Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

Authors: Mathias Niepert, Pasquale Minervini, Luca Franceschi (presented by J. Le Roux)

""

November 11, 2022

Outline

Intro

Definition of the problem and Examples

Implicit Maximum Likelihood Estimator

Introduction

many things in this paper!

We will see:

a method to learn via SGD a model which utilizes a discrete distribution internally based on:

- perturb and MAP
- approximate differentiation

We won't cover:

a novel class of noise distribution

Definition of the problem

Parameterized Mapping from ${\mathcal X}$ to ${\mathcal Y}$ via latent ${\mathcal Z}$

- ▶ from input $\mathbf{x} \in \mathcal{X}$ extract features $\mathbf{\theta} = h_{\mathbf{v}}(\mathbf{x}) \in \Theta$
- ightharpoonup sample an internal (unobserved) discrete structure $\mathcal{Z}
 i z \sim p(\cdot; heta)$
- **>** compute output structure $f_{u}(z) = y \in \mathcal{Y}$

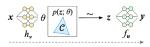


Figure 1: Illustration of the addressed learning problem. z is the discrete (latent) structure.

Mapping Parameters $(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{\omega}$ set from data $\mathcal{D} = \{(\hat{\boldsymbol{x}}_j, \hat{\boldsymbol{y}}_j)\}_{j=1}^N$

$$\min_{\boldsymbol{\omega}} \frac{1}{N} \sum_{i} L(\hat{\mathbf{x}}_{i}, \hat{\mathbf{y}}_{j}, \boldsymbol{\omega})$$

where:

$$\blacktriangleright \ L(\hat{\pmb{x}}, \hat{\pmb{y}}, \pmb{\omega}) = \mathbb{E}_{\hat{\pmb{z}} \sim p(\cdot; \hat{\pmb{\theta}})} \Big[\ell \big(f_{\pmb{u}}(\hat{\pmb{z}}), \pmb{y} \big) \Big]$$

$$\hat{\boldsymbol{\theta}} = h_{\mathbf{v}}(\hat{\mathbf{x}})$$

Definition of p(1)

 \boldsymbol{z} in state space $\boldsymbol{\mathcal{Z}}$ verifying linear constraints $\boldsymbol{\mathcal{C}}$.

$$p(\mathbf{z};\theta) = \begin{cases} \frac{\exp\beta(\mathbf{z}\cdot\theta)}{\sum_{\mathbf{z}'\in\mathcal{C}}\exp\beta(\mathbf{z}'\cdot\theta)} = \exp(\beta(\mathbf{z}\cdot\theta) - A(\theta)) & \text{if } \mathbf{z}\in\mathcal{C}, \\ 0 & \text{otherwise.} \end{cases}$$

where $A(\theta) = \log \sum_{\mathbf{z'} \in \mathcal{C}} \exp \beta(\mathbf{z'} \cdot \theta)$ is the log-partition function

Notations

- ▶ marginals $\mu(\theta) = \mathbb{E}_{\mathbf{z} \sim p(\cdot; \theta)}[\mathbf{z}] = \sum_{\mathbf{z}} p(\mathbf{z}; \theta) \times \mathbf{z}$ (≈ average structure)
- ightharpoonup MAP $(oldsymbol{ heta})= \operatorname{arg\,max}_{oldsymbol{z}\in\mathcal{C}} oldsymbol{z}\cdotoldsymbol{ heta}$

Useful tricks:

- ▶ sample via perturb and MAP : $\mathbf{z} \sim p(\cdot; \theta) \approx \mathbf{z} = \text{MAP}(\theta + \varepsilon)$ with ε Gumbel noise (or other distribution)
- approximate expectations via sampling:

$$\mathbb{E}_{\boldsymbol{z} \sim p(\cdot;\boldsymbol{\theta})}[f(\boldsymbol{z})] \approx \frac{1}{S} \sum_{i=1}^{S} f(\boldsymbol{z_i}) = \frac{1}{S} \sum_{i=1}^{S} f(\mathtt{MAP}(\boldsymbol{\theta} + \varepsilon_i))$$

Definition of p(2)

Fun fact: gradient of log-partion is the marginal vector!!

$$\nabla_{\theta} A(\theta) = \nabla_{\theta} \log \sum_{\mathbf{z}} \exp(\mathbf{z} \cdot \theta) = \frac{\sum_{\mathbf{z}} \nabla_{\theta} \exp(\mathbf{z} \cdot \theta)}{\sum_{\mathbf{z}'} \exp(\mathbf{z}' \cdot \theta)}$$

$$= \sum_{\mathbf{z}} \frac{\exp(\mathbf{z} \cdot \theta) \nabla_{\theta} \mathbf{z} \cdot \theta}{\sum_{\mathbf{z}'} \exp(\mathbf{z}' \cdot \theta)}$$

$$= \sum_{\mathbf{z}} p(\mathbf{z}; \theta) \nabla_{\theta} \mathbf{z} \cdot \theta = \sum_{\mathbf{z}} p(\mathbf{z}; \theta) \mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z}; \theta)} [\mathbf{z}] = \mu(\theta)$$

Example

Learning to explain in opinion analysis

- ightharpoonup from a text x (describing products) learn to predict a review score y
- while providing a proof z: the best k words which explain the assigned score
- \triangleright Examples are (x, y), i.e z is not provided!

This means (high level):

- 1. retrieve a vector v for each word w (via lookup table, features...) in x;
- 2. select k words $w_1 \dots w_k$ from x from distribution p over k-tuples
- 3. predict a score, for instance $f_{\boldsymbol{u}} = \sum_{p=1}^{k} u_p^{\top} w_p$

variants

if input is a single sentence: proof z is a syntactic or semantic parse of the input

Learning via Stochastic Gradient Descent

cheapest way to parameterize your system (and sometimes the only one)

$$oldsymbol{\omega}^{k+1} = oldsymbol{\omega}^k -
abla_{oldsymbol{\omega}} L(\hat{oldsymbol{x}}, \hat{oldsymbol{y}}; oldsymbol{\omega})$$

How to compute $\nabla_{\omega} L(\hat{x}, \hat{y}; \omega)$?

Remember $\boldsymbol{\omega}=(\boldsymbol{u},\boldsymbol{v})$, so $\nabla_{\boldsymbol{\omega}}=(\nabla_{\boldsymbol{u}}\;\nabla_{\boldsymbol{v}})$ (as a column vector)

- ► Compute this gradient in two steps, one for *u*, one for *v* since they play a different role
- v is part of the expectation
- u is inside the expectation

How to compute $\nabla_{\boldsymbol{u}} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}; \boldsymbol{\omega})$?

For one example (\hat{x}, \hat{y}) :

$$\begin{split} \nabla_{\pmb{u}} L(\hat{\pmb{x}}, \hat{\pmb{y}}; \pmb{\omega}) &= \nabla_{\pmb{u}} \mathbb{E}_{\pmb{z} \sim p(\cdot; \pmb{\theta})} [\ell(f_{\pmb{u}}(\pmb{z}), \hat{\pmb{y}})] \qquad \text{(def. } L) \\ &= \nabla_{\pmb{u}} \sum_{\pmb{z}} p(\pmb{z}; \pmb{\theta}) \ell(f_{\pmb{u}}(\hat{\pmb{z}}), \hat{\pmb{y}}) \qquad \text{(def. } \mathbb{E}) \\ &= \sum_{\pmb{z}} p(\pmb{z}; \pmb{\theta}) \nabla_{\pmb{u}} \ell(f_{\pmb{u}}(\pmb{z}), \hat{\pmb{y}}) \qquad \text{(sum} \leftrightarrow \text{gradient)} \\ &= \mathbb{E}_{\pmb{z} \sim p(\cdot; \pmb{\theta})} [\nabla_{\pmb{u}} \ell(f_{\pmb{u}}(\pmb{z}), \hat{\pmb{y}})] \end{split}$$

And:

$$\nabla_{\boldsymbol{u}}\ell(f_{\boldsymbol{u}}(\boldsymbol{z}),\hat{\boldsymbol{y}}) = (\partial_{\boldsymbol{u}}f_{\boldsymbol{u}}(\boldsymbol{z}))^{\top}(\nabla_{\boldsymbol{y}}\ell(\boldsymbol{y},\hat{\boldsymbol{y}}))$$
 where $\boldsymbol{y} = f_{\boldsymbol{u}}(\boldsymbol{z})$ as variables

- easy to compute (manually or via autodiff)
- $m{u}$ is *inside* the expectation ightarrow approximate expectation with a few samples

How to compute $\nabla_{\mathbf{v}} L(\hat{\mathbf{x}}, \hat{\mathbf{y}}; \boldsymbol{\omega})$?

lacktriangle Remember that $m{ heta} = h_{m{
u}}(\hat{m{x}})$

For one example
$$(\hat{\mathbf{x}}, \hat{\mathbf{y}})$$

 $\nabla_{\mathbf{v}} L(\hat{\mathbf{x}}, \hat{\mathbf{y}}; \boldsymbol{\omega}) = \nabla_{\mathbf{v}} \mathbb{E}_{\mathbf{z} \sim p(\cdot; \boldsymbol{\theta})} [\ell(f_{\mathbf{u}}(\mathbf{z}), \hat{\mathbf{y}})]$ (def. L)
 $= \nabla_{\mathbf{v}} \sum_{\mathbf{z}} p(\mathbf{z}; \boldsymbol{\theta}) \ell(f_{\mathbf{u}}(\mathbf{z}), \hat{\mathbf{y}})$ (def. \mathbb{E})
 $= \nabla_{\mathbf{v}} \sum_{\mathbf{z}} p(\mathbf{z}; h_{\mathbf{v}}(\hat{\mathbf{x}})) \ell(f_{\mathbf{u}}(\mathbf{z}), \hat{\mathbf{y}})$ (def. $\boldsymbol{\theta}$)
 $= (\partial_{\mathbf{v}} h_{\mathbf{v}}(\hat{\mathbf{x}}))^{\top} \nabla_{\boldsymbol{\theta}} \sum_{\mathbf{z}} p(\mathbf{z}; \boldsymbol{\theta}) \ell(f_{\mathbf{u}}(\mathbf{z}), \hat{\mathbf{y}})$ (composition)
 $= (\partial_{\mathbf{v}} h_{\mathbf{v}}(\hat{\mathbf{x}}))^{\top} \sum_{\mathbf{z}} \nabla_{\boldsymbol{\theta}} p(\mathbf{z}; \boldsymbol{\theta}) \ell(f_{\mathbf{u}}(\mathbf{z}), \hat{\mathbf{y}})$ (not an expectation)

- difficult to compute (manually or via autodiff) → need to enumerate through all valid z (or use score function estimator)
- \triangleright θ defines the expectation

Target Distribution and (Implicit) MLE (1)

target distribution q with the same form as p:

$$\mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z}; \boldsymbol{\theta'})}[\ell(f_{\boldsymbol{u}}(\boldsymbol{z}), \hat{\boldsymbol{y}})] \leq \mathbb{E}_{\boldsymbol{z} \sim p(\boldsymbol{z}; \boldsymbol{\theta})}[\ell(f_{\boldsymbol{u}}(\boldsymbol{z}), \hat{\boldsymbol{y}})]$$

- ▶ Idea: if we *push p* closer to *q*, loss is lower
- ▶ This the idea behind minimizing cross-entropy, behind minimizing:

$$\mathcal{L}(\theta, \theta') = -\mathbb{E}_{z \sim q(z;\theta')}[\log p(z;\theta')] = \mathbb{E}_{z \sim q(z;\theta')}[A(\theta) - z \cdot \theta]$$

New idea: replace $\nabla_{\theta} L$ by (an approximation of) $\nabla_{\theta} \mathcal{L}$

$$\nabla_{\theta} \mathcal{L}(\theta, \theta') = \nabla_{\theta} \mathbb{E}_{z \sim q(z; \theta')} [A(\theta) - z \cdot \theta]$$

$$= \nabla_{\theta} \mathbb{E}_{z \sim q(z; \theta')} [A(\theta)] - \nabla_{\theta} \mathbb{E}_{z \sim q(z; \theta')} [z \cdot \theta]$$

$$= \nabla_{\theta} A(\theta) - \mathbb{E}_{z \sim q(z; \theta')} [\nabla_{\theta} z \cdot \theta]$$

$$= \mu(\theta) - \mathbb{E}_{z \sim q(z; \theta')} [z]$$

$$= \mu(\theta) - \mu(\theta')$$

Target Distribution and (Implicit) MLE (2)

Now approximate log-partitions via perturb-and-MAP

$$\hat{\nabla_{\boldsymbol{\theta}}}\mathcal{L}(\boldsymbol{\theta},\boldsymbol{\theta'}) = \frac{1}{S}(\mathtt{MAP}(\boldsymbol{\theta}+\varepsilon_i) - \mathtt{MAP}(\boldsymbol{\theta'}+\varepsilon_i))$$

- \triangleright with ε_i a noise sample for $i=1,\ldots,S$
- use Gumbel distribution or the one we won't cover:sum of gamma

Question: what is θ' ???

What is a good Target Distribution?

go back to the paper and enjoy 3.1;)

What is the Target Distribution (1)?

Let us modify L to take only the f_u of the average:

$$lackbox{lack}$$
 old $L(\hat{\pmb{x}},\hat{\pmb{y}},oldsymbol{\omega})=\mathbb{E}_{\hat{\pmb{z}}\sim p(\cdot;\hat{\pmb{ heta}})}\Big[\ellig(f_{\pmb{u}}(\hat{\pmb{z}}),\pmb{y}ig)\Big]$

$$ightharpoonup$$
 new $L(\hat{\pmb{x}},\hat{\pmb{y}},\pmb{\omega})=\ellig(f_{\pmb{u}}(\mu(\pmb{\theta})),\pmb{y}ig)$

Domke(2010) showed that in this case:

$$\nabla_{\boldsymbol{\theta}} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}; \boldsymbol{\omega}) = \lim_{\lambda \to 0} \left\{ \frac{1}{\lambda} \left[\boldsymbol{\mu}(\boldsymbol{\theta}) - \boldsymbol{\mu} \left(\boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{\mu}} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}; \boldsymbol{\omega}) \right) \right] \right\},$$

with:

$$\nabla_{\boldsymbol{\mu}} L = \partial_{\boldsymbol{\mu}} f_{\boldsymbol{u}}(\boldsymbol{\mu})^{\intercal} \nabla_{\boldsymbol{y}} \ell(\boldsymbol{y}, \hat{\boldsymbol{y}}).$$

which is simplified further here (straight through gradient estimator):

,
$$\nabla_{\mu}\hat{L} = \partial_{\mu}z^{\intercal}\nabla_{z}L \approx \nabla_{z}\hat{L}$$

(assuming z is a function of μ)

What is the Target Distribution (2)?

Adapating previous gradient we have:

$$\nabla_{\boldsymbol{\theta}} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}; \boldsymbol{\omega}) \approx \frac{1}{\lambda} \left[\boldsymbol{\mu}(\boldsymbol{\theta}) - \boldsymbol{\mu} \left(\boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{z}} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}; \boldsymbol{\omega}) \right) \right] = \frac{1}{\lambda} \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{z}} L(\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}; \boldsymbol{\omega})),$$

which finally gives:

$$q(\boldsymbol{z};\boldsymbol{\theta}') = p(\boldsymbol{z};\boldsymbol{\theta} - \lambda \nabla_{\boldsymbol{z}} \ell(f_{\boldsymbol{u}}(\overline{\boldsymbol{z}}), \hat{\boldsymbol{y}})) \text{ with } \overline{\boldsymbol{z}} = \mathtt{MAP}(\boldsymbol{\theta} + \boldsymbol{\epsilon}) \text{ and } \boldsymbol{\epsilon} \sim \rho(\boldsymbol{\epsilon}),$$

