Aj , and

Pj(z) = 0 otherwise. This yields the announced equation for L(z, u).

6.1.2. Coefficient-wise inequalities for the formal power series

In the proof we produce inequalities for ∂uL(z, u)
∣∣
u=1

seen as a formal power series.

We introduce the notation � to deal more conveniently with inequalities that work

entry-wise for matrices, and coefficient-wise for formal power series.

Definition 13. Given two formal power series F (z) =
∑
n∈N fnz

n and G(z) =∑
n∈N gnz

n with real coefficients, we write F (z) � G(z) if and only if for every

n ≥ 0, we have fn ≤ gn.

We extend the notation to matrices of power series. Consider M(z) =

(Mi,j(z))i∈[m],j∈[n], N(z) = (Ni,j(z))i∈[m],j∈[n] two m × n matrices of power se-

ries, we note M �N if for every pair i, j ≥ 0, Mi,j(z) � Ni,j(z).

We summarize the properties of the relation � in the following lemma.

Lemma 14 (Toolbox) The following properties hold:

• Let 0 � F (z), G(z), H(z), J(z) four series with non-negative coefficients,

such that F (z) � G(z) and H(z) � J(z). Then F (z) +H(z) � G(z) +J(z)

and F (z)H(z) � G(z)J(z).

• let p(z, y1, . . . , yn) a polynomial in z, y1, . . . , yn with non-negative coeffi-

cients, and 0 � Fi(z) � Gi(z) for i ∈ [n]. Then p(z, F1(z), . . . , Fn(z)) �
p(z,G1(z), . . . , Gn(z)).

• let 0m×n � M(z) � N(z), and 0n×1 � F (z) � G(z), then 0m×1 �
M(z)F (z) �N(z)G(z).

Lemma 15. There is a constant C > 0 such that

∂uL
∣∣
u=1
� C ·L(z) + z Jacy[φ+A](z;L(z)) · ∂uL

∣∣
u=1

.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 17

Proof. Differentiating the equation on L(z, u) given by Lemma 12, we have:

∂uL
∣∣
u=1

= p (R(z)− P (z)) + z
(
φ(z, 1;L(z)) +A(z, 1; G(z))

)
+ z

(
∂uφ(z, 1;L(z)) + ∂uA(z, 1; G(z))

)
+ z

(
Jacy[φ](z, 1;L(z)) · ∂uL

∣∣
u=1

+ Jacy[A](z, 1;G(z)) · ∂uG
∣∣
u=1

)
.

Observe that:

• the combinatorial definition implies that R(z)− P (z) � L(z).

• As the components of A are polynomials with non-negative coefficients and

G(z) � L(z), we have A(z, 1;G(z)) � A(z, 1;L(z)) and hence:

z
(
φ(z, 1;L(z)) +A(z, 1; G(z))

)
�z
(
φ(z, 1;L(z)) +A(z, 1; L(z)) +B(z, 1; L(z))

)
= L(z) .

Similarly, we have ∂uA(z, 1;G(z)) � ∂uA(z, 1;L(z)) .

• For the same reason, Jacy[A](z, 1;G(z)) � Jacy[A](z, 1;L(z))

• Finally, ∂uG|u=1 � ∂uL|u=1.

Using these three inequalities in the equation for ∂uL|u=1 above, we obtain

∂uL
∣∣
u=1
� (p+ 1)L(z) + z∂u[φ+A](z, 1;L(z))

+ z Jacy[φ+A](z, 1;L(z)) · ∂uL
∣∣
u=1

.

As φ +A consists of polynomial entries in u (also z and y), we introduce d their

maximum degree in u. Notice that d + 1 corresponds to the maximum number of

nodes coming from a rule reduced by σ. We observe that z∂u[φ+A](z, 1;L(z)) �
d · z[φ +A](z, 1;L(z)), and in turn the right-hand side is less than d · L(z), as a

consequence of Eq. (4). Thus

∂uL
∣∣
u=1
� (p+ 1 + d) ·L(z) + z Jacy[φ+A](z, 1;L(z)) · ∂uL

∣∣
u=1

,

proving the result for C = p+ 1 + d.

Next, we would like to get rid of the factor ∂uL|u=1 that appears on the right-

hand side. We cannot really do this by subtracting, as some coefficients would then

become negative, and the toolbox we use is for series with non-negative coefficients.

Instead, we rely on the following lemma:

Lemma 16. Let 0m×1 � v(z), b(z), 0m×m �M(z), and v(z) � b(z)+zM(z)v(z)

then we have the following inequality

v(z) � (Id− zM(z))
−1 · b(z) ,

where (Id− zM(z))
−1

=
∑
k≥0 z

k(M(z))k.

Remark 17. Note that the series
∑
zk(M(z))k converges in the ring of formal

power series, because the coefficients of degree n remain fixed after we have summed

the first n+ 1 terms of the series.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

18 F. Koechlin, C. Nicaud, P. Rotondo

Proof. Applying the original inequality k times on the right-hand side we obtain

v(z) � b(z) + zM(z)b(z) + . . .+ (zM(z))kb(z) + (zM(z))k+1v(z) ,

As [zk]
(
zM(z))k+1v(z)

)
= 0m×1, this means that

[zk] (v(z)) ≤ [zk]
(
b(z) + zM(z)b(z) + . . .+ (zM(z))kb(z)

)
= [zk] (Id− zM(z))

−1
b(z),

for every k, so by definition v(z) � (Id− zM(z))
−1 · b(z).

Lemma 15, together with Lemma 16, prove Proposition 10, namely the bound

[zn]
{
∂uL(z, u)

∣∣
u=1

}
≤ C · [zn]

{(
Idm×m − z · Jacy[φ+A](z;L(z))

)−1 ·L(z)
}
.

6.2. Proof of Proposition 11

At this point we will leave the world of formal power series and show that we can

interpret the right-hand side of the inequality in Proposition 10 in the world of

analytic functions, showing that its coefficients have the same order of asymptotic

growth as those of L(z). This will imply our main Theorem.

Proposition 9 characterizes the behaviour of L(z). We now describe the prop-

erties of the quasi-inverse J(z) =
(
Id− z · Jacy[φ+A](z;L(z))

)−1
. We show that

the dominant singularities of J(z) come from the singularities of L(z) and not from

the inversion of the matrix. For this it is necessary to have Jacy[B] 6= 0m×m, which

we may assume thanks to the following lemma.

Lemma 18. We may suppose that Jacy[B] 6= 0m×m, i.e. at least one coefficient

of the Jacobian matrix is not 0.

Proof. By hypothesis (H3), there is a rule T in some Ej whose root is ~, and such

that T has two children T ′, T ′′ verifying that T ′ can generate a fully reducible tree

TR, and a(T ′′) ≥ 1. By Lemma 5, iterating the system sufficiently many times leads

to an equivalent system Ẽ , with a rule of the form T̃ ∈ Ẽj , where T̃ has among its

children two trees T1, T2, with T1 = TR fully reducible, and a(T2) ≥ 1 (by strong–

connectedness). So this rule is in B̃j and T2 contains at least one 2-leaf i , so that

∂yiB̃j is not 0.

Note that after iteration the 2-leaves are not at depth 1 anymore, but this is

easily fixed as in the proof of Lemma 6, whose construction preserves the property

of B̃. This concludes the proof.

The radius of convergence of J(z) is related to the spectral radius

sp
(
Jacy[φ+A](ρ;L(ρ))

)
of Jacy[φ+A](ρ;L(ρ)), which we now study.

Lemma 19. The spectral radius of the Jacobian Jacy[φ](ρ;L(ρ)) is 1/ρ, i.e.,

sp (Jacy[φ](ρ ;L(ρ))) = 1/ρ .

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 19

Proof. We must have sp (Jacy[φ](ρ ;L(ρ))) ≥ 1/ρ in any case, because 1/ρ is an

eigenvalue of the matrix, by the statement of Proposition 9 about the characteristic

system. Assume for the sake of contradiction that we had the strict inequality. The

function f(t) := t · sp (Jacy[φ](t ;L(t))) is continuous [22], because the entries of

the matrix are continuous (note that L(t) is continuous on [0, ρ]). Further, we have

f(0) = 0, f(ρ) > 1. Thus there is tρ ∈ (0, ρ) such that f(tρ) = 1. Thus the matrix

M = tρJacy[φ](tρ ;L(tρ)) has spectral radius 1. The matrix M is non-negative and

its underlying digraph is strongly-connected by our hypotheses on L. Hence, by the

celebrated Perron-Frobenius Theorem (see [11], Theorem 8.8.1), we conclude that

M admits 1 as an eigenvalue.

Thus we have a characteristic point (tρ,L(tρ)) for our original system{
L = z · φ(z;L)

0 = det (Id− z · Jacy[φ](z;L)) ,

with tρ < ρ and Li(tρ) < Li(ρ) for all i, in contradiction to Lemma 13 from [3]

which characterizes the characteristic points that are different from (ρ,L(ρ)).

Lemma 20. Provided that Jacy[B] 6= 0m×m, we have the strict inequality

sp
(
Jacy[φ+A](ρ;L(ρ))

)
< 1/ρ .

Proof. The vector L(ρ) has every component strictly positive, thus the Jaco-

bian Jacy[B](ρ;L(ρ)) has some non-zero entry. Observe that we have the equality

Jacy[φ] = Jacy[φ] + Jacy[A] + Jacy[B]. Hence entry-wise we have[
Jacy[φ+A](ρ ;L(ρ))

]
i,j
≤
[
Jacy[φ](ρ;L(ρ))

]
i,j
,

with strict inequality for at least one entry.

By Lemma 19, the spectral radius of the matrix Jacy[φ](ρ;L(ρ)) is 1/ρ. Fur-

thermore, it is non-negative and its underlying directed graph is strongly-connected

by our hypothesis on L, hence it follows from a classical result in Algebraic Graph

Theory ([11], Theorem 8.8.1 (b), page 178) that reducing at least one entry reduces

the spectral radius strictly.

Corollary 21. At z = ρ we have det
(
Id− ρ · Jacy[φ+A](ρ;L(ρ))

)
6= 0 .

Lemma 20 implies that we may interpret the right-hand side of our inequality

in Proposition 10, not just as a formal power series, but also as an analytic function

on |z| < ρ which can be continuously extended at |z| = ρ.

Corollary 22. The series(
Id− z · Jacy[φ+A](z;L(z))

)−1
=
∑
k≥0

zk
(
Jacy[φ+A](z;L(z))

)k
defines an analytic function on the closed disk |z| ≤ ρ, with the only possible excep-

tion of z = ρ where it can be extended continuously.

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

20 F. Koechlin, C. Nicaud, P. Rotondo

Proof.

Consider w with |w| ≤ ρ, w 6= ρ. We recall from Drmota’s article [5, Lemma 1,

page 14] that we also have that ρ is the only singularity of L(z) on the disk |z| ≤ ρ.

Thus L(z) is analytic on z = w, and defined (and continuous) in some neighborhood

of it. We remark that, as the coefficients are non-negative and |w| ≤ ρ, e

sp
(
Jacy[φ+A](w;L(w))

)
≤ sp

(
Jacy[φ+A](ρ;L(ρ))

)
< 1/ρ .

Thus by continuity of the function z 7→ |z| ·sp
(
Jacy[φ+A](z;L(z))

)
(see [22]), the

spectral radius of z ·Jacy[φ+A](z;L(z)) remains strictly less than 1 on some neigh-

bourhood of w. Hence the geometric series converges uniformly on a neighborhood

of w, and our quasi-inverse is analytic there.

For the continuity at z = ρ we notice that the geometric series converges uni-

formly for |z| ≤ ρ and that L(z) is continuous on the closed disc.

To finish the proof we need to show that the inverse is closely related to L(z).

We recall the following useful result from Matrix Theory:

Theorem 23 (Cayley-Hamilton) Let M be a square matrix over a commutative

ring. Its characteristic polynomial pM (λ) is defined by pM (λ) := det(λ · Id −M).

Then M cancels its characteristic polynomial: pM (M) = 0.

A direct corollary of this Theorem is a formula for the inverse of M when we place

ourselves over a commutative field. Let pM (λ) = λm + am−1λ
m−1 + . . . + a0, we

remark first that a0 = (−1)m detM . Then we have

M−1 = (−1)m+1M
m−1 + am−1M

m−2 + . . .+ a1
detM

. (5)

Moreover, the ai’s are polynomials in the entries of M .

Remark 24. Plugging M = Id−z ·Jacy[φ+A](z;L(z)) in Eq. (5), we notice that

the coefficients ai are polynomials in z and L(z), while M i has entries which are

also polynomial in z and L(z). Similarly for the determinant in the denominator of

Eq. (5), the entries are also polynomial in z and L(z).

Now we need the following very useful technical lemma to exploit the expansion

of L(z) near z = ρ.

Lemma 25. Let the generating series A(z) and B(z) and have the expansion valid

around z = ρ

A(z) = gA(z)− hA(z)
√

1− z
ρ , B(z) = gB(z)− hB(z)

√
1− z

ρ ,

where gA(z), gB(z), hA(z), hB(z) are analytic at z = ρ. Then the following assertions

hold

eThe spectral radius increases as we increase the absolute value of the entries. This can be seen

using Gelfand’s formula sp(B) = limp ‖Bp‖1/p, see [21, pp.209–212].

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 21

(1) The sum A(z) + B(z) and difference A(z) − B(z) also have expansions

A(z)+B(z) = gA+B(z)−hA+B(z)
√

1− z/ρ and A(z)−B(z) = gA−B(z)−
hA−B(z)

√
1− z/ρ, around z = ρ, with gA+B(z), hA+B(z), gA−B(z),

hA−B(z) analytic at z = ρ.

(2) The product A(z) ·B(z) also has a expansion gA·B(z)− hA·B(z)
√

1− z/ρ,

around z = ρ, with gA·B(z) and hA·B(z) analytic analytic at z = ρ.

(3) Let H(y) be analytic at y = A(ρ) and suppose H ′(A(ρ)) 6= 0, then the com-

position has a expansion H(A(z)) = gH◦A(z) − hH◦A(z)
√

1− z/ρ around

z = ρ, with gH◦A and hH◦A analytic at z = ρ.

(4) If we suppose that B(ρ) 6= 0, the quotient A(z)/B(z) has a singular expan-

sion gA/B(z)−hA/B(z)
√

1− z/ρ around z = ρ, with gA/B(z) and hA/B(z)

analytic at z = ρ.

Proof. Only the case of the division requires further proof as the sum, difference

and product are immediate and (3) is a special case of a lemma from Drmota [6,

Lemma 2.26].

As gB(ρ) 6= 0 we may write

A(z)

B(z)
=
gA(z)− hA(z)

√
1− z

ρ

gB(z)− hB(z)
√

1− z
ρ

=
gA(z)/gB(ρ)− hA(z)/gB(ρ)

√
1− z

ρ

1 + (gB(z)/gB(ρ)− 1)− hB(z)/gB(ρ)
√

1− z
ρ

.

The function H(y) = 1
1+y = 1 − y + y2 − y3 ± . . . is analytic for |y| < 1.

Since δ : z 7→ (gB(z)/gB(ρ) − 1) − hB(z)/gB(ρ)
√

1− z
ρ is 0 at z = ρ the result

follows because the composition H(δ(z)) satisfies 3. and then we apply 2. with the

numerator.

Lemma 26. The function z 7→
(
Id− z · Jacy[φ+A](z;L(z))

)−1
has entries that

are locally of the form g̃(z)− h̃(z)
√

1− z/ρ around z = ρ, with g̃ and h̃ analytic at

z = ρ.

Proof. Set M = Id− z · Jacy[φ+A](z;L(z)) in Eq. (5).

Observe that the coefficients ai are polynomials in z and L(z), while M i has

entries which are polynomial too in z and L(z), and similarly for the determinant

in the denominator of Eqn. (5). Hence it follows, by Proposition 9 and the closure

properties of Lemma 25 that the numerator and the denominator of the entries of

M−1 are of the form claimed. As the denominator is not 0 at z = ρ by Corollary 21,

the closure properties imply the result for the quotients.

Proof of Proposition 11. We consider

F (z) :=
(
Id− z · Jacy[φ+A](z;L(z))

)−1
·L(z) ,

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

22 F. Koechlin, C. Nicaud, P. Rotondo

We claim that the radius of convergence of the components of F (z) must be ρ.

Indeed, from Proposition 10 we deduce that

L(z) � ∂uL|u=1 � C · F (z) .

where C > 0 is the constant from Proposition 10. Hence [zn]Li(z) ≤ [zn]C · Fi(z)
and the radius of convergence of Fi can only be smaller or equal to that of Li,

namely ρ. As we know that F (z) is analytic for |z| < ρ, due to Corollary 22, the

radius of convergence must be ρ. By Pringsheim’s Theorem [7], this means that ρ

is a singularity of the entries of F . And z = ρ is the only possible singularity on

the circle |z| = ρ, by Corollary 22.

By Lemma 26, along with the closure properties in Lemma 25, F (z) has entries

Fi(z) which are of the form Fi(z) = g̃i(z) − h̃i(z)
√

1− z/ρ around z = ρ, with

g̃i(z) and h̃i(z) analytic at z = ρ. Moreover, we must have h̃i(ρ) 6= 0 for all i,

otherwise, by the Transfer Theorem C · [zn]Fi(z) would be asymptotically negligible

towards [zn]Li(z), a contradiction.

Thus the Transfer Theorem yields that [zn]Fi(z) ∼ Di
ρ−n

n3/2 , for Di > 0.

7. Higher moments: expected run-time of polynomial algorithms

Our main result can be extended to all the moments of the random variable corre-

sponding to the size of the reduction.

Theorem 27. Let E be a combinatorial system of trees over S, of absorbing oper-

ator ~ and of absorbing pattern P, that satisfies (H). If L is defined by E, for the

uniform distribution on size-n expressions in L, every moment of order t of the size

of a reduced expression is bounded from above by a constant Ct.

Proof. The proof follows the same principles as the proof of Theorem 8. It is based

on an analogue of Eq (1): considering the bivariate generating series C(z, u) =∑
C∈C z

|C|uξ(C), we have

En
[
ξk
]

=
[zn](u ∂u)kC(z, u)

∣∣
u=1

[zn]C(z)
, (6)

where (u ∂u)k means that k times we: differentiate in u and then multiply by u. The

study of the numerator proceeds by induction on k and is sketched below. Note that

the base case, with k = 1, corresponds to the expected value.

Differentiating the equation for L(z, u) once we find

∂uL(z, u) = pup−1 (R(z)− P (z)) + z
(
φ(z, u;L(z, u)) +A(z, u; G(z, u))

)
+ zu

(
∂uφ(z, u;L(z, u)) + ∂uA(z, u; G(z, u))

)
+ zuJacy[φ](z, u;L(z, u)) · ∂uL(z, u)

+ zuJacy[A](z, u;G(z, u)) · ∂uG(z, u) .

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 23

We may generalize � to two-variable power series and as in Proposition 10 we get

u ∂uL(z, u) � pupL(z) +L(z, u)

+ zu2
(
∂uφ(z, u;L(z, u)) + ∂uA(z, u; L(z, u))

)
+ zu · Jacy[φ+A](z, u;L(z, u)) · u∂uL(z, u) .

Observe that differentiating in u does not affect the inequalities � for the formal

power series as the coefficients are positive. Thus we prove by induction that

(u ∂u)kL(z, u) � pk
(
z, u,L(z),L(z, u), (u∂u)L(z, u), . . . , (u∂u)k−1L(z, u)

)
+ zu · Jacy[φ+A](z, u;L(z, u)) · (u∂u)kL(z, u) ,

where the pk’s are polynomials in their entries with non-negative coefficients.

Now taking u = 1, which maintains the inequalities, we obtain

(u ∂u)kL(z, u)
∣∣
u=1
� pk

(
z, 1,L(z),L(z), . . . , (u∂u)k−1L(z, u)

∣∣
u=1

)
+ z · Jacy[φ+A](z;L(z)) · (u∂u)kL(z, u)

∣∣
u=1

,

thus Lemma 16 implies that

(u ∂u)kL(z, u)
∣∣
u=1
�(

Id− z · Jacy[φ+A](z;L(z))
)−1

pk
(
z, 1,L(z), L(z), . . . , (u∂u)k−1L(z, u)

∣∣
u=1

)
The proof follows by induction. Indeed, once we have proved that the derivatives

(u∂u)jL(z, u)
∣∣
u=1

, j < k, are all bounded by functions having only ρ as a singularity

on the circle |z| = ρ, and having the right local behaviour around z = ρ, the result

then follows for (u ∂u)kL(z, u) by Proposition 11, which characterizes the function

(Id− z · J(z))
−1

, and the closure properties of Lemma 25.

Besides its intrinsic mathematical interest, Theorem 27 yields a direct analysis

of all polynomial-time algorithms for random expressions, as stated below.

Corollary 28. Let A be a polynomial-time algorithm (in the worst case) whose

inputs are expressions specified as in the statement of Theorem 27. If one first

reduces the expression, which can be done in linear time, before applying A, then

the expected running time of applying A is bounded from above by a constant.

8. Conclusion and discussion

To summarize our contributions in one sentence, we proved in this article that even

if we use systems to specify them, uniform random expressions lack expressivity as

they are drastically simplified as soon as there is an absorbing pattern. This confirms

and extends our previous result [12], which holds for much more simple specifications

only. It questions the relevance of uniform distributions in this context, both for

experiments and for theoretical analysis.

Roughly speaking, the intuition behind the surprising power of this simple sim-

plification is that, on the one hand the absorbing pattern appears a linear number

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

24 F. Koechlin, C. Nicaud, P. Rotondo

of times, while on the other, the shape of uniform trees facilitates the pruning of

huge chunks of the expression.

A natural improvement would be to obtain that the expectation tends to a

constant, instead of being bounded by a constant, or even a characterization of

the limit distribution. In another direction, using infinitely many rules is probably

possible, under some analytic conditions, and there are other hypotheses that may

be weakened: it is not difficult for instance to ask that the dependency graph has

one large strongly connected component (all others having size one)f , periodicity is

also manageable, . . . All of these generalizations introduce technical difficulties in

the analysis, but we think that in most natural cases, unless we explicitly design

the specification to prevent the simplifications from happening sufficiently often,

the uniform distribution is degenerated when interpreting the expression: this phe-

nomenon can probably be considered as inherent in this framework.

One generalization that seems to exhibit a different behavior is when the speci-

fication itself depends on n. Some preliminary results were obtained recently by the

second and third authors [19], for the specific case of regular expressions of size n

on an alphabet whose cardinality also depends on n.

In our opinion, instead of generalizing the kind of specification even more, the

natural continuation of this work is to investigate non-uniform distributions. The

first candidate that comes in mind is what is called BST-like distributions, where

the size of the children are distributed as in a binary search tree: that kind of

distribution is really used to test algorithms, and it is probably mathematically

tractable [18], even if it implies dealing with systems of differential equations.

Acknowledgments. The third author is funded by the Projet RIN Alenor (Re-

gional Project from French Normandy).

References

[1] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation, and Com-
piling. Prentice-Hall, Inc., USA, 1972.

[2] Cyril Banderier and Michael Drmota. Formulae and asymptotics for coefficients of
algebraic functions. Combinatorics, Probability & Computing, 24(1):1–53, 2015.

[3] Jason P. Bell, Stanley Burris, and Karen A. Yeats. Characteristic points of recursive
systems. Electr. J. Comb., 17(1), 2010.

[4] Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis. Average size of
automata constructions from regular expressions. Bulletin of the EATCS, 116, 2015.

[5] Michael Drmota. Systems of functional equations. Random Struct. Algorithms, 10(1-
2):103–124, 1997.

[6] Michael Drmota. Random Trees: An Interplay Between Combinatorics and Probabil-
ity. Springer Publishing Company, Incorporated, 1st edition, 2009.

[7] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Univer-
sity Press, 2009.

fThe general case with no constraint on the dependency graph can be really intricate, starting

with the asymptotics that may behave differently [2].

January 21, 2021 11:55 WSPC/INSTRUCTION FILE output

Simplifications of Uniform Expressions Specified by Systems 25

[8] Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the
common subexpression problem. In Automata, Languages and Programming, 17th
International Colloquium, ICALP90, Warwick University, England, UK, July 16-20,
1990, Proceedings, volume 443 of Lecture Notes in Computer Science, pages 220–234.
Springer, 1990.

[9] Philippe Flajolet and Jean-Marc Steyaert. A complexity calculus for recursive tree
algorithms. Mathematical Systems Theory, 19(4):301–331, 1987.

[10] Daniele Gardy. Random boolean expressions. Discrete Mathematics & Theoretical
Computer Science, DMTCS Proceedings vol. AF, Computational Logic and Applica-
tions (CLA ’05):1–36, 2005.

[11] Christopher D. Godsil and Gordon F. Royle. Algebraic Graph Theory. Graduate texts
in mathematics. Springer, 2001.

[12] Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. Uniform random expressions
lack expressivity. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen,
editors, 44th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs,
pages 51:1–51:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[13] Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. On the degeneracy of random
expressions specified by systems of combinatorial equations. In Natasa Jonoska and
Dmytro Savchuk, editors, Developments in Language Theory - 24th International
Conference, DLT 2020, Tampa, FL, USA, May 11-15, 2020, Proceedings, volume
12086 of Lecture Notes in Computer Science, pages 164–177. Springer, 2020.

[14] Jonathan Lee and Jeffrey Shallit. Enumerating regular expressions and their lan-
guages. In Michael Domaratzki, Alexander Okhotin, Kai Salomaa, and Sheng Yu,
editors, Implementation and Application of Automata, 9th International Conference,
CIAA 2004, Kingston, Canada, July 22-24, 2004, volume 3317 of Lecture Notes in
Computer Science, pages 2–22. Springer, 2004.

[15] A Meir and J.W Moon. On an asymptotic method in enumeration. Journal of Com-
binatorial Theory, Series A, 51(1):77 – 89, 1989.

[16] Michel Nguyên-Thê. Distribution of Valuations on Trees. Theses, Ecole Polytechnique
X, February 2004.

[17] Cyril Nicaud. On the Average Size of Glushkov’s Automata. In Adrian-Horia Dediu,
Armand-Mihai Ionescu, and Carlos Mart́ın-Vide, editors, Language and Automata
Theory and Applications, Third International Conference, LATA 2009, Tarragona,
Spain, April 2-8, 2009. Proceedings, volume 5457 of Lecture Notes in Computer Sci-
ence, pages 626–637. Springer, 2009.

[18] Cyril Nicaud, Carine Pivoteau, and Benôıt Razet. Average analysis of Glushkov
automata under a bst-like model. In Kamal Lodaya and Meena Mahajan, editors,
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, volume 8
of LIPIcs, pages 388–399. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[19] Cyril Nicaud and Pablo Rotondo. Random regular expression over huge alphabets.
2020. Submitted.

[20] Carine Pivoteau, Bruno Salvy, and Michèle Soria. Algorithms for combinatorial struc-
tures: Well-founded systems and newton iterations. Journal of Combinatorial Theory,
Series A, 119(8):1711 – 1773, 2012.

[21] Kosaku Yosida. Functional analysis. Classics in Mathematics. Springer-Verlag, Berlin,
1995. Reprint of the sixth (1980) edition.

[22] Mishael Zedek. Continuity and location of zeros of linear combinations of polynomials.
Proceedings of the American Mathematical Society, 16(1):78–84, 1965.

