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e solving Black-box optimization problems with Model based
optimiation (MBO)

@ Issues:

e {2 combinatorial structure, contraints

e expensive evaluation of f, no gradient information
o Applications:

e neural architecture search, Zoph € Le, 2017

e program synthesis, Summers, 1977, Biermann, 1978
e small-molecule design, Elton et al., 2019

e protein design, Yang et al., 2019
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e Objective: z* = argmax f(x)

o iteratively refines an approximator f ~ f

o selects new query points by solving an Inner-loop optmization
problem:

xy = arg max a(x)
Q4

e Acquisition function: ¢: Q2 — R
e derived from point evaluation or from posterior distribution over f
e casier to solve
e "white-box" caracteristics
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MBO has two issues :

o solving the Inner-loop may be difficult

o Real world application require additional constraints on x

Using Heuristic Inner-loop solvers is a solution. Requires domain
knowledge.

Crucially, by framing the inner-loop optimization as an MILP,
our approach can flexibly incorporate a wide variety of logical,

combinatorial, and polyhedral constraints on the domain, which
need only be provided in a declarative sense.
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o NN-+MILP: MBO framework for discrete optimization with NN
surrogates and with exact inner-loop guarantees

e Show that NN-+MILP matches and surpasses MBO baseline with
domain specific evolutionary algorithms

e Experimental benchmarking results : MINLPLib, NAS-Bench-101
neural architecture

Using Heuristic Inner-loop solvers is a solution. Requires domain
knowledge.
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Algorithm 1 MBO

Input: hypothesis class F, budget N, initial dataset

Dy, = {zs, f(x;)}}—,, optimization domain
fort=n+1tot=Ndo

P(f) « £it(F,Di_y) R
a(x) + get_acquisition_function(P(f:))
24 + inner_loop.solver(a(z), )

Dy Dy U{zy, f(21)}
end for

return arg MaX(z, y,)eDy Yt

Figure: MBO baseline algorithm

o 1. perform inference to approximate f

e 2. define a(z) based on fy(z) quantifying the quality of points
to query

e 3. x; selected by solving the inner-loop I?I;O'b}%n"l L .
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Algorithm 2 NN+MILP

Dn = {4, f(x:)}~,, MILP domain formulation Mg
fort=n+1tot=Ndo

Input: hypothesis class F, budget N, initial dataset
fir & £1t(F, Di) (32)
M, < buildmilp(fy, Ma, Di1)

z4 + optimize(M;)
Dy < D1 U{my, flz4)}
end for

3.3)
(generic MILP solver)
return arg max(, ,,)eDy Yt

Figure: NN+MILP algorithm
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Goal: find 2* = argmax f(z) where f is an expensive, noiseless
Q
black-box function with n decision variables.

e N: fixed budget of queries to f

o X, = {x;}!_;: set of sampled points at step ¢
o Dy = {z;,y; = f(z:i)}!_;: set of sampled points with corresponding
reward

At iteration t solving the acquisition problem is finding :

2y = argmax fy(z)
.’EEQ\Xt_l
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activation functions.

o f chosen as feedforward neural network with piecewise-linear

o fully connected layers with ReLLU activation

e compatible with convolution and max-pooling

At each iteration ft is trained from scratch with random weight
initialization and SGD. f; is trained on D;_; with L? loss.
The acquisition is taken to be a(z) = fi(x).
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The inner-loop optimization problem M, is :

Ty = argmax ft(x)
€M\ X—1
If not already binary, decision variables are one-hot encoded:
zij = l[z: = jl,

subject to the constraints : Y z; =1,

i€n],j €

Vi
JEQ;
Problem specific constraints can be added as needed.
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Leverage the binary nature of z to eliminate X;_q from M.

Consider T € 2 a point we wish to exclude and Z its one-hot
encoding. Then the constraint

Z Zij'i‘ Z (l—Zij)Zl

%,5:2;5=0 1,5:Z;5=1

ensures that candidate has Hamming distance of at least one to
Z.

Note that this formulation will not work for continuous z.
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MILP for MBO

Acquisition MILP

Neural Network

" The overall MILP objective is the activation corresponding to
the regressor’s output neuron."

Let y = max(0,w”z + b) be the output of a single layer with
weights w and bias b.

At optimization time w, b are fixed and x,y are the decision
variables.

Non-linearity: « binary decision variable indicating the ReLLU
is activated. We add the constraints

0<y< Ma (1)
wlz+b<y<wlz+b+M1-a) (2)

where M is a large constant (such as upper bound on range of
Y).

e er e — =

A. Schulz (LIPN) Presentation OptML May 16, 2023

16 /22



@ Introduction
e Context
@ Model Based Optimization
@ Focus of this paper
e Contributions
© Model Based Optimization
@ Baseline algorithm
o NN-+MILP algorithm
© MILP for MBO
@ Setting
e Surrogate Model
@ Acquisition MILP
@ Experiments
@ Black-Box Objectives
@ Inner-Loop Configurations
@ Unconstrained Optimization

e Constrained Optimization = .



Experiments
Black-Box Objectives

RandomMLP The output of a multi-layer perceptron operating
on a one-hot encoding of the input.

TfBind Binding strength of a length-8 DNA sequence to a given
transcription factor (Barrera et al., 2016).

e BBOB Non-linear function from the continuous Black- Box
Optimization Benchmarking library (Hansen et al., 2009)

Ising The negative energy of fully-connected binary Ising Model
with normally distributed pairwise potentials.
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Experiments

Inner-Loop Configurations

e RegEvo Local evolutionary search (Real et al., 2019).

e NN + RegEvo An ablation of NN+MILP, with the only
difference being the use of RegEvo in lieu of MILP for solving the
acquisition problem.

o Ensemble + RegEvo A re-implementation of the ‘MBO’
baseline from Angermueller et al. (2020), using an ensemble of
linear and random forest regressors as the surrogate.

e RBFOpt A competitive mixed-integer black-box optimization

solver that uses the ‘Radial Basis Function method’ as a surrogate
model (Costa Nannicini, 2018).
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Constrained Discrete Black-Box Optimization using MILP
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Figure 2: Best observed reward as a function of iteration for an example constrained problem (Section 4.3) for each of n =
100, 200, and 400 (left-to-right). Lines and bands indicate the average and +1 sd respectively, over 20 trials for n = 100
and 10 trials for the rest. Distribution of normalized final scores and more examples can be found in Appendix E.2
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