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Introduction

many things in this paper!

We will see:
a method to learn via SGD a model which utilizes a discrete distribution
internally based on:

» perturb and MAP

» approximate differentiation

We won't cover:
€ oo distribit



Definition of the problem
Parameterized Mapping from X to ) via latent Z

» from input x € X extract features 8 = h,(x) € ©
» sample an internal (unobserved) discrete structure Z 5 z ~ p(+; 6)
> compute output structure f,(z) =y € Y

x@& p(:f»;\g) =z @y
/ZfQ;

.........................................

Figure 1: Illustration of the addressed learning prob-
lem. z is the discrete (latent) structure.

Mapping Parameters (u, v) = w set from data
D = {(%, %)}

m‘jn % ; L(x;,y,w
w)=E; .6 [e(fu(fly)}
)

where:
> L()“( 2
=h

e



Definition of p (1)

z in state space Z verifying linear constraints C.

exp 3(z-0) .0) — ;
p(2:6) = | Soccowizo) — =exp(B(z-0) — A(09)) ifzel(,
0 otherwise.
where A(0) = log ), .. exp 3(2’ - 0) is the log-partition function
Notations

> marginals 4(0) = E,p..0)[2] = >, p(z;0) x z (=~ average
structure)
> MAP(6) = argmax,ec z - 6

Useful tricks:
> sample via perturb and MAP : z ~ p(+;0) = z = MAP(0 + ¢) with ¢
Gumbel noise (or other distribution)
» approximate expectations via sampling:
s
21

S
Ezp(0)] Z MAP(0 + ¢;))

Ln\'—‘
tn\'—‘



Definition of p (2)

Fun fact: gradient of log-partion is the marginal vector!!

>, Veexp(z-0)
> exp(2' - 0)

VeA(B) = Vg IogZeXp (z-0) =

Z exp(z-0)Vez -0
N > exp(z’ - 6)

:Zp (z,0) V92~9=ZP(Z;9)2

= Eznp(z0)[2] = 1(6)



Example

Learning to explain in opinion analysis
> from a text x (describing products) learn to predict a review score y

» while providing a proof z: the best k words which explain the
assigned score

» Examples are (x,y), i.e z is not provided!
This means (high level):
1. retrieve a vector v for each word w (via lookup table, features. . .)
in x;
2. select k words wy ... wy from x from distribution p over k-tuples

. . k
3. predict a score, for instance f, = szl upT

Wp

variants

if input is a single sentence: proof z is a syntactic or semantic parse of
the input



Learning via Stochastic Gradient Descent

cheapest way to parameterize your system (and sometimes the only one)
W = Wk — Y L(%, ¥ w)

How to compute V,L(X, ¥;w) ?
Remember w = (u, v), so V,, = (V, V,) (as a column vector)

» Compute this gradient in two steps, one for u, one for v since they
play a different role

» v is part of the expectation

» u is inside the expectation



How to compute V,L(X,y; w) 7

For one example (%, ¥):

Vul (%, 9 w) = VuE,p.0)[(fu(2), 3)] (def. L)
= VUZp(z;B)E(fu(ﬁ), 9) (def. E)

= Z z;0)V U(fu(2),¥) (sum < gradient)

—]Ez~p ) [Vul(fu(2), 9)]

And:

Vul(fu(2),¥) = (Qufu(2)) T (V,l(y, §)) where y = f,(2) as variables

> easy to compute (manually or via autodiff)

» u is inside the expectation — approximate expectation with a few
samples



How to compute V,L(X,y;w) 7
» Remember that 6 = h,(X)

For one example (%, ¥)
VVL($(7 v w) = VvIEzwp(-;H)[g( fu(z)v y)] (def L)

=V.> p(z:0)(f(2),9)  (def. E)
=V Y p(z; h(X)(fu(2), 9) (def. 6)
= (8,hy(%)) Ve Z p(z;0)¢(fu(2),¥) (composition)

= (Oyhy(%))T Z Veop(z; 0)¢(fu(2),¥) (not an expectation)

» difficult to compute (manually or via autodiff) — need to enumerate
through all valid z (or use score function estimator)

» @ defines the expectation



Target Distribution and (Implicit) MLE (1)
target distribution g with the same form as p:

Equ(z;O/) [K(fu(z), y)] < EZNP(Z;G) [g(fu(z)7 }A’)]

» Idea: if we push p closer to g, loss is lower
» This the idea behind minimizing cross-entropy, behind minimizing:

£(6,0") = —Equ(z;e')UOg p(z;0')] = IEIZNq(Z;G’)[A(e) —z-6]

> New idea: replace VgL by (an approximation of) VgL

VoL(0,0") = VoE, q(z:0[A(0) — z - 6]
= VoE,q(z:6[A(0)] — VoEzq(zi6)[Z - 0]
=VoA(0) — E,q(z:6)[Voz - 6]
= 1(0) — Ezqzen 2]
— u(6) - 1(8")



Target Distribution and (Implicit) MLE (2)

Now approximate log-partitions via perturb-and-MAP
N 1
VeLl(6,6) = g(MAP(6’ +¢€;) —MAP(O' +¢)))

» with &; a noise sample for i =1,.... 5

» use Gumbel distribution or the one we won't cover:sum of gamma

Question: what is 8’ 777



What is a good Target Distribution?

go back to the paper and enjoy 3.1 ;)



What is the Target Distribution (1)?

Let us modify L to take only the f, of the average:
> old L(},§,w) =E, .4 [ﬂ(fu(f), y)]
> new L(%, ¥, w) = (fu(1(0)), y)
Domke(2010) showed that in this case:

VoL(e, i) = Jim { 5 (4(6) ~ (0 ~ AV, L gi)] .

with:
vp.L = apfu(“)Tv’yE(ya ’Q)
which is simplified further here (straight through gradient estimator):

,VuL =08,2"V,L~V,L

(assuming z is a function of )



What is the Target Distribution (2)?

Adapating previous gradient we have:

VoL(@.,5:w) ~ 3 [4(6) — (6~ AVaL(#,§: )] = ; VoL(6,6 — AV L(z, §:w)),

which finally gives:

q(z;0") = p(2;0 — AV L(fu(Z),9)) with Z = MAP(8 + €) and € ~ p(€),
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