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3

Abstract4

Every language recognized by a non-deterministic finite automaton can be recognized by a determin-5

istic automaton, at the cost of a potential increase of the number of states, which in the worst case6

can go from n states to 2n states. In this article, we investigate this classical result in a probabilistic7

setting where we take a deterministic automaton with n states uniformly at random and add just8

one random transition. These automata are almost deterministic in the sense that only one state9

has a non-deterministic choice when reading an input letter. In our model each state has a fixed10

probability to be final. We prove that for any d ≥ 1, with non-negligible probability the minimal11

(deterministic) automaton of the language recognized by such an automaton has more than nd states;12

as a byproduct, the expected size of its minimal automaton grows faster than any polynomial. Our13

result also holds when each state is final with some probability that depends on n, as long as it is14

not too close to 0 and 1, at distance at least Ω( 1√
n

) to be precise, therefore allowing models with a15

sublinear number of final states in expectation.16

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;17

Mathematics of computing → Discrete mathematics; Mathematics of computing → Probability and18

statistics19

Keywords and phrases non-deterministic automaton, powerset construction, probabilistic analysis20

Digital Object Identifier 10.4230/LIPIcs.STACS.2023.2321

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:35

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.STACS.2023.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 One Drop of Non-Determinism in a Random DFA

1 Introduction22

A fundamental result in automata theory is that deterministic and complete finite state23

automata recognize the same languages as non-deterministic finite state automata. This24

result can be established using the classical (accessible) subset construction [12]: starting25

with a non-deterministic automaton with n states, one can build a deterministic automaton26

with at most 2n states that recognizes the same language. This upper bound is tight; there27

are regular languages recognized by an n-state non-deterministic automaton whose minimal28

automaton (the smallest deterministic and complete automaton that recognizes the language)29

has 2n states. The number of states of the minimal automaton of a regular language is called30

its state complexity. Figure 1 shows two n-state non-deterministic automata with somewhat31

similar shape, and whose languages have very different state complexities. Both automata32

can be made deterministic by just removing the a-loop on the initial state.33

1 2 3 · · · n

a, b

a a, b a, b a, b
1 2 3 · · · n

a, b

a a a a

Figure 1 On the left, a non-deterministic automaton with n states recognizing the language
Lℓ = Σ∗aΣn−2. On the right, a non-deterministic automaton with n states recognizing the language
Lr = Σ∗an−1. The minimal automaton of Lℓ has 2n−1 states, whereas the one of Lr has n states.

In this article, we address the following (informal) question: if we take a random n-state34

deterministic automaton and add just one random transition, what can be said about the35

state complexity of the resulting recognized language? Does it hugely increase as for Lℓ, or36

does it remain small as for Lr?37

From [3], we know that with high probability, the state complexity of the language38

recognized by a size-n deterministic automaton taken uniformly at random is linear. It39

is important as it implies that the corresponding distribution on regular languages is not40

degenerated: this contrasts with the case of random regular expressions where the expected41

state complexity of the described regular languages is constant [14] which means that the42

induced distribution on regular languages is concentrated on a finite number of languages.43

To be more precise, our formal setting in this article is the following. Let Σ = {a, b, . . .}44

be a finite alphabet with k ≥ 2 letters. For any n ≥ 1, we consider the uniform distribution45

on deterministic and complete automata on Σ, with stateset {1, . . . , n} and with no final46

states (for now); the initial state is picked uniformly at random, and the action of the letters47

on the stateset are k uniform and independent random mappings. We also pick uniformly at48

random two independent states p and q, and add a transition p
a−→ q, if it is not already there.49

Finally each state is final with a given fixed probability f ∈ (0, 1), independently. Hence in50

this model an almost deterministic automaton has an expected number final states of fn.51

Our results still hold if we allow the probability f of being final to depend on the size n52

of the automaton provided that fn has a distance to 0 and 1 in Ω( 1√
n

). This allows us to53

consider a probabilistic model in which random automata have an expected number of final54

states as low as Θ(
√

n).55

Our main result is that for any d ≥ 1 there exists a constant cd > 0 such that the state56

complexity of the language of such a random almost deterministic automaton is greater than57

nd with probability at least cd, for n sufficiently large. That is, for any polynomial P , there is58

a non-negligible probability that the state complexity of the language of a random automaton59
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is greater than P (n): we will say that the state complexity is super-polynomial with visible60

probability. As a direct consequence, the expected state complexity is super-polynomial.61

It should be noted that with the same random models for deterministic automata, one62

cannot hope to replace visible probability in our results with a probability that converges63

to 1 (high probability). Indeed random automata have, with high probability, a constant64

fraction of states that are not accessible from the initial state; if the source of the added65

transition is not accessible from the initial state, the added transition does not impact the66

recognized language, whose state complexity is therefore at most equal to n. Thus, we make67

no effort in the present paper to optimize our probabilistic lower bounds. See the conclusion68

for a more advanced discussion on this topic.69

Related work. The study of random deterministic automata can be traced back to the work70

of Grusho on the size of the accessible part [11]: he established that, with high probability,71

a constant proportion of the states are accessible from the initial state. He also shows72

that with high probability there is a unique terminal strongly connected component of73

size approximately νkn, for some νk > 1
2 that only depends on the size k of the alphabet.74

More structural results on the underlying graph of a random deterministic automaton were75

established in the work of Carayol and Nicaud [6], with a local limit law for the size of the76

accessible part and an application to random generation of accessible determistic automata,77

and more recently in the work of Cai and Devroye [5], with, in particular, a fine grain analysis78

of what is happening outside the large strongly connected component. In [1], Addario-79

Berry, Balle and Perarnau gave a precise analysis of the diameter of a random deterministic80

automaton, showing in particular that it is logarithmic. We will use some of these results in81

this paper, namely one on the size of the largest terminal strongly connected component.82

We will deal with the restriction to states accessible from the initial state in the powerset83

construction using the result of [5] that with high probability the cycles outside the accessible84

part are small: for any ε > 0, with probability at least 1 − ε all the non-accessible cycles85

have length smaller than some constant Cε. In particular, for any ω(n) → ∞, all the cycles86

outside the accessible part have length at most ω(n) with high probability.87

All these results on random automata focus on the underlying graph of the transition struc-88

tures, without saying much about the recognized languages, and on the average complexity89

of textbook algorithms on automata, as we do in this article.90

There are results in this line of work, and we should first mention the work of De Felice91

and Nicaud [9, 10], who studied the complexity of applying Brzozowski’s algorithm to a92

random deterministic automaton. The first step of this algorithm consists in applying the93

powerset construction to the mirror of the automaton, obtained by reversing every transition94

and exchanging the role of initial and final states. Hence, as in the present article, they95

studied the determinization procedure of random automata, but for a model very different96

from ours: we add one random transition to a uniform random deterministic automaton97

where they consider the mirror of a uniform random deterministic automaton. However, we98

will still use some of their technical lemmas concerning cycles in the last part of our proof.99

There are other works on random deterministic automata and their languages, which are100

less directly related to this article. For instance, the probability that a random accessible101

automaton is minimal was studied by Bassino, David and Sportiello [3], the analysis of102

minimization algorithms by Bassino, David and Nicaud [2, 8], etc. More recently, several103

papers studied the synchronization of random automata [4, 17], until the very recent work of104

Chapuy and Perarnau [7], establishing that most deterministic automata are synchronizing,105

with a word of length O(
√

n log n). We refer the interested reader to the survey of Nicaud [16]106

for an overview on random deterministic automata.107

STACS 2023
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2 Definitions and notations108

For any n ≥ 1, let [n] = {1, . . . , n}. If x, y ∈ R with x ≤ y, let [[x, y]] = [x, y] ∩Z be the set of109

integers that are between x and y. Let E be a set equipped with a size function s from E to110

Z≥0, and let En denote the elements of E having size n. A property X on E (that is, a subset111

of E viewed as the set of elements for which the property holds) holds with visible probability112

if there exists some constant c > 0 such that, for n sufficiently large, En is non-empty and113

P(X) ≥ c for the uniform distribution on En. By a slight abuse of notation, if X is a random114

variable E → Z≥0 we say that for the uniform distribution on E , X is super-polynomial115

with visible probability when for any d ≥ 1, there exists a constant cd > 0, such that for n116

sufficiently large, En ̸= ∅ and P(X ≥ nd) ≥ cd for the uniform distribution on En.117

Recall that if u and v are two words on an ordered alphabet Σ, u is smaller than v for118

the length-lexicographic order if |u| < |v| or they have same length and u <lex v for the119

lexicographic order.120

Throughout the article, the stateset of an automaton with n states will always be [n],121

with the exception of the powerset construction recalled just below. The alphabet will122

always be Σ = {a, b}, except in the statement of our main theorem, where we allow larger123

alphabets as it is trivially generalized to this case. Hence, in our setting, a deterministic124

(and complete) automaton is just a tuple (n, δ, F ), where F ⊆ [n] is the set of final states125

and δ is the transition function, a mapping from [n] × Σ to [n]. We will often write δα(s) = t126

or s
α−→ t instead of δ(s, α) = t, for s, t ∈ [n] and α ∈ Σ, and call this an α-transition127

or a transition. The transition function is classically extended to sets of states by setting128

δ(X, α) = {δ(s, α) : s ∈ X}, for X ⊆ [n], and to words by setting inductively δ(s, w) = s if129

w is the empty word ε and δ(s, wα) = δ(δ(s, w), α). We will not need to specify the initial130

state until the end of the proof; when we finally do, it will be generated uniformly at random131

and independently in [n]. Final states are only used in the last part of our proof, so to ease132

the presentation, we define a deterministic (and complete) transition structure as being an133

automaton with neither initial nor final states: they are given by a pair (n, δ) where n is the134

number of states and δ is the transition function.135

An almost deterministic automaton (n, δ, F, p
a−→ q) is a deterministic automaton (n, δ, F )136

in which we add the additional a-transition p
a−→ q. Similarly, an almost deterministic137

transition structure (n, δ, p
a−→ q) is a deterministic transition structure (n, δ) in which we138

add the additional a-transition p
a−→ q. For any α ∈ Σ and any r ∈ [n], the transition139

function γ of an almost deterministic automaton (n, δ, F, s
a−→ t) (or almost deterministic140

transition structure) is therefore defined by γ(r, α) = {δ(r, α)} if (r, α) ̸= (p, a) and γ(p, a) =141

{δ(p, a), q}. These automata or transition structures can be deterministic, when we already142

have δ(p, a) = q.143

The classical powerset automaton B of a possibly non-deterministic automaton A =144

(n, δ, F, p
a−→ q), with a transition function γ, is a deterministic automaton B with states in145

2[n] and transition function γ extended to sets, as defined above. If we add an initial state i0146

to A, the initial state of B is {i0} and it recognizes the same language as A when a state147

X of B is final if and only at least one of its element is final in A, i.e. X ∩ F ≠ ∅. We can148

restrict this construction to the accessible part of B only (from its initial state {i0}, where i0149

is the initial state of A) while still recognizing the same language; we call this automaton150

the accessible powerset automaton of A.151

Recall that two states r and s in a deterministic automaton A are equivalent if the152

languages recognized by moving the initial state to r or to s are equal. The minimal153

automaton of a regular language L is the deterministic and complete automaton with the154
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Figure 2 Illustration of the proof sketch. On the left, the backward tree from p that is detailed
in Section 4.1, it has size O(

√
n) and contains between

√
n and 3

√
n extremal leaves (i.e. leaves in

its last level τ) to be valid. On its right, the forward tree from r, described in Section 4.2; it is a
breadth-first traversal that is valid if it hits an extremal leaf of the backward tree before O(

√
n)

states are examined. On the right the b-threads introduced in Section 4.3, obtained by reading b’s
from the pi’s; they are valid if they are made of previously unseen states and do not intersect.

smallest number of states that recognizes L. The number of states of the minimal automaton155

of L is called the state complexity of L. We will use the following classical property [12]:156

▶ Proposition 1. If there is a set of accessible states X in a deterministic automaton A such157

that the states of X are pairwise non-equivalent, then A has state complexity at least |X|.158

The following remark allows us to focus on the case of a two-letter alphabet:159

▶ Remark 2. Let Γ ⊆ Σ be two non-empty alphabets. If L is a regular language on Σ, the160

state complexity of L is at least the state complexity of L ∩ Γ∗.161

3 Main statement and proof outline162

Our main result is that the state complexity of the language recognized by a random almost163

deterministic automaton is super-polynomial with visible probability, when each state is final164

with probability fn that is not too close to either 0 or 1:165

▶ Theorem 3. Let Σ be an alphabet with at least two letters. Let fn be a map from Z≥1166

to (0, 1) such that there exists a constant α > 0 such that fn ≥ α√
n

and 1 − fn ≥ α√
n

for167

n sufficiently large. Consider an almost deterministic n-state transition structure A on Σ168

taken uniformly at random. Each state of A is then taken to be final with probability fn,169

independently of everything else. Then with visible probability, the language recognized by A170

has super-polynomial state complexity.171

▶ Corollary 4. Under the conditions of Theorem 3, the expected state complexity of the172

language recognized by A growths faster than any polynomial in n.173

The proof of Theorem 3 consists in identifying a structure and several constraints (see174

Figure 2) that guarantee that when performing the accessible powerset construction and175

adding a random set of final states, we have sufficiently many pairwise non-equivalent states.176

STACS 2023
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At each step, we add a new constraint on top of those we already have, and we have to ensure177

that these constraints are still satisfied by sufficiently many almost deterministic transition178

structures. A convenient way to sketch the proof is to consider that we start with n states179

and no transitions, and add random transitions when needed, on the fly. More precisely,180

our proofs can be seen as the description of an algorithm that tries to expose the required181

structure by performing two types of queries on the set of still unknown transitions: either182

we ask what the destination of a given transition is, or we ask for all the transitions that183

have a given state as their destination. Thus, at any point in the algorithm, conditioned184

on the results of all previous queries, the destinations of all still unexposed transitions are185

independent and uniform among the set of states for which we have not performed the second186

type of query. We use this to prove that our algorithm has a non-negligible probability of187

success. We also have two random states p and q and will add the transition p
a−→ q at some188

point. We fix d ≥ 1, the main steps of the proof are the following:189

1. Generate r = δa(p), the target of the a-transition starting from p in the deterministic190

transition structure. With visible probability, r ≠ q and there is a word w of length191

Θ(log n) such that δw(r) = p, which can be found by generating O(
√

n) random transitions.192

We also assume that the b-transition starting at p is still unset. This step is the most193

technical, we explore backward from p and forward from r until we reach a common state.194

2. Assuming such a w is found, we add the transition p
a−→ q, which makes the automaton195

non-deterministic. We then iteratively generate the transitions starting from q and196

following the word w(aw)d−1, and ask that the target of each such transition be a state197

that was not previously seen in the whole process. This happens with visible probability.198

3. Let p0 = p and pi = δw(aw)i−1(q) for i ∈ [d]. If the two previous steps are successful,199

then δ(aw)d({p}) = {p0, p1, . . . , pd}, and the outgoing b-transition of each pi is still unset.200

Then, for each pi, we iteratively generate the b-transitions δb(pi), δbb(pi), . . . until we201

cycle after λi steps. This process is considered successful if we do not use an already set202

b-transition and if the d + 1 cycles are pairwise disjoint. We furthermore ask that the λi203

are all in Θ(
√

n). All these properties happen with visible probability.204

4. At this stage, we have γ(aw)d({p}) = {p0, . . . , pd}; this set is composed of d + 1 different205

states, and reading b’s from each pi eventually ends in a b-cycle of length ℓi. Given the206

λi’s, each ℓi is a uniform element of [λi], and they are independent. We now ask that the207

ℓi’s are pairwise coprime, and that each of them is in Ω(
√

n). This also happens with208

visible probability [18].209

5. If everything worked so far, in the powerset construction applied to the almost determin-210

istic transition structure there is a b-cycle of length
∏d

i=0 ℓi = Ω(n d+1
2 ). We now randomly211

determine which states are final. If we consider a b-cycle alone in the automaton, of212

length Ω(
√

n), its states are pairwise non-equivalent with visible probability as soon as the213

probability fn that a state is final is not too close to either 0 or 1, which we assumed in214

our model. This property happens to be preserved when building the product automaton215

for the union of two one-letter cycles, provided their lengths are coprime. Consequently,216

the large b-cycles in the powerset construction is made of pairwise non-equivalent states217

with visible probability.218

6. It just remains to guarantee that {p} is accessible in the subset construction. We use219

the fact that with high probability, all cycles with length in Ω(ln(n)) are accessible in220

a random deterministic automaton [5]. By construction the cycle around p labelled aw221

built at step 1 has length Θ(log n), hence p is accessible with high probability.222

The first steps of the proof sketch are depicted in Figure 2, with more details and notations223

that will be introduced in the next section.224
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4 Random almost deterministic transition structures225

As indicated in the presentation of the proof in Section 3, a convenient way to see a uniform226

random transition structure is to start with no known transition at all, and generate them227

on the fly, when needed: we use the fact that the targets of the 2n transitions in a size-n228

uniform transition structure are independent uniform random elements of [n].229

Consider for instance that we take a random state s and iteratively follow b-transitions230

starting from s: we generate the path s
b−→ δ(s, b) b−→ δ(s, bb) b−→ . . . until we cycle back on a231

previously seen state. In this process, we keep picking uniformly at random and independently232

integers in [n] until we have a collision: this is exactly the setting of the classical Birthday233

Problem. Straightforward computations show that the expected length ℓs of this b-path Ps234

is in Θ(
√

n), and that it is between
√

n and 2
√

n with visible probability.235

Now suppose that we want to add the condition that the target of every a-transition236

outgoing from a state of Ps is not in Ps. We can proceed as follows: for a given fixed path237

Ps of length ℓs, the Birthday Problem analysis tells us that with visible probability the238

outgoing a-transitions do not reach Ps. As long as
√

n ≤ ℓs ≤ 2
√

n, we can lower bound239

this probability by a constant that does not depend on ℓs. Moreover, a given transition240

structure can have only one b-path from s, so we can partition the set of size-n transition241

structures according to their b-path, for a given s. Hence a simple computation using the law242

of total probabilities (or direct counting) shows that we can combine the two “with visible243

probability” and that, with visible probability there is a b-path Ps from s of length between244 √
n and 2

√
n such that every outgoing a-transition ends outside Ps.245

We detailed this reasoning because it is the main technique we will use in the sequel to246

build on the previous results and add new constraints, until we exhibit a shape that ensures247

that applying the accessible powerset construction will produce a large (super-polynomial)248

number of states. Also, we will rely much on properties derived from the Birthday Problem,249

such as:250

If we generate O(
√

n) elements of [n], there is no collision with visible probability, even if251

there is a set of forbidden states of size O(
√

n) which make the process fail.252

If we generate Ω(
√

n) elements of [n], there is a collision with visible probability, even if253

there is a set of forbidden states of size O(
√

n) which make the process fail.254

If we generate random elements of [n], with visible probability we hit a fixed set of states255

of size Ω(
√

n) before a collision occurs.256

4.1 Backward tree257

We first look at the shape of a typical backward tree1 from a state p in a random transition258

structure T = (n, δ). We define d(x, y) as the smallest length of a word w such that δw(x) = y259

(and ∞ if y is not accessible from x). For a given state p, we consider the backward exploration260

of T starting from p: we iteratively build the sets of states Ri(p) = {x : d(x, p) = i}. For261

τ ≥ 1, the nodes of the backward tree of depth τ from p are Bτ (p) = ∪τ
i=0Ri(p) and the edges262

are the transitions x
α−→ y that go from a state x ∈ Ri(p) to a state y ∈ Ri−1(p), for i ∈ [τ ].263

We keep building the backward tree until the first time τ where Rτ (p) ≥
√

n. If it happens,264

the tree is called the
√

n-backward tree. If the transition structure is taken uniformly at265

1 The backward tree is not a tree in the graph theoretical sense as a node at depth ℓ can have two
out-going edges to two different nodes at depth ℓ − 1.

STACS 2023
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random, there is a visible probability that Rτ (p) exists and has size at most 3
√

n, that266

τ = Ω(log n) and that the whole
√

n-backward tree contains at most O(
√

n) nodes.267

To see that, first consider R1(p). Each state x ̸= p can be in R1(p), if there is a transition268

x
a−→ p or x

b−→ p (or both) in T . This happens with probability π
(1)
n = 2

n − 1
n2 ≈ 2

n . The269

cardinality of R1(p) thus follows a binomial law of parameters n − 1 and π
(1)
n . In particular,270

in expectation it contains around 2 states.271

Assume now that we know all the Rj(p) for j ≤ i and want to compute Ri+1(p); we272

suppose that Ri(p) ̸= ∅. Recall that Bi(p) = ∪i
j=0Rj(p) and let ki = |Bi(p)|. By definition of273

d, none of the states of Bi(p) can be in Ri+1(p). On the other hand, any state x of [n] \ Bi(p)274

can be in Ri+1(p), and the condition that a state is not in Bi(p) is exactly that its outgoing275

transitions are not in Bi−1(p). All other target states are equally likely under this conditioning,276

for both transitions. Hence there are n − ki−1 possible targets for δ(x, a) and δ(x, b): the277

probability that at least one of them is in Ri(p) is π
(i)
n = 2|Ri(p)|

(n−ki−1) − |Ri(p)|2

(n−ki−1)2 ≈ 2|Ri(p)|
n if278

|Ri(p)| and ki−1 are both o(n). Hence the number of elements in Ri+1(p) follows a binomial279

law of parameters n − ki and π
(i)
n . In particular, in expectation, Ri+1(p) is roughly twice280

as large as Ri(p), as long as they are not too big. Since binomial laws are concentrated281

around their means, the presentation above can be turned into a formal proof, establishing282

the following result.283

▶ Lemma 5. Let p be a random state of a random n-state deterministic transition structure.284

With visible probability, the
√

n-backward tree from p exists, has depth τ ∈ Θ(log n), contains285

between
√

n and 3
√

n extremal leaves, i.e. states in Rτ (p), and has a total number of nodes286

in Θ(
√

n).287

In [5], Cai and Devroye also consider backward trees, with a precise analysis for fixed288

depth (that does not depend on n) conditionally on p being in the large strongly connected289

component; they use approximation by a Galton-Watson branching process. This allows290

them to give a more precise analysis on the existence of the circuit we are building in this291

paper: they prove that conditioned on the fact that p is accessible, there is such a circuit with292

high probability. However we cannot reuse their result directly, since we need to quantify the293

amount of randomness used to discover the circuit: we need unset transitions to continue our294

construction. It is not obvious to describe the distribution of the transitions if we condition295

on the existence of the circuit (in particular, there can be several such circuits).296

In our setting, we have a direct access to the distribution of most unseen transitions.297

Indeed, if we fix the
√

n-backward tree Tp from p and consider a state x that is not in the298

tree, its outgoing transitions can end either in [n]\Tp or at an extremal leaf, a leaf of maximal299

depth, of Tp (otherwise x would be in Tp); and every possible state has the same probability.300

It is a bit more complicated for transitions outgoing from a state of Tp that are not already301

part of the tree, but we will not use them in our construction; except for p itself, but if302

we condition on having Tp, its outgoing transitions ends in uniform elements of [n]. So as303

long as we do not consider a transition outgoing from a node of Tp, except p, we can easily304

perform our probabilistic computations given the
√

n-backward tree of p being Tp. Since the305 √
n-backward tree of p of a transition structure is unique if it exists, we can use the law of306

total probabilities at the end to complete the proof.307

Also observe that we cannot hope for a result with high probability in our setting: the308

probability that p has no incoming transition is (1 − 1
n )2(n−1) ≈ e−2 and is therefore visible.309
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4.2 Forward tree and circuit using p
a−→ r310

We fix the
√

n-backward tree Tp of p that satisfies the conditions of Lemma 5. Then we311

generate the a-transition p
a−→ r outgoing from p: as explained in the previous section, this is312

a uniform random element of [n]. We then begin a process consisting in doing a breadth-first313

traversal of the transition structure starting from r0 := r. We discover the states r0 = δ(r, ε),314

r1 = δ(r, a), r2 = δ(r, b), r3 = δ(r, aa), r4 = δ(r, ab), . . . , where the words are taken in315

length-lexicographic order. We continue this process until we reach either some ri that316

belongs to Tp, or an already seen ri (ri = rj for some j < i). The process is successful if we317

halt because we hit an extremal leaf of Tp after at most
√

n steps, otherwise it fails.318

Let Lp be the set of extremal leaves of Tp. As mentioned above, since we only discover319

new states before the last step of the process, the transition considered at time i ≥ 1 ends in320

a uniform random state of ([n] \ Tp) ∪ Lp: the fact that Tp is the
√

n-backward tree from p321

prevents transitions from ending at a node of Tp \ Lp (the case of time 0 is easily handled322

separately). Hence we are in a variant of the Birthday Problem: we have a target set Lp of323

size Θ(
√

n) and we iteratively draw random numbers of [n] \ Tp ∪ Lp until we hit Lp (success)324

or we see an element twice (failure). All the computations are classical even if we ask that325

the process halts before
√

n steps. In particular |[n] \ Tp ∪ Lp| = n − O(
√

n) so we do not326

differ much from the standard case with parameter n. This yields:327

▶ Lemma 6. For the uniform distribution on size-n transition structures having Tp as
√

n-328

backward tree from p, with visible probability the breadth-first traversal starting at r := δa(p)329

hits an extremal leaf of Tp before it discovers the same state twice, and it does this in at most330 √
n steps.331

If the conclusions of Lemma 6 hold then there is a word w of length Θ(log n) such that332

δw(r) = p, and aw labels a circuit around p: starting from p, we read a to reach r, then we333

follow the path that hits an extremal leaf of Tp, discovered during the breadth-first traversal;334

then finally go back to p using the transitions of Tp. Observe that there can be several335

paths that work in the last part: it is possible that both transitions outgoing from a state at336

distance i + 1 from p end in states at distance i. To uniquely determine w, we choose, in this337

last part, the smallest for the lexicographic order. Doing this still preserves uniqueness in338

the following sense: for a given transition structure, there is at most one triplet (Tp, r, Fr)339

such that Tp is the
√

n-backward tree from p, r = δa(p), and Fr is the forward tree from r,340

and all the properties of Lemma 5 and Lemma 6 are satisfied. The choice of w is then fixed341

by (Tp, r, Fr), and the uniqueness of the triplet, which exists when all the requirement are342

fulfilled, allows the use of the law of total probabilities.343

Let p ∈ [n]. An n-state transition structure is p-compatible if its
√

n-backward tree from344

p exists and satisfies the conclusions of Lemma 5, and if the breadth-first traversal from r345

discovers different states that are not in Tp for all labels smaller than z, and δ(r, z) ∈ Lp, with346

|z| ≤ 1
2 log2 n. When the transition structure T is p-compatible, we define its p-substructure347

as being the incomplete automaton of stateset the states of Tp, r and all the other states348

discovered during the breadth-first traversal until label z. Its transitions are the transitions349

of Tp, and all the transitions of the breadth-first search until label z (included). We have:350

▶ Proposition 7. With visible probability, an n-state transition structure taken uniformly at351

random is p-compatible, where p is also taken uniformly at random and independently in [n].352

In this case, the p-substructure is unique, has O(
√

n) states, and contains a circuit around p353

labelled aw, where w is uniquely determined using the transitions of the p-structure only and354

we have |w| ∈ Θ(log n).355
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4.3 Discovering the b-threads356

Fix a p-substructure Xp and consider the uniform distribution over n-state transition357

structures that are p-compatible with Xp. For this distribution, if we take a state s /∈ Xp, its358

outgoing transitions end in an element of [n]\Tp ∪Lp, uniformly at random and independently359

from the others transitions: the condition that the p-substructure is Xp only forbids these360

transitions from ending at a node of the
√

n-backward-tree of p that is not an extremal leaf.361

We now add a random a-transition p
a−→ q to form a random almost deterministic transition362

structure that has Xp as p-substructure, by picking uniformly at random q ∈ [n]. Since363

|Xp| ∈ O(
√

n), with high probability q /∈ Xp. We fix some d ≥ 1 from now on, and read,364

letter by letter, the word w(aw)d−1 starting from q, where aw labels the circuit around p in365

Xp given in Proposition 7. Since w has length Θ(log n), the word w(aw)d−1 has logarithmic366

length, and, using the Birthday Problem once again, with high probability we only discover367

new states that are not in Xp while reading the whole word. In this case, we name p0 = p368

and pi = δ(q, w(aw)i−1) for i ∈ [d]. Observe that in the whole process, we never considered369

b-transitions starting from one of the pi, with 0 ≤ i ≤ d. Moreover, as explained above,370

δ(p0, b) is a uniform random element of [n] and each δ(pi, b) is a uniform random element of371

[n] \ Tp ∪ Lp, under our conditioning, and it is also the case for every transition outgoing372

from a newly discovered state.373

Let us define the b-thread of pi as the set of all states reached from pi using words of374

the form bj . Discovering state by state such a b-thread consists in iteratively generating the375

outgoing b-transition of the previous state, which is done by taking a uniform element of376

[n] \ Tp ∪ Lp. Let us start with the b-thread of p0. By the Birthday Problem again, with377

visible probability it cycles back after discovering between
√

n and 2
√

n states while never378

discovering a state of Xp, since |Xp| ∈ O(
√

n). If this happens, we consider the b-thread379

from p1. With visible probability, it also cycles back after discovering between
√

n and 2
√

n380

states while never discovering a state of Xp or of the b-thread from p0, as they both have381

size in O(
√

n). Since d is fixed, doing this for the b-thread starting at each pi we obtain:382

▶ Lemma 8. Let d ≥ 1. Let Xp be a p-substructure of size-n transition structures. For the383

uniform distribution on size-n transition structures that are p-compatible and that have Xp as384

p-substructure, if we add a random transition p
a−→ q by choosing q uniformly at random and385

independently in [n], then with visible probability (i) the states discovered while following the386

path labeled by w(aw)d−1 are all different and do not belong to Xp (ii) the b-threads starting387

at the pi’s, where p0 = p and pi = δ(q, w(aw)i−1), have length between
√

n and 2
√

n, are388

pairwise disjoint and do not intersect Xp.389

4.4 Cycle lengths and accessibility390

An almost deterministic transition structure that satisfies the conditions of Lemma 8 is called391

(p, b)-compatible, and we say that it has b-thread lengths λ⃗ = (λ0, . . . , λd) if the b-thread392

from each pi as length λi. We also define its (p, b)-substructure as its p-substructure where393

we add the states along the path labeled by w(aw)d−1 from q and the b-threads from each pi.394

Consider an almost deterministic transition structure T of given (p, b)-substructure Xp,b395

with b-thread lengths λ⃗ = (λ0, . . . , λd) and cycle lengths ℓ⃗ = (ℓ0, . . . , ℓd). If ℓ⃗′ = (ℓ′
0, . . . , ℓ′

d)396

is another vector where each ℓ′
i ∈ [λi], we can re-target the last b-transition of each b-thread397

so that the cycle lengths are now ℓ⃗′. Thus, conditioned on λ⃗, each cycle length ℓi is a uniform398

random element of [λi]. Since
√

n ≤ λi ≤ 2
√

n, and since each ℓi ∈ [[ 1
2
√

n,
√

n ]], with visible399

probability the ℓi’s are uniform and independent random elements of [[ 1
2
√

n,
√

n ]].400
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To conclude this part, we generate the initial state i0 uniformly at random. All our401

constraints so far hold with visible probability, and one of them implies the existence of a402

circuit of length Ω(log n) around p. Cai and Devroye [5] established that with high probability403

such a cycle is accessible; the conjunction of a high-probability event with a visible event is404

still visible. This yields:405

▶ Theorem 9. Let d ≥ 1. There exists a set of almost deterministic transition structures with406

n states and one initial state Tn such that with visible probability for the uniform distribution407

over size-n almost deterministic transition structure with an initial state, the state p (source408

of the additional a-transition) is accessible from the initial state and there exists a word w409

of length Θ(log n) such that δ(p, w(aw)d−1) = {p0, . . . , pd} is a set of d + 1 states, and the410

b-threads starting from the pi’s have lengths λi in [[
√

n, 2
√

n ]] and their cycle length is in411

[[ 1
2
√

n,
√

n ]]. Moreover, this set Tn can be built so that for the uniform distribution on Tn,412

the cycle lengths are uniform and independent random elements of [[ 1
2
√

n,
√

n ]].413

If T is in the set Tn and we read b’s from P = {p0, . . . , pd}, we eventually reach the b-cycle414

of P in the accessible powerset transition structure of T , and its length is lcm(ℓ0, . . . , ℓd). As415

the ℓi’s are uniform and independent random elements of [[ 1
2
√

n,
√

n]], their lcm is Ω(n d+1
2 )416

with visible probability [10], yielding our first main consequence (before adding final states):417

▶ Corollary 10. For the uniform distribution on size-n almost deterministic transition418

structures, the accessible powerset transition structure has a super-polynomial number of419

states with visible probability.420

5 Adding final states421

We are now ready to randomly select which states are final. In our model, for every n, each422

state is final with fixed probability fn, which may depend on n as long as it is not too close423

to either 0 or 1: we require that a set of Θ(
√

n) states contains both final and non-final424

states with visible probability. This holds under our condition that fn and 1 − fn are in425

Ω( 1√
n

), as a variant of the Birthday Problem again.426

Previously, we exhibited the existence with visible probability of d + 1 occurrences of427

b-cycles in a random almost deterministic transition structure, yielding a large b-cycle when428

applying the powerset construction. We will focus on b-cycles in the sequel, as it turns out429

to be sufficient to prove our main result. It relies on the notion of primitive words, which we430

now recall.431

Let Γ be a nonempty finite alphabet. If w ∈ Γℓ is a word of length ℓ, we write432

w = w0 · · · wℓ−1 and use the convention that all indices are taken modulo ℓ: for instance wℓ433

is the letter w0. A nonempty word w is primitive if it is not a non-trivial power of another434

word: it cannot be written w = zk for some word z and some k ≥ 2. If w is primitive, it is435

easily seen that every circular permutation of w is also primitive. See [15] for a more detailed436

account on primitive words.437

Primitive words appear in our proof with the following observation. If C = (c0, . . . , cℓ−1)438

is a b-cycle of states starting at c0, its associated word is the size-ℓ word v = v0 . . . vℓ−1439

of {0, 1}ℓ where vi = 1 if and only if ci is a final state. Recall that if we start the same440

cycle elsewhere, at ci, the associated word v′ = vi · · · vℓv0 · · · vi−1 is primitive if and only441

if v is primitive: reading the associated word from any starting state preserves primitivity.442

A b-cycle is said to be primitive if one (equivalently, all) of its associated words is (are)443

primitive. Our study is based on the following statement.444
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0 1 2 3
b b b

b

α β γ
b b

b

0, α 1, β 2, γ 3, α 0, β 1, γ

3, γ 2, β 1, α 0, γ 3, β 2, α

b b b b b

b

bbbbb

b

Figure 3 On the left, two primitive b-cycles (accepting states are denoted by double circles)
whose associated words are 0011 (top) and 001 (bottom), starting at 0 and α, respectively. On the
right, the b-cycle of {0, α} of associated word 0011 ⊙ 001 = 001101111011, which is primitive by
Lemma 12.

▶ Lemma 11. Let A be a deterministic automaton on Σ and α ∈ Σ. If C is a primitive445

α-cycle of A, then the states of C are pairwise non-equivalent: the state complexity of the446

language recognized by A is at least |C|.447

So we reduced our problem to studying the primitivity of the b-cycles we built in Section 4,448

and to how it exports to the associated b-cycle in the powerset construction.449

5.1 Some properties of primitive words450

If w(1) and w(2) are two non-empty words of respective lengths ℓ1 and ℓ2 on the binary451

alphabet {0, 1}, we denote by w(1) ⊙ w(2) the word w of length ℓ = lcm(ℓ1, ℓ2) given by452

wi = 1 if and only if w
(1)
i = 1 or w

(2)
i = 1 (recall that the indices are taken modulo the453

length of the word). We will see in the sequel that this operation naturally happens when454

extending the notion of state equivalence from each b-cycle to the corresponding b-cycle in455

the powerset construction.456

▶ Lemma 12. Let w(1) and w(2) be two primitive words on {0, 1} of lengths at least 2 that457

are coprime. Then the word w(1) ⊙ w(2) is primitive.458

▶ Remark 13. Lemma 12 does not hold if the lengths are not coprime. For instance, if459

w(1) = 011111 and w(2) = 1011, then w(1) ⊙ w(2) = 1 . . . 1︸ ︷︷ ︸
12 times

, which is not primitive.460

From a probabilistic point of view, it is well known [15] that a uniform random word is461

primitive with very high probability. We rely on the following finer result.462

▶ Lemma 14 (De Felice, Nicaud [10]). Let µ be a probability measure on {0, 1}n such that463

µ(0n) = µ(1n) = 0 and such that two words with the same number of 0’s have same probability.464

Then the probability that a word is not primitive under µ is at most 2
n .465

We adapt it to our needs as follows:466

▶ Corollary 15. Let fn be a sequence of real numbers in (0, 1) such that fn = Ω( 1√
n

) and467

1 − fn = Ω( 1√
n

). Let ℓ be an integer greater than α
√

n, for a fixed α, and let w be a random468

binary word of length ℓ whose letters are 1’s with probability fn and 0 with probability 1 − fn,469

independently. Then w is primitive with visible probability.470

5.2 Finalizing the proof of Theorem 3471

By Lemma 12, primitivity is preserved by the product ⊙ when the lengths are coprime, so we472

restrict the cycle lengths built in Section 4 so that they are pairwise coprime. By Theorem 9,473
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these lengths are uniform random elements of [[ 1
2
√

n,
√

n ]], we therefore adapt a known result474

of probabilistic number theory to prove that it still happens with visible probability.475

More precisely, Tóth established [18] that the probability that d+1 integer taken uniformly476

at random and independently in [n] are pairwise coprime tends to some positive constant477

Ad+1, generalizing the folklore result that two independent random numbers in [n] are478

coprime with probability that tends to 6
π2 . This can be used to derive the following variant:479

▶ Corollary 16. Let ℓ0, ℓ1, . . . , ℓd be d + 1 integers taken uniformly at random and480

independently in [[ 1
2
√

n,
√

n ]]. With visible probability, the ℓi’s are pairwise coprime.481

Combining Corollary 15 and Corollary 16, we can extend Theorem 9 to also require that482

the b-cycles are primitive and their lengths are pairwise coprime. And this still happens with483

visible probability.484

We can then conclude as follows: if all these requirements are met, the state p is accessible485

and there is a word z such that δ(p, z) = {p0, . . . , pd}, the b-threads of the pi’s are pairwise486

disjoint and eventually form cycles of respective pairwise coprime lengths ℓi, and each such487

cycle is primitive. Moreover, all the ℓi are in Θ(
√

n). By a direct induction on Lemma 12, this488

yields that the b-cycle of {p0, . . . , pd} is primitive and has length Θ(
√

n
d+1). By Lemma 11,489

the language recognized by this almost deterministic automaton has state complexity at least490

Θ(n d+1
2 ). This concludes the proof, as it holds for every fixed d.491

6 Conclusion and discussion492

Our main theorem states that state complexity of a random almost deterministic automaton493

is greater than nd with probability at least cd > 0 for n sufficiently large. One can wonder494

how small the constant cd is and for which sizes the lower-bound holds. As we said in the495

introduction, we did not try to estimate cd nor did we try to optimize its value in this article.496

Since the powerset construction quickly generates very large automata which would need to497

be minimized, a proper experimental study does not seem feasible. However, we did generate498

1000 almost deterministic transition structures with n = 100 states and apply the accessible499

powerset construction: in 78.6% of the 1000 cases the output had more than n3 states. This500

would lead us to guess that even if the constant c3 that can be derived from our proof is501

very small, combinatorial explosion does occur frequently in practice.502

Also, as noticed above, in our setting it is certain that the property does not hold with503

high probability, as there is an asymptotically constant probability that the source of the504

added transition is not accessible. However, this probability is roughly 20.4%, not too far505

from what we obtained in our experiment on size-100 structures: it is very possible that if506

we condition the source of the added transition to be accessible, then our result holds with507

high probability. However, our proof techniques, based on an intensive use of the Birthday508

Problem cannot prove this: completely new ideas are necessary to establish such a result.509

Another natural direction is to consider the case when there are few final states, as Θ(
√

n)510

final states may be considered too large for a random deterministic automaton. The extreme511

case is to allow exactly one final state by choosing it uniformly at random. If we do so, our512

analysis using primitive words fails: with high probability the b-cycles we built have no final513

state at all, and neither has the associated b-cycle C in the powerset construction. However,514

we are confident that our techniques can be used to capture this distribution: by studying515

the paths ending in this final state, we should be able to find for each b-cycle Ci a word wi516

that maps exactly one state to the final state, and such that the wi are all different. This517

would be enough to establish that the states of C are pairwise non-equivalent and prove the518

conjecture. Completely formalizing and proving this idea is an ongoing work.519

STACS 2023



23:14 One Drop of Non-Determinism in a Random DFA

References520

1 Louigi Addario-Berry, Borja Balle, and Guillem Perarnau Llobet. Diameter and stationary521

distribution of random r-out digraphs. Electronic journal of combinatorics, 27(P3. 28):1–41,522

2020.523

2 Frédérique Bassino, Julien David, and Cyril Nicaud. Average case analysis of Moore’s state min-524

imization algorithm. Algorithmica, 63(1-2):509–531, 2012. doi:10.1007/s00453-011-9557-7.525

3 Frédérique Bassino, Julien David, and Andrea Sportiello. Asymptotic enumeration of minimal526

automata. In Christoph Dürr and Thomas Wilke, editors, 29th International Symposium on527

Theoretical Aspects of Computer Science, STACS 2012, February 29th - March 3rd, 2012,528

Paris, France, volume 14 of LIPIcs, pages 88–99. Schloss Dagstuhl - Leibniz-Zentrum für529

Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.88.530

4 Mikhail V. Berlinkov. On the probability of being synchronizable. In Sathish Govindarajan and531

Anil Maheshwari, editors, Algorithms and Discrete Applied Mathematics - Second International532

Conference, CALDAM 2016, Thiruvananthapuram, India, February 18-20, 2016, Proceedings,533

volume 9602 of Lecture Notes in Computer Science, pages 73–84. Springer, 2016. doi:534

10.1007/978-3-319-29221-2\_7.535

5 Xing Shi Cai and Luc Devroye. The graph structure of a deterministic automaton chosen at536

random. Random Structures & Algorithms, 51(3):428–458, 2017.537

6 Arnaud Carayol and Cyril Nicaud. Distribution of the number of accessible states in a random538

deterministic automaton. In Christoph Dürr and Thomas Wilke, editors, 29th International539

Symposium on Theoretical Aspects of Computer Science, STACS 2012, February 29th - March540

3rd, 2012, Paris, France, volume 14 of LIPIcs, pages 194–205. Schloss Dagstuhl - Leibniz-541

Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.STACS.2012.194.542

7 Guillaume Chapuy and Guillem Perarnau. Short synchronizing words for random automata.543

CoRR, abs/2207.14108, 2022. arXiv:2207.14108, doi:10.48550/arXiv.2207.14108.544

8 Julien David. Average complexity of Moore’s and Hopcroft’s algorithms. Theor. Comput. Sci.,545

417:50–65, 2012. doi:10.1016/j.tcs.2011.10.011.546

9 Sven De Felice and Cyril Nicaud. Brzozowski algorithm is generically super-polynomial for547

deterministic automata. In Marie-Pierre Béal and Olivier Carton, editors, Developments in548

Language Theory - 17th International Conference, DLT 2013, Marne-la-Vallée, France, June549

18-21, 2013. Proceedings, volume 7907 of Lecture Notes in Computer Science, pages 179–190.550

Springer, 2013. doi:10.1007/978-3-642-38771-5\_17.551

10 Sven De Felice and Cyril Nicaud. Average case analysis of Brzozowski’s algorithm. Int. J.552

Found. Comput. Sci., 27(2):109–126, 2016. doi:10.1142/S0129054116400025.553

11 Aleksandr Aleksandrovich Grusho. Limit distributions of certain characteristics of random554

automaton graphs. Mathematical Notes of the Academy of Sciences of the USSR, 14(1):633–637,555

1973.556

12 J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation.557

Addison-Wesley, 1979.558

13 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random Graphs. 2000.559

14 Florent Koechlin, Cyril Nicaud, and Pablo Rotondo. Simplifications of uniform expressions560

specified by systems. Int. J. Found. Comput. Sci., 32(6):733–760, 2021.561

15 Lothaire. Combinatorics on Words. Cambridge Mathematical Library. Cambridge University562

Press, 2 edition, 1997. doi:10.1017/CBO9780511566097.563

16 Cyril Nicaud. Random deterministic automata. In Erzsébet Csuhaj-Varjú, Martin Dietzfel-564

binger, and Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 - 39th565

International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceed-566

ings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 5–23. Springer, 2014.567

doi:10.1007/978-3-662-44522-8\_2.568

17 Cyril Nicaud. The černý conjecture holds with high probability. J. Autom. Lang. Comb.,569

24(2-4):343–365, 2019. doi:10.25596/jalc-2019-343.570

https://doi.org/10.1007/s00453-011-9557-7
https://doi.org/10.4230/LIPIcs.STACS.2012.88
https://doi.org/10.1007/978-3-319-29221-2_7
https://doi.org/10.1007/978-3-319-29221-2_7
https://doi.org/10.1007/978-3-319-29221-2_7
https://doi.org/10.4230/LIPIcs.STACS.2012.194
http://arxiv.org/abs/2207.14108
https://doi.org/10.48550/arXiv.2207.14108
https://doi.org/10.1016/j.tcs.2011.10.011
https://doi.org/10.1007/978-3-642-38771-5_17
https://doi.org/10.1142/S0129054116400025
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1007/978-3-662-44522-8_2
https://doi.org/10.25596/jalc-2019-343


23:15

18 László Tóth. The probability that k positive integers are pairwise relatively prime. Fibonacci571

Quart, 40:13–18, 2002.572

STACS 2023



23:16 One Drop of Non-Determinism in a Random DFA

A Proof of Corollary 4573

Proof. Let S be the random variable that maps a random automaton to the state complexity574

of the language it recognizes. For any d ≥ 1 and n sufficiently large, we have, for size-n575

automata: E[S] ≥ nd P(S ≥ nd) ≥ cd nd. Using the notations of Theorem 3, the expected576

state complexity is at least cd nd for n large enough. This concludes the proof. ◀577

B Technicals lemmas578

In this section, we present various technical lemmas that will be used throughout the main579

proof. This section can be skipped at first reading as it does not provide much in terms of580

context.581

B.1 Birthday problem like results582

▶ Fact 17. The following inequalities hold for any 0 ≤ x ≤ 0.75: exp(−2x) ≤ 1 − x ≤583

exp(−x).584

Proof. Both inequalities follow from convexity of the exponential function. The upper585

bounds come from comparing it with its linear approximation at x = 0; the upper bound is586

easily proved by checking the sign of the difference at x = 0 and at x = 0.75. ◀587

The following lemma is classical and its proof which is given for the reader’s convenience,588

uses standard arguments.589

▶ Lemma 18. Let r(n), g(n) and t(n) be mappings from N to N such that for all n ≥ 1,590

r(n) + g(n) + t(n) ≤ n. Consider an urn with n balls numbered from 1 to n with r(n) balls591

colored red, g(n) balls colored green and the n−r(n)−g(n) other balls colored white. Consider592

the process of repeatedly drawing a ball uniformly at random with replacement until either a593

red or green ball is drawn, or a ball previously drawn is drawn again. The following properties594

hold:595

1. Let fn be the probability that the process has not stopped after drawing t(n) balls. If596

t(n) ∈ O(
√

n), r(n) + g(n) ∈ O(
√

n) then there exists a constant c > 0 such that fn ≥ c597

for n large enough.598

2. Let hn be the probability that the process stops before t(n) balls have been drawn because a599

green ball was drawn. If r(n) ∈ O(
√

n), g(n) ∈ Θ(
√

n) and t(n) ∈ Ω(
√

n), there exists a600

constant c > 0 such hn ≥ c for n large enough.601

3. Let in be the probability that the process stops after drawing t balls with t ∈ [[
√

n, 2
√

n ]]602

because the t-th ball was already drawn at a previous step ℓ with t − ℓ ∈ [[
√

n
2 ,

√
n ]]. If603

r(n) = O(
√

n) and g(n) ∈ O(
√

n), there exists a constant c > 0 such in ≥ c for n large604

enough.605

The previous properties still hold if instead of having n balls, we have b(n) ≤ n balls with606

n − b(n) ∈ O(
√

n).607

Proof. Property 1. Assume that t(n) ∈ O(
√

n), d(n) = r(n) + g(n) ∈ O(
√

n). For n ≥ 1,608

the probability fn satisfies:609

fn =
t(n)∏
k=1

(
1 − d(n) + k − 1

n

)
610
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Indeed the probability that the process has not stopped at step k ∈ [1, t(n)] knowing that611

it did not stop in the previous k − 1 steps is 1 − d(n)+k−1
n which is the probability of not612

drawing a red ball or a green ball or one the k − 1 previously drawn balls which are all613

distinct and not red or green.614

As d(n)+t(n) ∈ o(n), for n large enough 0 ≤ t(n)−1+d(n) ≤ 0.75n and using Lemma 17,615

we have:616

fn ≥ exp

− 2
n

t(n)∑
k=1

d(n) + k − 1

617

= exp
(

− t(n)2 + 2t(n)d(n)
n

+ o(1)
)

618

619
620

By assumption t(n)2 + 2t(n)d(n) is in O(n), so the term inside the exponential can be621

bounded from below by a real constant −c1 for n large enough, and fn ≥ e−c1 > 0. Taking622

c = e−c1 concludes the proof.623

Property 2. Assume that r(n) ∈ O(
√

n), g(n) ∈ Θ(
√

n) and t(n) ∈ Ω(
√

n). For n ≥ 1624

and ℓ ∈ [1, t(n)], we write hℓ
n the probability that process stops after drawing ℓ balls because625

the ℓ-th ball drawn is green. We have:626

hℓ
n =

ℓ−2∏
k=0

(
1 − g(n) + r(n) + k

n

)
· g(n)

n
.627

Indeed the product on the left captures the probability that the process has not stopped628

before step ℓ (cf. the proof of Property 1) and g(n)
n is the probability to draw a green ball.629

Using the law of total probabilities, we have hn =
∑t(n)

ℓ=1 hℓ
n. As t(n) ∈ Ω(

√
n), there exists a630

constant d > 0 such that t(n) ≥ d
√

n for n large enough. In particular, for n large enough,631

we have:632

hn ≥
⌊d

√
n⌋∑

ℓ=⌈ d
2

√
n⌉

hℓ
n633

For ℓ ∈ [[ d
2
√

n, d
√

n ]], we have for n large enough:634

hℓ
n =

∏ℓ−2
k=0

(
1 − g(n)+r(n)+k

n

)
· g(n)

n

≥
∏⌊d

√
n⌋−2

k=0

(
1 − g(n)+r(n)+k

n

)
· g(n)

n

635

By Property 1 (taking t(n) = ⌊d
√

n⌋ − 1), there exists a constant c > 0 such that for n636

large enough
∏⌊d

√
n⌋−2

k=0

(
1 − g(n)+r(n)+k

n

)
≥ c and as g(n) ∈ Θ(

√
n), there exists a constant637

c′′ > 0 such that g(n) ≥ c′
√

(n) for n large enough and hence for n large enough hℓ
n ≥ c′′

√
n

638

for some constante c′′ > 0. It follows that for n large enough:639

gn ≥
⌊d

√
n⌋∑

ℓ=⌈ d
2

√
n⌉

gℓ
n ≥ (⌊d

√
n⌋ − ⌈ d

2
√

n⌉) c′′
√

n
≥ d

4 c′′ > 0.640

Property 3. Assume that r(n) ∈ O(
√

n) and g(n) ∈ O(
√

n). For n ≥ 1 and ℓ ∈641

[[
√

n, 2
√

n ]], we write iℓ
n the probability that process stops after drawing ℓ balls because the642
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ℓ-th ball has been drawn at a previous time ℓ′ with ℓ − ℓ′ ∈ [[
√

n
2 ,

√
n ]]. Let us denote by mℓ643

the number of possible values for ℓ′. For n sufficiently large, mℓ ≥
√

n
4 . We have:644

iℓ
n =

ℓ−2∏
k=0

(
1 − g(n) + r(n) + k

n

)
· mℓ

n
645

Indeed the production on the left captures the probability that the process has not stopped646

before step ℓ (cf. the proof of Property 1) and mℓ

n is the probability to draw one of balls647

drawn at a time ℓ′ with ℓ − ℓ′ ∈ [[
√

n
2 ,

√
n ]]. Using the law of total probabilities, we have648

in =
∑

ℓ∈[[
√

n,2
√

n ]] iℓ
n.649

For n large enough and ℓ ∈ [[
√

n, 2
√

n ]],650

iℓ
n =

∏ℓ−2
k=0

(
1 − g(n)+r(n)+k

n

)
· mℓ

n

≥
∏⌊2

√
n⌋−2

k=0

(
1 − g(n)+r(n)+k

n

)
·

√
n

4n

651

By Property 1 (taking t(n) = ⌊2
√

n⌋ − 1), there exists a constant c > 0 such that for652

n large enough
∏⌊2

√
n⌋−2

k=0

(
1 − g(n)+r(n)+k

n

)
≥ c and therefore, iℓ

n ≥ c′
√

n
for some constant653

c′ > 0. It follows that for n large enough:654

in =
∑

ℓ∈[[
√

n,2
√

n ]]

iℓ
n ≥

(
⌊2

√
n⌋ − ⌈

√
n⌉
)

· c′
√

n
≥ c

2 > 0.655

◀656

B.2 Concentration results for some binomial distributions657

In this section, we give some concentration inequalities for random variables following658

binomial distributions occurring when drawing the backward tree in a random transition659

structure. Recall that in this article, we denote by Bin(n, p) the binomial distribution with660

n trials each having a probability p of success. These inequalities, derived in Lemma 20, are661

in fact specialization of the classical Chernoff’s inequalities (see for instance [13, Th. 2.1]).662

▶ Theorem 19 (Chernoff inequalities for binomial law). For a random variable X with the663

distribution Bin(n, p), we have, with E = np:664

P(X ≥ E(X) + λ) ≤ exp
(

−λ2

2(E(X) + λ
3 )

)
for λ ≥ 0;

P(X ≤ E(X) − λ) ≤ exp
(

−λ2

2E(X)

)
for λ ≥ 0.

665

▶ Lemma 20. For n ≥ 1, f ≥ 0 and t ≥ 1 with f + t < n, consider a random variable Xf,t
n666

following the binomial distribution Bin
(

n − f − t, 2t
n−f − t2

(n−f)2

)
.667

Let α > 0 and β > 0. There exists a constant γ > 0 such that for all t < α
√

n, f < β
√

n668

and n sufficiently large,669

P(Xf,t
n ≥ 3t) ≤ e−γt and P

(
Xf,t

n ≤ 3t

2

)
≤ e−γt.670
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Proof. The expected value of Xf,t
n is:671

E(Xf,t
n ) = (n − f − t)

(
2t

n − f
− t2

(n − f)2

)
= 2t − 3t2

n − f
+ t3

(n − f)2672

Let δ = t + 3t2

n − f
− t3

(n − f)2 . Notice that E(Xf,t
n ) + δ = 3t. For n sufficiently large, δ ≥ 0673

as t ∈ O(
√

n), and we can apply Theorem 19 to obtain the following bound:674

P(Xf,t
n ≥ 3t) = P(Xf,t

n ≥ E(Xf,t
n ) + δ) ≤ exp

(
−δ2

2(E(Xf,t
n ) + δ

3 )

)
675

We have:676

−δ2

2(E(Xf,t
n ) + δ

3 )
= − 3t

14

(
1 + 3t

n−f − t2

(n − f)2

)2

1 − 6t
7(n−f) + 2t3

7(n−f)2

= − 3t

14

(
1 + O( 1√

n
)
)2

1 + O( 1√
n

)︸ ︷︷ ︸
≥ 2

3 for n sufficiently large

677

Hence for n sufficiently large, we have P(Xf,t
n ≥ 3t) ≤ e− t

7 .678

Similarly, let β = t

2 − 3t2

n − f
+ t3

(n − f)2 . For n sufficiently large, β ≥ 0 and we can apply679

Theorem 19 to obtain the following bound:680

P
(

Xf,t
n ≤ 3t

2

)
= P(Xf,t

n ≤ E(Xf,t
n ) − β) ≤ exp

(
−β2

2E(Xf,t
n )

)
681

We have:682

−β2

2E(Xf,t
n )

= − t

16

(
1 − 6t

n − f
+ 2t2

(n − f)2

)2

1 − 3t
2(n−f) + t2

2(n−f)2

= − t

16

(
1 + O( 1√

n
)
)2

1 + O( 1√
n

)︸ ︷︷ ︸
≥ 1

2 for n large enough

.683

Hence for n sufficiently large: P(Xf,t
n ≤ 3t

2 ) ≤ e− t
32 . ◀684

▶ Lemma 21. For all n ≥ 1, consider a the random variable Xn following the binomial685

distribution Bin(n, 2
n − 1

n2 ). It converges in law to a Poisson Law of parameter 2: for ℓ ≥ 0,686

limn→∞ P(Xn = ℓ) = 2ℓ

ℓ! e−2 > 0.687

Proof. Let ℓ ≥ 0 and pn := 2
n − 1

n2 . For all n ≥ ℓ,688

P(Xn = ℓ) =
(

n

ℓ

)
pℓ

n(1 − pn)n−ℓ =
(

n

ℓ

)(
pn

1 − pn

)ℓ

(1 − pn)n.689

As ℓ is fixed, when n → ∞,
(

n
ℓ

)
∼ nℓ

ℓ! ,
(

pn

1−pn

)ℓ

∼ pℓ
n ∼ 2ℓ

nℓ and (1 − pn)n ∼ e−2. ◀690

C Proof of Theorem 9691

The aim of the section is to give a detailed proof of Theorem 9. The proof follows the692

general sketch presented in the article. Recall that in the article we consider a process for693
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generating almost deterministic transition structures which is decomposed into different694

phases: drawing the transition p
a−→ q to be added, drawing the

√
n-backward tree from p,695

drawing the forward tree p up-to a certain depth, ... Each phase can succeed or fail, we prove696

for every phase that it succeeds with visible probability conditioned by the fact that the697

previous phases succeeded. To make it easier to work with these conditioning, we introduce698

the notion of transition structure templates which are incomplete transition structures where699

the source and target of the extra transition are possibly distinguished and where some states700

are marked as closed to enforce that no new incoming transitions can enter these states.701

Instead of conditioning to the success of the previous phases, we define a set of templates702

which ensure that the previous phases have succeeded and prove that this set of template703

occurs with visible probabilities.704

Once the terminology has been introduced in Section C.1, we will present the detailed705

outline of the proof in Section C.2 and give the proof in the remaining sections.706

C.1 Transition structure templates707

A deterministic transition structure template A (or template A for short) is given by a tuple708

(n, δ, src(A), dst(A), Closed(A)) where:709

n is the number of states (and [n] is the stateset),710

δ is a partial mapping from [n] × Σ to [n],711

src(A) ∈ [n] and dst(A) ∈ [n]∪{⊥} are two distinguished states which will respectively be712

the source and target of the newly added a-transition. We allow dst(A) to be undefined713

which we signal using the symbol ⊥,714

Closed(A) ⊆ [n] is a distinguished set of states called closed states. Closed states will715

play a role when we define what it means for a template B to extend a template A.716

The support Support(A) of a template A is the set of states that are either the source or the717

target of a transition of A. We denote by Autn the set of templates with n states. Remark718

that all the templates are deterministic as to ease the presentation, we do not add the extra719

a-transition but mark in the template its source and (possibly) its target.720

We now define what it means for a template B to extend a template A.721

▶ Definition 22 (Extension relation between templates). For two templates A and B with n722

states, the template B extends the template A, denoted by A ⊆ B if for all α ∈ Σ and all723

states r and s ∈ [n], we have:724

r
a−→
A

s implies r
a−→
B

s,725

r
a−→
B

s implies either r
a−→
A

s or s is not closed in A (i.e., s ̸∈ Closed(A)),726

Closed(A) ⊆ Closed(B),727

src(A) = src(B) and dst(A) = dst(B) (if dst(A) is defined).728

A template A is complete if its transition function is total, dst(A) is defined and all its729

states are closed. We denote by CAutn the set of complete template with n states over730

the input alphabet Σ. Remark that complete templates with n states are in bijection with731

almost deterministic transition structures by adding the transition src(A) a−→ dst(A) to a732

complete template A. We choose to work only with templates to simplify the statements of733

the various intermediary results.734

For a fixed template B ∈ Autn, the uniform distribution amongst the complete template735

in CAutn extending B can easily be described as shown in the following lemma.736
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▶ Lemma 23. Let B ∈ Autn. To draw uniformly at random a complete template A ∈ CAutn737

given that A extends B, it is enough to start from B and draw independently the target of738

each missing transition, uniformly at random in the set [n] \ Closed(B).739

For a set B of templates (possibly having a different number of states), we denote by740

Bn, the subset of B containing only the templates in B with n states. In the following, we741

will use gothic letters such as B,C, . . . to denote sets of templates.742

▶ Definition 24 (Proper set of templates). A set B of templates is called proper if for all743

n ≥ 1, for all template A ∈ Autn, A extends at most one template in Bn.744

We say that a template A with n states extends a proper set B if it extends (exactly) one745

template in Bn. Remark that as B is proper, P(A ∈ CAutn extends B) =
∑

B∈Bn
P(A ∈746

CAutn extends B).747

We now define what it means for a proper set of templates to occur with visible probability.748

▶ Definition 25 (Proper set occurring with visible probability). A proper set of templates749

B is said to occur with visible probability if there exists a constant c > 0 such that for n750

sufficiently large, the probability that a complete template picked uniformly at random from751

CAutn extends a template in B is at least c (i.e., P(A ∈ CAutn extends B) ≥ c) for n752

sufficiently large).753

▶ Definition 26 (Proper set occurring with visible probability in another proper set). A proper754

set of templates C is said to occur with visible probability in a proper set B if there exists a755

constant c > 0 such that for n sufficiently large, for all template B ∈ Bn, the probability that756

a complete template A picked uniformly at random in the complete templates extending B757

also extends C is at least c (i.e., P(A ∈ CAutn extends C|A extends B) ≥ c).758

Using the law of total probability, we obtain the following lemma which will be used759

throughout the proof to establish that our different sets of templates occur with visible760

probability.761

▶ Lemma 27. Let B and C be two proper sets of templates. Assume that:762

1. B occurs with visible probability,763

2. C occurs with visible probability in B.764

Then the set C also occurs with visible probability.765

Proof. Let cB > 0 and cC > 0 be the constants witnessing that B occurs with visible766

probability and that C occurs with visible probability in B. As B is proper, we can use the767

law of total probabilities and for n sufficiently large, we have768

P(A ∈ CAutn extends Cn)
≥

∑
B∈Bn

P(A ∈ CAutn extends Cn | A extends B) · P(A ∈ CAutn extends B)
≥ cC ·

∑
B∈Bn

P(A ∈ CAutn extends B)
= cC · P(A ∈ CAutn extends Bn)
≥ cC · cB

769

◀770

C.2 Proof outline771

Although the outline of the proof follows the outline presented in the paper, the formalization772

introduces some nuances and as a results, the intermediary lemmas are not identical but of773

course the statement of the Theorem 9 is completely equivalent. In Section774
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We will define proper sets of templates denoted by B, F and L(d) for all d ≥ 1 which775

intuitively capture the automaton constructed in Section 4.1, Section 4.2 and Section 4.3 of776

the proof-sketch in the main part of the article.777

1. A template A in Bn will be reduced to its
√

n-backward tree from src(A) which will have778

a depth in Θ(ln(n)), a size in O(
√

n) and a number of extremal leaves in Θ(
√

n). The779

states appearing in the
√

n-backward tree that are not extremal leaves will be closed in780

A and dst(A) will be undefined.781

2. A template A in F will extend some B ∈ B with Closed(A) = Closed(B) and there782

will exist a w ∈ Σ∗ such that src(A) aw==⇒
A

src(A). If we take wA minimal in the length-783

lexicographic order with this property, we will have |wA| ∈ Θ(
√

n). In addition, we will784

ensure that Support(A) ∈ O(
√

n), src(A) will have no outgoing b-transition, dst(A) will785

still be undefined.786

3. For d ≥ 1, a template A in L will extend some B ∈ F with Closed(A) = Closed(B).787

The state dst(A) is defined and not in Support(B) ∪ Closed(B). The transitions in A788

which are not in B are all outside of Support(B) and can be partitioned into a simple789

path form dst(A) labeled by wB(awB)d−1, a b-thread from r0 = src(A), a b-thread from790

ri = wB(awB)i−1 for i ∈ [1, d]. The lengths of the b-threads are in [
√

n, 2
√

n] and the791

cycle length of these threads are in [ 1
2
√

n,
√

n].792

In the following sections, we define these proper sets formally and prove that they occur793

with visible probability. Finally in Section C.6, we restate Theorem 9 in terms of these794

proper sets and prove it.795

C.3 Backward tree796

For c ≥ 1, we will define the set of templates Bc. We will show that Bc is proper for all797

c ≥ 1 (cf. Lemma 29) and that for c sufficiently large, Bc occurs with visible probability (cf.798

Proposition 30). For the following sections, we will take B equal to Bc0 for a fixed c0 large799

enough to guaranty the occurrence with visible probability.800

Recall that for A a template with n states and k ≥ 0, we denote by Rℓ
A the set of states801

s ∈ [n] such that dA(s, src(A)) = ℓ.802

For c ≥ 1, we define the set Bc as the set of all templates A ∈ Autn with n ≥ c + 1 such803

that:804

1. |R1
A| = c,805

2. there exists a unique ℓA ≥ 1 such that |RℓA
A | ≥

√
n,806

3. for all k ∈ [2, ℓA], 3
2 |Rk−1

A | ≤ |Rk
A| ≤ 3|Rk−1

A |,807

4. for all transition s
α−→
A

t in A with α ∈ Σ, there exists k ∈ [1, ℓA] such that s ∈ Rk
A and808

t ∈ Rk−1
A : in particular, there are no other transition in A than the ones building the809

backward-tree up to depth ℓA.810

5. Closed(A) =
⋃

k∈[0,ℓA−1] Rk
A and dst(A) is undefined.811

For c ≥ 1, Bc contains templates that are reduced to their
√

n-backward tree which is of812

size O(
√

n) with Θ(
√

n) extremal leaves and a depth in Θ(ln(n)).813

▶ Lemma 28. For all c ≥ 1 and for all A ∈ Bc, we have:814

Closed(A) ∈ O(
√

n),815

|RℓA
A | ∈ O(

√
n),816

|Support(A)| = |Closed(A)| + |RℓA
A | ∈ O(

√
n),817

ℓA ∈ Θ(ln(n)).818
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Proof. For all k ≥ 2, |Rk
A| ≥ ( 3

2 )k−1c and |Rk
A| ≤ 3k−1c. As |RℓA

A | ≥
√

n, it follows that819

3ℓA−1c ≥
√

n and as RℓA−1
A <

√
n, ( 3

2 )ℓA−2c ≥
√

n and ℓA ∈ Θ(ln(n)). As |RℓA−1
A | <

√
n,820

RℓA
A ≤ 3 |RℓA−1

A | ≤ 3
√

n.821

Using the fact that for all k ≥ 2, |Rk
A| ≤ ( 2

3 )ℓA−1−k|RℓA−1
A |,822

|Closed(A)| =
∑

k∈[0,ℓA−1] |Rk
A| = 1 + c +

∑
k∈[2,ℓA−1] |Rk

A|
≤ 1 + c +

∑
k∈[2,ℓA−1](

2
3 )ℓA−1−k

√
n

≤ 1 + c + 3
√

n ∈ O(
√

n)
823

◀824

We now prove that Bc is proper.825

▶ Lemma 29. For all c ≥ 1, Bc is a proper set of templates.826

Proof. Let c ≥ 1. Let A, B ∈ Bc
n. Assume that there exists a complete template C ∈ CAutn827

such that C extends both A and B. Let src = src(A) = src(B) = src(C).828

By induction on k, let us prove that Rk
A = Rk

C for all k ∈ [0, ℓA]. For k = 0, the property829

trivially holds. Assume that for some k ≥ 1, we have shown that for all i < k, Ri
A = Ri

C , we830

will show that Rk
A = Rk

C. We first show that Rk
A ⊆ Rk

C. Let s ∈ Rk
A. By definition of Rk

A831

there exists a transition s
α−→
A

t with t ∈ Rk−1
A . As C extends A, this transition also belongs to832

C (i.e., s
α−→
C

t) and hence dC(s, src) ≤ k. We cannot have dC(s, src) = i < k as Ri
C = Ri

A by833

induction hypothesis. Hence dC(s, src) = k and Rk
A ⊆ Rk

C . We now show that Rk
C ⊆ Rk

A. Let834

s ∈ Rk
C; there must exist a transition s

α−→
C

t with t ∈ Rk−1
C = Rk−1

A . As Rk−1
A ⊆ Closed(A),835

this transition must also belong to A (i.e., s
α−→
A

t) and dA(s, src) ≤ k. We cannot have836

dA(s, src) = i < k as Ri
A = Ri

C by induction hypothesis. Hence dA(s, src) = k and Rk
C ⊆ Rk

A.837

Similarly we have that Rk
B = Rk

C for all k ∈ [0, ℓB]. This implies that ℓA = ℓB = ℓ and for838

all k ∈ [0, ℓ], Rk
A = Rk

B = Rk
C . In particular Closed(A) = Closed(B).839

For all k ∈ [0, ℓ − 1], for all t ∈ Rk
A and for all s ∈ [n], we have s

α−→
A

t if and only s
α−→
C

t840

because Rk
A ⊆ Closed(A). For all k ∈ [0, ℓ − 1], for all t ∈ Rk

B, s ∈ [n] and α ∈ Σ, we have841

s
α−→
A

t if and only s
α−→
C

t because Rk
B ⊆ Closed(A).842

As all transitions in A and B target a state in some Rk
A = Rk

B for k ∈ [0, ℓ] (by Condition843

3 in the definition of Bc), we have shown that A = B. ◀844

▶ Proposition 30. For c sufficiently large, Bc occurs with visible probability.845

The remainder of this section is devoted to the proof of Proposition 30.846

Proof. Let c ≥ 1. For a fixed state p ∈ [n], we will describe a process to draw a complete847

template A uniformly at random CAutn with src(A) = p. Intuitively this process starts848

by drawing the transitions from R1
A to src(A), then from R2

A to R1
A, and so on until Rk

A849

becomes empty or its size becomes greater than
√

n. Once all such transitions have been850

drawn, the missing transitions are drawn. After proving that this process generates complete851

templates with uniform probability (amongst the complete templates having src(A) = p), we852

use it to obtain a lower-bound δc, that only depends on c, for the probability that a random853

complete template extends Bc for n sufficiently large. Finally we show that for c sufficiently854

large, δc > 0.855

◦ Description of the process856
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The process builds the template by steps starting with a template with no transitions. At857

the start of step i ≥ 1, the process will have created a template Ai−1 and two disjoint sets of858

states Si−1 and Ri−1. During step i, the process will add transitions to Ai−1 to construct Ai859

and two disjoint sets of states Si and Ri. The process will maintain the invariant that the860

states that are not in Si ∪ Ri do not have out-going transition in Ai. And we will show861

that for all i ≥ 1, the set Ri will be equal to the set Ri
A of the template A produced by the862

process and Si =
⋃

0≤k≤i−1 Rk. Observe that the set Bi defined in the main article is just863

Bi = Ri ∪ Si, but we do not need it in the appendices.864

Initially, we take for A0 a template with n states with no transitions and src(A0) = p,865

R0 = {src(A0)} and S0 = ∅.866

During step i + 1 ≥ 1, for each state s ̸∈ Si ∪ Ri and each α ∈ Σ, we decide with867

probability |Ri|
n−|Si| if we add the α-transition out-going from s. If the transition is added, we868

draw its target uniformly at random in Ri.869

We denote by Ai+1 the resulting template. We take Ri+1 to be the set of states for which a870

transition was added at this step and take Si+1 = Si ∪ Ri. If Ri+1 is empty, |Ri+1| ≥
√

n or871

Si+1 ∪ Ri+1 = [n], we move to the final step.872

If we enter the final step after step ℓ, we draw dst(A) uniformly at random in [n].873

Then we consider all states s ∈ [n] and all α ∈ Σ such that the α-transition outgoing from s874

is missing and we add it as follows:875

if s is equal to src(Aℓ) = p , we draw the target of the transition uniformly at random in876

[n],877

if s belongs to Ri for some i ∈ [ℓ], we draw the target uniformly at random in [n] \ Si,878

and otherwise if s ∈ [n] \ Sℓ+1 (with Sℓ+1 = Sℓ ∪ Rℓ), we draw a target uniformly at879

random in [n] \ Sℓ.880

◦ Proof that the process generates according to the uniform distribution881

Let us show this process constructs a complete template with src(A) = p according to the882

uniform distribution. For this, we fix a complete template B with src(B) = p and dst(B) = q883

and show that it is produced with probability
( 1

n

)2n+1.884

Let ℓ ≥ 1 be the maximal value such that Rℓ
B either is empty or |Rℓ

B| ≥
√

n. We only885

consider the case where |Rℓ
B| ≥

√
n. The analysis for the other cases are similar. In particular,886

the process enters the final step after step ℓ.887

▷ Claim 31. The process can generate B in the final step if and only if for all i ∈ [ℓ],888

Ri = Ri
B and the transitions added during step i are precisely the transitions in B going889

from Ri
B to Ri−1

B .890

Proof of Claim 31. For the direct implication, assume that B can be generated in the final891

step.892

Toward a contradiction assume that there exists i ∈ [ℓ] such that Ri ̸= Ri
B and take i to893

be minimal. Assume that there exists s ∈ Ri
B \ Ri. By minimality of i, s does not belong894

to any Rk for k < i, so at the end of step i, s has no out-going transition ; as no out-going895

transition to Si =
⋃

k<i Rk =
⋃

k<i Rk
B will be added by the process for s, s has not out-going896

to
⋃

k<i Rk
B which contradicts the fact that s ∈ Ri

B.897

Similarly assume that there exists s ∈ Ri \ Ri
B. As all transitions of Ai also belong to B,898

dAi(s, p) ≥ dB(s, p), hence s belongs to Rk
B for k < i. By minimality of k, s would belong to899

Rk for k − 1 which contradicts the fact that s belongs to Ri.900

We have now shown that Ri = Ri
B for all i ∈ [ℓ].901

As all transitions added by the process will belong to B, it is enough to show that all902

transitions of B from Ri to Ri−1 are added by the process. Assume toward a contradiction,903
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that for some i ∈ [ℓ], there exists a s ∈ Ri
B and t ∈ Ri−1

B and α ∈ Σ such that s
α−→
B

t but904

s
α−→ t is not added during step i. As the transition Ri−1

B = Ri it can only be added at step i905

or in the final step. However in the final step as it source belongs to RB
i = Ri its target is906

drawn from [n] \ Si which excludes Ri−1 = Ri−1
B and establishes the contradiction, therefore907

proving the direct implication.908

For the converse implication, assume that for all i ∈ [1, ℓ+1], Ri = Ri
B and the transitions909

added during step i are precisely the transitions in B going from Ri
B to Ri−1

B . Consider a910

transition s
α−→
B

t of B which is missing in Aℓ. If s = p it can be added in the final step, if911

s ∈ Rk
B = Rk for some k ≤ ℓ then its target t cannot belongs to Rk′

B for k′ < k − 1 and it912

cannot belong to Rk
B by assumption, so it can be added by the process. Similarly if s does913

not belong to any Rk
B (and hence to any Rk), its target can only belong to [n] \

⋃
k∈[ℓ−1] Rk

B914

and can be drawn by the process. ◀915

For all i ∈ [ℓ], we denote by ri > 0 the size of Ri
B and by ti the number of transitions916

going from Ri
B to Ri−1

B in B. We also take s0 = 0, si = 1 +
∑i−1

k=1 rk for i ∈ [1, ℓ]. Assuming917

that the process can still generate the template B at the beginning of step i, we will have918

|Ri| = ri and |Si| = si for all i ∈ [ℓ].919

For i ∈ [ℓ], let pi be the probability that we can still generate B at the end of step920

i knowing that B could still be generated at the beginning of step i. This probability921

corresponds to the probability of adding exactly the transitions of B that go from Ri
B to Ri−1

B922

during step i. Each of the ti transitions from Ri
B to Ri−1

B is added with probability |Ri−1|
n−|Si−1|923

and has a probability 1
|Ri−1| to have the correct target and there are ti such transitions.924

There are 2n − 2 − 2r1 − . . . − 2ri−1 − ti = 2n − 2si − ti other transitions considered in this925

step, which are not added with probability 1 − |Ri−1|
n − |Si−1|

.926

We have for all i ∈ [ℓ],927

pi =
(

1
n − si−1

)ti
(

1 − ri−1

n − si−1

)2n−2si−ti

.928

For the final step and for all i ∈ [ℓ], let qi be the probability of drawing, in the final step,929

the missing transitions whose source belongs to Ri in accordance with B knowing that when930

entering the final step, the process can still produce B. There are 2ri − ti missing transitions931

with source in Ri, each having a probability 1
n−si

to be drawn. So we have for all i ∈ [ℓ],932

qi =
(

1
n − si

)2ri−ti

.933

Let γ be the probability of drawing dst(B) and the missing transitions whose source is either934

src(B) or a state which does not belong to one of the Ri according to B again assuming that935

when entering the final step B can still be generated:936

γ = 1
n

1
n2 ( 1

n − sℓ
)2n−2sℓ+1 .937

The probability pB that the process generates B is:938

pB =
(

ℓ∏
i=1

pi

)
·

(
ℓ∏

i=1
qi

)
· γ =

(
ℓ∏

i=1
piqi

)
· γ.939

Remark that for all i ∈ [1, ℓ], si + ri = si+1, hence :940

piqi = (n − si)2n−2si+1(n − si−1)−2n+2si .941
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Hence942

ℓ∏
i=1

piqi = (n − sℓ)2n−2sℓ+1n−2n+2.943

It follows that:944

pB = (n − sℓ)2n−2sℓ+1n−2n+2 1
n3 ( 1

n − sℓ
)2n−2sℓ+1 =

(
1
n

)2n+1
.945

So we have proved that the process generates according to the uniform distribution.946

◦ Lower-bound for the probability to extend Bc
947

We now want to show that for c large enough, there exists a constant δc > 0 such that948

for n large enough the following event, denoted by X(n), occurs with probability at least δc:949

the process enters the final step after step ℓ because rℓ ≥
√

n for some ℓ ≥ 2,950

r1 = c and ri ∈ [ 3
2 ri−1, 3ri−1] for all i ∈ [2, ℓ],951

during the final step, all missing transitions for vertices in Ri are drawn in [n] − Sℓ for952

i ∈ [0, ℓ − 1].953

Using Claim 31, assuming that X(n) occurs, the template A drawn at the end of the954

process extends the template Aℓ drawn at the end of step ℓ if we set Closed(Aℓ) = Sℓ and955

hence it extends Bc. Therefore, this is enough to establish the proposition.956

We first need some notations to describe the different sizes for the set Ri’s that can occur957

during the process.958

For k ∈ [1, n], V
(n)

k denotes the set of k-tuples (r1, . . . , rk) ∈ Nk such that r1 + . . .+rk ≤ n959

with r1 + · · · + rk−1 < n and 0 < ri <
√

n for all i ≤ k − 1. We take V (n) =
⋃n

k=1 V
(n)

k which960

corresponds to the sizes for the sets Ri that can occur at the end of step k.961

For k ∈ [n] and r = (r1, . . . , rk) ∈ V
(n)

k , we say that r succeeds for c if r1 = c and962

ri ∈ [ 3
2 ri−1, 3ri−1] for all i ∈ [2, k] and rk ≥

√
n.963

For k ∈ [n] and r = (r1, . . . , rk) ∈ V
(n)

k , we say that r fails for c if either k = 1 and r1 ̸= c,964

or k ≥ 2, r1 = c, ri ∈ [ 3
2 ri−1, 3ri−1] for all i ∈ [2, k − 1] and rk ̸∈ [ 3

2 rk−1, 3rk−1].965

▶ Remark 32. If r = (r1, . . . , rk) ∈ V
(n)

n succeeds or fails for c then sk−1 = 1+
∑k−1

i=1 ri ≤ 4
√

n966

for n large enough. Indeed sk−1 ≤ 1 + c +
∑k−1

i=2 ( 2
3 )k−1−irk−1 ≤ 1 + c + rk−1

∑∞
j=0( 2

3 )j ≤967

1 + c + 3
√

n.968

For r = (r1, . . . , rk) ∈ V (n), we consider the event E(n)(r) that the process reaches the969

end of step k having drawn sets R1, . . . , Rk of respective sizes r1, . . . , rk. For a subset M970

of V (n), we denote by E(n)(M) =
⋃

r∈M E(n)(r). Instead of writing P(E(n)(M)), we will971

simply write P(M).972

▷ Claim 33. For n ≥ 10, P(r ∈ V (n) succeeds for c) + P(r ∈ V (n) fails for c) = 1.973

Proof. Let n ≥ 10. Let P (n) be the set of r = (r1, . . . , rk) ∈ V (n) with k ≤ n such that974

either rk ≥
√

n, rk = 0 or r1 + . . . + rk = n. P (n) denotes the set of tuples of sizes that can975

occur when the process enters the final step. In particular, P(r ∈ P (n)) = 1.976

The key property here is that for any r = (r1, . . . , rk) ∈ P (n), either r succeeds for c or977

there exists a prefix r′ of r which fails for c. To see this, consider r = (r1, . . . , rk) ∈ P (n)
978

such that no prefix of r fails for c. If rk ≥
√

n, r succeeds. If rk <
√

n, we must have979

r1 + · · · + rk = n with r1 = c and for all i ∈ [2, k], ri ∈ [ 3
2 ri−1, 3ri−1]. We will see that this980

situation cannot occur. Indeed we have:981

n = r1 + · · · + rk ≤ rk

(
1 + 2

3 + · · · +
(

2
3

)k−1
)

≤ rk ·
∞∑

i=0

(
2
3

)i

= 3rk ≤ 3
√

n982
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Hence for n ≥ 10, this situation cannot occur.983

Using the law of total probabilities,984

P(r ∈ P (n)) = P(r ∈ P (n) succeeds for c) +
∑

s∈V (n)

s fails for c

∑
r∈P (n):

s prefix of r

P(r)

= P(r ∈ V (n) succeeds for c) +
∑

s∈V (n)

s fails for c

P(s)

= P(r ∈ V (n) succeeds for c) + P(r ∈ V (n) fails for c)

985

◀986

In the rest of the proof, we will use the following fact which directly follows from the987

definition of the process.988

▷ Claim 34. Assuming that the process enters step k having previously drawn sets989

R1, . . . , Rk−1 of respective size r1, . . . , rk−1, the size rk of the set Rk drawn in step k990

follows the distribution Bin
(

n − sk−1 − rk−1,
2rk−1

n − sk−1
−

r2
k−1

(n − sk−1)2

)
.991

Proof of Claim 34. Each state s in [n] \ Sk−1 ∪ Rk−1 has two missing transitions, each992

having probability rk−1
n−sk−1

to add s to Rk. Hence each of these n−sk−1 − rk−1 states belongs993

to Rk with probability 2rk−1

n − sk−1
−

r2
k−1

(n − sk−1)2 . ◀994

▷ Claim 35. For c large enough, there exists a constant γ > 0 such that for n large enough,995

the probability that the process reaches the final step without failing is:996

P(r ∈ V (n) succeeds for c) ≥ γ.997

Proof of Claim 35. Using Claim 33,998

P(r ∈ V (n) succeeds for c) = 1 −
n∑

k=1
P( r ∈ V

(n)
k fails for c)999

If we denote by p
(n)
c the probability that R1 has size c, we have P( r ∈ V

(n)
1 fails for c) =1000

1 − p
(n)
c . For k ≥ 2,1001

P( r ∈ V
(n)

k fails for c) =
∑

r∈V
(n)

k
fails for c

P(E(n)(r1, . . . , rk)|E(n)(r1, . . . , rk−1))P(E(n)(r1, . . . , rk−1))1002

For (r1, . . . , rk) which fails for c, we either have rk < 3
2 rk−1 or rk > 3rk−1. By Remark 32,1003

sk−1 < 4
√

n for n large enough. Combining Claim 34 and Lemma 20 (with t = rk−1 and1004

f = sk−1), there exists a constant β > 0 such that for n large enough:1005

P(E(n)(r1, . . . , rk)|E(n)(r1, . . . , rk−1)) ≤ 2e−βrk−1 ≤ 2e−β( 3
2 )k−2c

1006

Hence for n large enough,1007

P( r ∈ V
(n)

k fails for c) =
∑

r∈V
(n)

k
fails for c

P(E(n)(r1, . . . , rk)|E(n)(r1, . . . , rk−1))P(E(n)(r1, . . . , rk−1))1008

≤ 2e−β( 3
2 )k−2c

∑
r∈V

(n)
k

fails for c

P(E(n)(r1, . . . , rk−1))

︸ ︷︷ ︸
≤p

(n)
c

1009

≤ 2e−β( 3
2 )k−2cp(n)

c10101011
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Hence, for n large enough,1012

P( r ∈ V (n) succeeds for c) ≥ 1 − (1 − p
(n)
c ) −

∑n
k=2 2e−β( 3

2 )k−2cp
(n)
c

≥ p
(n)
c (1 − 2

∞∑
i=0

e−β( 3
2 )ic

︸ ︷︷ ︸
=λc

)1013

As for i ≥ 5, it holds that ( 3
2 )i ≥ 3

2 i, we have:1014

λc ≤
∑4

i=0 e−β( 3
2 )ic +

∑∞
i=5(e−β( 3

2 )c)i

=
∑4

i=0 e−β( 3
2 )ic + e−β5( 3

2 )c

1 − e−β( 3
2 )c

1015

Hence λc tends to 0 as c tends to infinity. In particular, for c large enough, λc < 1/4. If we1016

take such a c, we can conclude using Lemma 21, which ensures that p
(n)
c tends to a constant1017

as n tends to infinity. ◀1018

▷ Claim 36. There exists a constant β > 0 such that for n large enough and for all r ∈ V
(n)

k1019

that does not fail: P(X(n)|E(n)(r)) ≥ β.1020

Proof of Claim 36. Let r = (r1, . . . , rk) ∈ V
(n)

k such that r does not fail. Assume that the1021

process reaches the final step having generated sets R1, . . . , Rk of respective sizes r1, . . . , rk.1022

Let t1, . . . , tk−1 be the number of transitions missing for the states in R1, . . . , Rk−1 at the1023

beginning of the final step. Remark that ti ≤ 2ri for all i ∈ [1, k − 1].1024

The probability p that for all i ∈ [0, k − 1], none of the missing transitions with a source1025

in Ri has its target in Sk is:1026

p =
(

n−sk

n

)2 ·
∏k−1

i=1

(
n−sk

n−si

)ti

≥
(

n−sk

n

)2+t1+···+tk−1

≥
(

n−sk

n

)2sk−1 ≥
(

n−4
√

n
n

)8
√

n

,

1027

as by Remark 32, sk ≤ 4
√

n for n large enough. We have the following lower-bound for p1028

independently of the ti’s and the ri’s for n large enough.1029

p ≥
(

n − 4
√

n

n

)8
√

n

︸ ︷︷ ︸
→e−32>0

1030

Hence there exists β > 0 such that for n large enough P(X(n)|E(n)(r)) ≥ β. ◀1031

For c large enough and n large enough, we have:1032

P(X(n)) =
∑

r∈V (n)

r succeeds for c

P
(
X(n) ∩ E(n)(r)

)
=

∑
r∈V (n)

r succeeds for c

P
(
X(n)|E(n)(r)

)
· P(E(n)(r))

≥ β ·

 ∑
r∈V (n)

r does not fail for c

P(E(n)(r))

 by Claim 36

≥ γβ by Claim 35

1033

This concludes the proof of Proposition 30. ◀1034
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C.4 Forward tree1035

We denote by F the set of templates A ∈ Autn such that:1036

1. A extends some (unique) template B ∈ F with ℓB the first index such that RℓB

B ≥
√

n,1037

2. Closed(A) = Closed(B),1038

3. Let Paths be the set of words of the form aw with w ∈ Σ∗ with |w| ≤ ln(n)
2 . Let u1, . . . , um1039

be an enumeration of the words in Paths in an increasing length-lexicographic order.1040

There exists tA ∈ [1, m] such that:1041

a. for all i ̸= j ∈ [1, tA], δA(src(A), ui) ̸= δA(src(A), uj)1042

b. for all i ∈ [1, tA − 1], δA(src(A), ui) ̸∈ RℓB
B and δA(src(A), utA) ∈ RℓB

B .1043

c. every transition belonging to A but not B is of the form δA(src(A), u) α−→ δA(src(A), uα)1044

with uα = ui for some i ∈ [1, tA].1045

▶ Lemma 37. For all c ≥ 1 and for all A ∈ F, we have:1046

1. Closed(A) ∈ O(
√

n), Support(A) ∈ O(
√

n),1047

2. there exists a word w ∈ Σ+ such that src(A) w=⇒
A

src(A) and if we take wA to be the1048

smallest such word for the length-lexicographic ordering, we have |wA| ∈ Θ(ln(n)).1049

Proof. For the proof of Property 1. Let A be a template in F. By definition A extends some1050

B ∈ B. By Lemma 28, |Closed(B)| ∈ O(
√

n) and hence |Closed(A)| = |Closed(B)| ∈ O(
√

n).1051

As at most |Paths| ≤
√

n transitions belong to A and not B, |Support(A)| ≤ |Support(B)| +1052 √
n ∈ O(

√
n) by Lemma 28.1053

For the proof of Property 2, remark that as Closed(B) =
⋃

k∈[0,ℓB−1] Rk
B and A extends1054

B, for all k ∈ [0, ℓB], Rk
A = Rk

B.1055

We know that δA(src(A), utA) ∈ RℓB
B = RℓB

A and hence there exists a word v ∈ ΣℓB such1056

that src(A)
utA v
===⇒

A
src(A). Hence |wA| ≤ ℓB +

√
n + 1 ∈ O(

√
n) by Lemma 28.1057

Let w ∈ Σ+ be a word such that src(A) w=⇒
A

src(A). As src(A) has no outgoing b-transition1058

in A, w = au for some u ∈ Σ∗. Let t = δA(src(A), a). As δA(t, u) = src(A), t belongs to1059

Rℓ
A for some ℓ ≥ 0. As src(A) has no out-going transitions in B, the transition src(A) a−→ t1060

was added in A and as for all k ∈ [0, ℓB − 1], Rk
A = Rk

B is closed in B, it follows that ℓ ≥ ℓB.1061

Hence |w| ≥ 1 + ℓB ∈ Ω(ln(n)) by Lemma 28. Hence |wA| ∈ Ω(ln(n)).1062

◀1063

▶ Lemma 38. The set of templates F is proper.1064

Proof. Let A, B ∈ F be two templates and a complete template C such that C extends both1065

A and B.1066

As B is proper, there exists a unique automaton D in B such that A, B and C all extend1067

the same template D. Let src = src(A) = src(B) = src(C) = src(D).1068

Let t = min(tA, tB). For all i ∈ [1, t], δA(src, ui) = δC(src, ui) = δB(src, ui). Hence1069

tA = tB. By Condition 3.a of the definition of F, this implies that A = B. ◀1070

▶ Proposition 39. The set of template F occurs with visible probability.1071

Proof. By Lemma 27, it is enough to show that F occurs with visible probability in B.1072

Let B in Bn. We want to provide a lower-bound for P(A ∈ CAutn extends F|A extends B).1073

By Lemma 23, to draw uniformly at random a complete automaton A ∈ CAutn knowing1074

that it extends B, it is enough to start from B and draw independently dst(A) uniformly at1075

random in [n] and the targets of all missing transitions uniformly at random in [n]\Closed(B).1076
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We will now describe a process which draws the target of the missing transitions in B in1077

a particular order but still independently and uniformly at random in [n] \ Closed(B) and1078

draws dst(A) uniformly at random in [n].1079

The process starts with the template B and at each step draws the target of a transition1080

which is missing so far or does nothing at this step. If C is the automaton built at some1081

step of the process, we will say that we try to draw the transition for a word uα ∈ Σ+ with1082

u ∈ Σ∗ and α ∈ Σ from s ∈ [n] to mean that that if δC(s, u) is defined and δC(s, uα) is not,1083

we draw the target of the missing α-labelled transition outgoing from δC(s, u) uniformly at1084

random in [n] \ Closed(B) and otherwise we do nothing.1085

Recall that Paths denotes the set of words of the form aw with w ∈ Σ∗ with |w| ≤ ln(n)
2 ,1086

and that u1, . . . , um is an enumeration increasing for the length-lexicographic order of the1087

words in Paths. The process tries to draw the transitions for the words u1, . . . , um successively.1088

Then it draws dst(A) uniformly at random in [n] and the target of each missing transition1089

uniformly at random in [n] \ Closed(B).1090

Consider an urn containing the b(n) states in [n] \ Closed(B) where the g(n) states in1091

RℓB
B are colored green. The probability that the process described above produces a template1092

extending F is equal to the probability of drawing a green without picking the same ball twice1093

when drawing with replacement in the urn in less than t(n) = |Paths| ∈ O(
√

n) draws. As1094

n − b(n) = |Closed(B)| ∈ O(
√

n) and g(n) ∈ Θ(
√

n) (by Lemma 28), we can use Property 21095

of Lemma 18 to conclude that there exists a constant γ > 0 such that for n sufficiently large,1096

P(A ∈ CAutn extends F|A extends B) ≥ γ. This concludes the proof.1097

◀1098

C.5 Discovering the b-threads1099

Let n ≥ 0 and d ≥ 1. Consider a template B ∈ Fn with wB ∈ Σ∗ the smallest word1100

for the length-lexicographic order such that src(B) awB===⇒
B

src(B). For all (d + 1)-tuples1101

λ = (λ0, λ1, . . . , λd) ∈ Nd+1 and ℓ = (ℓ0, ℓ1, . . . , ℓd) ∈ Nd+1 , we say that a template1102

A ∈ Autn is (B, λ, ℓ)-shaped if:1103

1. A extends B with Closed(A) = Closed(B),1104

2. dst(A) is defined and does not belong to Support(B),1105

3. the transitions in A that are not in B are all outside of Support(B) and can be partitioned1106

into the following disjoint sets:1107

a simple path form dst(A) labeled by wB(awB)d−1,1108

a b-thread from r0 = src(A) of length λ0,1109

a b-thread from ri = wB(awB)i−1 of length λi with a cycle length ℓi for i ∈ [1, d].1110

For d ≥ 1, the set of templates Ld contains all (B, λ, ℓ)-shaped template A with B ∈ Fn,1111

λ ∈ [[
√

n, 2
√

n ]]d+1 and ℓ ∈ [[
√

n
2 ,

√
n ]]d+1.1112

▶ Lemma 40. For all d ≥ 0, the set Ld is proper.1113

Proof. Let A ≠ B ∈ Ld be two templates. Assume that there exists a complete template C1114

such that C extends both A and B.1115

As F is proper, there exists a unique automaton D in B such that A, B and C all extend1116

the same template D.1117

Let src = src(A) = src(B) = src(C) = src(D) and dst = dst(A) = dst(B) = dst(C).1118

By a direct induction on the length of the words, we can show that for all u ∈ b∗,1119

δA(src, u) = δC(src, u) = δB(src, u). Similarly we can show for all non-empty prefix u of a1120

word in {wD(awD)ibn|i ∈ [0, d − 1]} that δA(dst, u) = δC(dst, u) = δB(dst, u).1121
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With the definition of Ld, this implies that A = B. ◀1122

▶ Proposition 41. For d ≥ 1, the set of templates Ld occurs with visible probability.1123

Proof. Let d ≥ 1. By Lemma 27 and Proposition 39, it is enough to show that Ld occurs1124

with visible probability in F.1125

Consider an automaton B ∈ Fn. Let pB be the probability that a complete templates1126

A ∈ CAutn drawn uniformly at random from the set of complete template extending B1127

extends Ld. By Lemma 23, to draw uniformly at random a complete template A extending1128

B, it is enough to independently draw uniformly at random dst(A) in [n] and the target of1129

each transition missing in B in the set [n] \ Closed(B).1130

We will now describe a process which draws the target of the missing transitions in B in1131

a particular order but still independently and uniformly at random in [n] \ Closed(B).1132

The process starts with the automaton B and at each step draws the target of a transition1133

which is missing so far or does nothing at this step. If C is the automaton built at some step1134

of the process, we will say that we try to draw the transition for a word uα ∈ Σ+ from some1135

state s ∈ [n] to mean that if δC(s, u) is defined and δC(s, uα) is not, we draw the target of the1136

missing α-labelled transition outgoing from δC(s, u) uniformly at random in [n] \ Closed(B)1137

and otherwise we do nothing.1138

The process is decomposed into following phases:1139

In step 0, we draw uniformly at random dst(A) in [n]. If dst(A) belongs to Support(B),1140

the process is said to fail at step 0.1141

In step 1, we successively try to draw the transition from dst(A) for all the non-empty1142

prefixes of the word wB(awB)d−1 by increasing length. If the target of one of the added1143

transition belongs Support(B) or is drawn twice during this step, we say that the process1144

fails at step 1.1145

In step 2, we successively try to draw the transition from src(A) for the words b, bb, . . . , bn.1146

If the b-thread from src(A) contains a state in Support(B) or drawn in the previous steps1147

or if its length is not in [
√

n, 2
√

n] and its cycle length is not in [
√

n
2 ,

√
n], we say that1148

the process fails at step 2.1149

For i ∈ [1, d], in step i + 2, we similarly try to draw the b-thread from wB(awB)i−1 with1150

the same failure condition.1151

Finally we draw the target of all missing transitions in some fix order and take of all the1152

states to be closed.1153

If we do not take the failure into account, this process generates uniformly at random1154

complete templates extending B. If the process does not fail at any step, the complete1155

template drawn is (B, λ, ℓ)-shaped with λ ∈ [[
√

n, 2
√

n ]]d+1 and ℓ ∈ [[
√

n
2 ,

√
n ]]d+1.1156

The probability p that the process does not fail at any step is equal to p0 · p1 · · · pd+21157

where p0 is the probability that the process does not fail during step 0 and for all i ∈ [1, d+2],1158

pi is the probability that the process does not fail at step i knowing that it did not fail during1159

the previous steps.1160

Using Lemma 18, we will show that for all i ∈ [0, d + 2] there exists a constant ci > 01161

only depending on d such that for n large enough pi ≥ ci. This will imply that there exists a1162

constant c > 0, such that for n sufficiently large pB ≥ p ≥ c which will conclude the proof.1163

Recall that by Lemma 37, we have |wB| ∈ Θ(ln(n)), |Support(B)| ∈ O(
√

n) and1164

|Closed(B)| ∈ O(
√

n).1165

The probability that the process does not fail in step 0 is n−|Support(B)|
n = 1 + O( 1√

n
) .1166

For the probability p1 that the process does not fail in step 1 assuming it did not fail in1167

step 0, we let t(n) = |wB(awB)d−1| ∈ Od(
√

n). In step 1, we draw the target of at most t(n)1168
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transitions in the set [n] \ Closed(B) of size b(n) ≤ n with n − b(n) = |Closed(B)| ∈ O(
√

n).1169

The process does not fail if we never draw the same state twice nor a state in Support(B)1170

whose size r(n) is in O(
√

n). By Property 1 of Lemma 18, there exists a constant c1 > 01171

only depending on d such that p1 ≥ c1 for n large enough.1172

Let i ∈ [2, d + 2]. We consider the probability pi that the process does not fail at step i1173

knowing it did not fail during the previous steps. Let Fi denote the set of states drawn in the1174

previous phases. As the process is assumed not to have failed in the previous steps, it holds1175

that |Fi| ≤ Od(
√

n). In step i, we draw the b-thread starting from ri−2. For the process not1176

to fail in step i, we need to draw states with replacement in [n] \ Closed(B) of size b(n) ≤ n1177

with n − b(n) ∈ O(
√

n) without drawing a state in Fi ∪ Support(B) of size r(n) ∈ Od(
√

n)1178

with the first repetition occurring at time λ ∈ [[
√

n, 2
√

n ]] and the state drawn twice was1179

first drawn at a time ℓ with λ − ℓ ∈ [[
√

n
2 ,

√
n ]] (with convention that ri−2 was drawn at time1180

0). By Property 3 of Lemma 18 there exists a constant ci > 0 only depending on d such that1181

pi ≥ ci for n sufficiently large. ◀1182

C.6 Restatement of Theorem 9 and its proof1183

For d ≥ 1, let Td denote the set of almost deterministic transition structures with initial1184

state A = (n, δA, p
a−→ q, i0) such that p is reachable from the initial state i0 and the complete1185

template in CAutn (i.e., (n, δA, src(A) = p, dst(A) = q)) extends Ld.1186

We can now prove Theorem 9 which is slightly reformulated below.1187

▶ Theorem 42 (Reformulation of Theorem 9). Let d ≥ 1. The set of almost deterministic1188

transition Td occurs with visible probability for the uniform distribution over size-n almost1189

deterministic transition structure. Furthermore, for all A = (n, δA, p
a−→ q, i0), the state p is1190

reachable from i0 and there exists a word w of length Θ(log n) such that δ(p, w(aw)d−1) =1191

{p0, . . . , pd} is a set of d + 1 states, and the b-threads starting from the pi’s have lengths λi1192

in [[
√

n, 2
√

n ]] and their cycle length is in [[ 1
2
√

n,
√

n ]].1193

Moreover for the uniform distribution on Tn, the cycle lengths are uniform and independent1194

random elements of [[ 1
2
√

n,
√

n ]].1195

Proof. For a complete template A ∈ CAutn, we denote by SSCmax(A) the terminal strongly1196

connected component with maximal size and, if there are several possible, the one containing1197

the smallest state.1198

For all n ≥ 1, we consider the following events that can occur when drawing uniformly at1199

random complete templates A in CAutn:1200

all states of A can reach SSCmax(A) (event Rn),1201

A extends Ld (event Tn),1202

all cycles outside of SSCmax(A) have length at most ln(ln(n)) (event Cn).1203

In [11], Grusho established that limn→∞ P(Rn) = 1 and in [5, Theorem 2], Cai and1204

Devroye proved that limn→∞ P(Cn) = 1. In Proposition 41, we have shown that there exists1205

a constant c > 0, such that for n sufficiently large, P(Tn) ≥ c.1206

Using the union-bound property on the complements, we have:1207

P(Rn ∩ Tn ∩ Cn) ≥ P(Tn) − (P(Rc
n) + P(Cc

n))︸ ︷︷ ︸
→0

1208

Hence for n large enough, P(Rc ∩ Tn ∩ Cn) ≥ c
2 .1209

So if we draw uniformly at random a complete template A ∈ CAutn and an initial state i0,1210

then with visible probability, we have that A extends Ld, all the states can reach SSCmax(A)1211
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and all cycles outside of SSCmax(A) have length at most ln(ln(n)). As A extends Ld, there1212

is a cycle going through src(A) with a length in Θ(
√

n). So for n large enough, src(A) must1213

belong to SSCmax(A) and is therefore reachable from the initial state i0 (or any other state).1214

It only remains to prove that for the uniform distribution on Tn, the cycle lengths are1215

uniform and independent random elements of [[ 1
2
√

n,
√

n ]].1216

Let B ∈ Fn, λ ∈ [[
√

n, 2
√

n ]]d+1 and ℓ, ℓ′ ∈ [[ 1
2
√

n,
√

n ]]d+1, the set of almost deterministic1217

transition structures with initial state that are (B, λ, ℓ)-shaped is in one-to-one correspondence1218

with the set of almost deterministic transition structures with initial state that are (B, λ, ℓ′)-1219

shaped. Indeed as Ld is proper, the transformation modifying the cycle length of the different1220

b-threads from ℓ to ℓ′ while preserving the thread length λ is a one-to-one.1221

Let ℓ ∈ [[ 1
2
√

n,
√

n ]]d+1. Consider the probability pℓ that an almost deterministic trans-1222

ition structure with initial state A taken uniformly at random from Td is (B, λ, ℓ)-shaped1223

for some B ∈ F and some λ ∈ [[
√

n, 2
√

n ]]d+1. As Ld is proper, we can use the law of total1224

probabilities:1225

pℓ =
∑

B∈F

λ∈[[ 1
2

√
n,

√
n ]]d+1

P(A ∈ Td is (B, λ, ℓ)-shaped)

=
∑

B∈F

λ∈[[ 1
2

√
n,

√
n ]]d+1

P(A ∈ Td is (B, λ, ℓ′)-shaped)

= pℓ′

1226

◀1227

C.7 Proofs of the auxiliary lemmas and propositions1228

In our proof of Theorem 9, we have established the proof of all the auxiliary lemmas and1229

propositions presented in the article. For completeness, we will briefly describe where these1230

lemmas and propositions have been established.1231

▶ Lemma 43 (Restatement of Lemma 5). Let p be a random state of a random n-state1232

deterministic transition structure. With visible probability, the
√

n-backward tree from p1233

exists, has depth τ ∈ Θ(log n), contains between
√

n and 3
√

n extremal leaves, i.e. states in1234

Rτ (p), and has a total number of nodes in Θ(
√

n).1235

Proof. This is a direct consequence of the fact that B occurs with visible probability (cf.1236

Lemma 28 and Proposition 30). ◀1237

▶ Lemma 44 (Restatement of Lemma 6). For the uniform distribution on size-n transition1238

structures having Tp as
√

n-backward tree from p, with visible probability the breadth-first1239

traversal starting at r := δa(p) hits an extremal leaf of Tp before it discovers the same state1240

twice, and it does this in at most
√

n steps.1241

Proof. The proof of this lemma is almost identical to proof of Proposition 39 which shows1242

that F occurs with visible probability in B. ◀1243

▶ Proposition 45 (Restatement of Proposition 7). With visible probability, an n-state transition1244

structure taken uniformly at random is p-compatible, where p is also taken uniformly at1245

random and independently in [n]. In this case, the p-substructure is unique, has O(
√

n)1246

states, and contains a circuit around t labelled aw, where w is uniquely determined using the1247

transitions of the p-structure only and we have |w| ∈ Θ(log n).1248

Proof. This is a direct consequence of the fact that F is proper and occurs with visible1249

probability (cf. Proposition 39 and Lemma 38). ◀1250
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▶ Lemma 46 (Restatement of 8). Let d ≥ 1. Let Xp be a p-substructure of size-n transition1251

structures. For the uniform distribution on size-n transition structures that are p-compatible1252

and that have Xp as p-substructure, if we add a random transition p
a−→ q by choosing q1253

uniformly at random and independently in [n], then with visible probability (i) the states1254

discovered while following the paths labeled by w(aw)d−1 are all different and do not belong to1255

Xp (ii) the b-threads starting at the pi’s, where p0 = p and pi = δ(s, a(aw)d−1), have length1256

between
√

n and 2
√

n, are pairwise disjoint and do not intersect Xp.1257

Proof. This is essentially proved when establishing that Ld occurs with visible probability1258

in F. ◀1259

D Proofs of Section 51260

D.1 Proof of Lemma 111261

Proof. Let p and q be two different states of C. Let x and y be the associated words of C1262

starting at p and q, respectively. Let k be the smallest integer such that δαk (p) = q and let u1263

be the prefix of length k of x, and v be the associated suffix: x = uv. Then y = vu. Assume1264

by contradiction that p and q are equivalent. This implies that x = y, as the automata1265

obtained by placing the initial states either on p or q recognize the same elements of {α}∗.1266

Hence uv = vu, and therefore u and v are the power of the same word by a classical result1267

on primitive words [15, Prop. 1.3.2 page 8]. This is in contradiction with the fact that C is1268

primitive. ◀1269

D.2 Proof of Lemma 121270

Proof. Let w = w(1) ⊙ w(2). Assume by contradiction that there exists some word z and1271

some k ≥ 2 such that w = zk. Let p be a prime number that divides k, we have w = (zk/p)p.1272

This yields that p divides ℓ = lcm(ℓ1, ℓ2) = ℓ1 × ℓ2 and that for every non-negative integer i,1273

wi = wi+ℓ/p (indices taken modulo ℓ). Obviously, p divides either ℓ1 or ℓ2, but not both. By1274

symmetry, assume that it divides ℓ1: ℓ1 = pr and ℓ/p = rℓ2.1275

Since w(2) has length at least 2 and is primitive, there exists an index i0 ∈ {0, . . . , ℓ2 − 1}1276

such that w
(2)
i0

= 0. Define ij = i0 + jℓ2, for any j ≥ 0. As indices in w(2) are taken1277

modulo ℓ2, we have w
(2)
ij

= 0 for all j ≥ 0. Therefore, w
(1)
ij

= 1 if and only if wij
= 1.1278

Thus w
(1)
ij

= w
(1)
ij+rℓ2

for all j ≥ 0. Moreover, rℓ2 is not a multiple of ℓ1: let α ≥ 1 be the1279

largest integer such that pα divides ℓ1, then pα does not divide rℓ2. Let s := rℓ2 mod ℓ1,1280

we just established that s ̸= 0, so we have the non-trivial relation w
(1)
ij

= w
(1)
ij+s for all j ≥ 0.1281

Recall that ij = i0 + jℓ2. As ℓ1 and ℓ2 are coprime, the ij take all values modulo ℓ1 when1282

j ranges from 0 to (ℓ1 − 1) and ij stays between 0 and lcm(ℓ1, ℓ2) doing so. Hence, for all1283

k ∈ {0, ℓ1 − 1}, w
(1)
k = w

(1)
k+s, for some s > 0. This is a contradiction with the fact that w(1)

1284

is primitive, concluding the proof. ◀1285

D.3 Proof of Corollary 151286

Proof. Let X be the event that w = 0ℓ or w = 1ℓ. We have P(X) = f ℓ
n + (1 − fn)ℓ. Since1287

changing the 0’s in 1’s and the 1’s in 0’s preserves primitivity, we can assume by symmetry1288

that fn ≤ 1
2 . By hypothesis, there exists some constant β > 0 such that β√

n
≤ fn and1289
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β√
n

≤ 1 − fn hence, as fn ≤ 1
2 , we have1290

f ℓ
n ≤ 1

2α
√

n
and (1 − fn)ℓ ≤

(
1 − β√

n

)α
√

n

.1291

Since (1 − β√
n

)α
√

n = e−αβ + O( 1√
n

), there exists some constant δ < 1 such that P(X) ≤ δ,1292

for n sufficiently large.1293

Let W be a random word under our distribution. For any w ∈ {0, 1}ℓ, the conditional1294

probability that W values w given that W /∈ {0ℓ, 1ℓ} is1295

P(W = w | X) =
{

0 if w = 0ℓ or w = 1ℓ,
P(w)

1−P(X) otherwise.
1296

Hence we are in the settings of Lemma 14, and the probability that w is not primitive, given1297

that w /∈ {0ℓ, 1ℓ} is at most 2
ℓ . This concludes the proof since:1298

P(w not primitive) = P(X) + P(w not primitive | X)P(X) ≤ δ + 2
ℓ

.1299

This concludes the proof. ◀1300

D.4 Proof of Corollary 161301

We first state Tóth’s theorem:1302

▶ Theorem 47 (Tóth [18]). For any d ≥ 2, there exists some constant Ad > 0 such that1303

d integers taken uniformly at random and independently in [n] are pairwise coprime with1304

probability Ad + O( logd−1 n
n ).1305

Now we can prove Corollary 16:1306

Proof. By Theorem 47, there are Nn := Ad+1⌊ 1
2
√

n⌋d+1(1 + o(1)) tuples of [[1, 1
2
√

n ]] whose1307

coordinates are pairwise coprimes and Mn := Ad+1⌊
√

n⌋d+1(1+o(1)) tuples of [[1,
√

n ]] whose1308

coordinates are pairwise coprimes. We conclude the proof by remarking that Mn − Nn is1309

asymptotically equivalent to Ad+1(1 − 1
2d+1 )n d+1

2 . ◀1310
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