DIFUSCO: Graph-based Diffusion Solvers for Combinatorial
Optimization
Authors: Zhiging Sun, Yiming Yang (presented by J. Le Roux)

22/01/24

Intro

Definition

Discrete or Continuous Distributions
Predicting Assignments

Results

Conclusion

Intro

A mecha robot playing the guitar in a forest, low quality, 3d, photorealistic

Diffusion Models are known to be good at generating images from texts. How can they
be applied to CO?

Diffusion Models (2)

)xu\n plae- 1\11)ll|lz 1) 1)(11 tler)
q(11|lu q lt\l» 1) q(Tes 1\1: f(lT|lT 1)

- learn how to generate as denoising via distribution p (backward)

- from noisy examples generated by a diffusion distribution g (forward)

3 types of ML-based CO solvers

Autoregressive Construction Heuristics Solvers ‘
- each time-step a new variable assignment is added to a partial solution.
- inspired by RNN, LLM...

high time and space complexity, sequential generation, O(n)? complexity
if self-attention

Non-autoregressive (Heatmaps) Construction Heuristics Solvers

- assume conditional independence among variables, all variables assigned in
parallel

assumption limit to overly simple distributions

- hybrid approach with active search, MCTS = slow

Improvement Heuristics Solvers

- use MDP to iteratively refines an existing feasible solution with NN-guided
operations (2-opt, node swap)

difficult to scale up (slow), difficult to learn (sparse rewards and sample
efficiency in RL)

Definition

Generic formulation for CO, especially graph problems such as TSP and MIS.

For an instance of a problem s with N variables:

- solution space is s = {0, 1}V

- objective cs(x) = cost(x, s) + valid(x, s)
- cost is a real-valued function
- valid is a 0/ + oo valued function.

- we write x¥ = miny cs(x) or simply xo when s is clear from context.

ML-based approach to CO
- from s we want to predict xq
- we want to learn in a supervised framework

- MLE: we want to maximize Ex,~q[log ps(Xo)]

Definition (1)

DMs are Latent-Variables Probabilistic Models

T noisy versions of the observations generated before we see xg

pa) = [plxo,x ... xr)d ..oy = [plxor)dbar

We assume that we can factorize p as denoising T steps:

.
po(xo:r) = po(xr) [[po(xe—1lxt)

t=1

The generation is reversible

Incremental mechanism to corrupt (diffuse noise) an observation

N
q(xrlxo) = [[atxelxe—1)

t=1
g has no learned parameters. Its parameterization is an hyper-parameter of the
system.

Definition (2)

Variational Inference
Define a family of approximations, depending on a function (here pg(X;|X¢+1))
- Finding the best approximation by solving an optimization problem.

- When applied to maximizing probability of observations (evidence):

- derive a lowerbound based on a auxiliary distribution
- called ELBo (Evidence Lower Bound) (minimization/maximization)

E [log po (x0)] < E, [— log 7(15("}((";'720)]

=E, [Z D lg(xe-1/%¢, %o)|po(xe—1[x:)] — 10gps(xo|xl)] +C
t>1

- KL sum: denoising matching terms
- last: reconstruction term

Remark
—log pg(Xolx1) = 1 x (= log pg(Xo|X1)) = q(Xo|X1,X0)(— log po(Xo|x1))

= q(Xo|X1,%0)(0 — log pg(Xo|X1))
= q(Xo|X1,X0)(log q(xo|X1,X0) — log pg(Xo|X1))
log q(Xo|X1, Xo)

= KL[g(Xo|x7, X Xo |x
o) [a(xo[X1, X0)[[Pa (Xo[X1)]

= q(Xo|x1,%o)

Learning DM

Diffusion Models are optimized via MC sampling:
1. Draw one instance s randomly
2. Draw a time step t randomly between 1and T

3. Make on gradient descent step with loss:
log q(Xt—1|Xt, Xo) — log po(Xt—1|Xt)

where x¢ is sampled from g and xr

The exact form of the loss depends on g and py

Discrete or Continuous
Distributions

Discrete Case (Bernoulli Model)

let B the corruption ratio, for changing 0 to 1 or 1to 0 between timesteps

q(xe|xt—1) = Cat(xt; p = Xt—1Q¢) with Q¢ = {(1 ;jt) (1 ftﬁt)}

- X € {0,1}¥*? is a one-hot encoding of x
- We can compose timesteps:

q(xt|xo) = Cat(xs; p = XoQ:Q, ... Qt) = Cat(x; p = XoQt)
- So we can express the first part of the loss as:

(Xt|Xe—1,%0)q(Xt—1]X0)
q(xt[xo)

XQ ®%Qi

q
q(Xe—1|xt,X0) = = Cat(x¢_1; —
XoQtXt—r

)

- from x7 and this definition, we can sample any x;, then we train a neural network
with parameters 6 to predict pg(Xo|xt)

- Then, when generating a test solution, we can derive:

po(Xe—alxt) = > a(Xt—1|Xt, Xo)pa (Xo|xt)
%

0

Continuous Case (Gaussian Models)

By-The-Book application of DMs
- Xr is sampled from a N(0; 1) and Xo is rescaled from {0, 1} to {—1,1},
- With 3¢ the corruption ratio at timestep t:
q(Xe|%e-1) = N (%e; VI = BiXi—1, Bi])

Via Gaussian properties
we define at = 1— Bt and &t = o - - - ;. We obtain:

q(5q|§c0) = N(fit; \/O_Tt)h(o, (1 - C_Yt)I)

Learning

Distance between gaussians, with same mean: amounts to predicting the expected
noise

& = (% — Varko)/VI = & = fo(%,1)

Generation: pg becomes a Gaussian

Va.

PolRenle) =g (ch\fct,

then final Xo is clipped to {0, 1} 10

Predicting Assignments

Neural Parameterization

To sum up, the model has to parameterize:

Discrete Case pg(Xo|xt) | Continuous Case }

nng(xt, t) returns 2 logits per variable € = (% — Varko)/V1— @, = fo(%k:,t)

that are passed through softmax to

define p nng(xt, t) returns 1 real number per
variable used to parameterize a
Gaussian:

Defined as a Graph Neural Network

Anisotropic Init

|
e = Plel 1+ Q'R + BB, - TSP efj’. distance (i, /) and h? is the

efft = ef; + MLP.(BN(&]")) + MLP(t), sinusoidal for timestep forall i
R = Rl + a(BN(Uh! + Ajen, (0(€) © V'R)))
- for MIS e% are zeros h? are the

costs

- vectors of size 256, 12 layers!

- tis the sinusoidal representation
of t
- t[2i] = sin(t/T%/%°)
- t[2i 4 1] = cos(t/T#/20)

From p(xo) to Assignment

Naive sampling from obtained distributions do not perform well... : (

Heatmaps
- discrete: pg(xo = 1s)

- continuous 0.5(Xp + 1)

TSP Decoding
A;j the heatmap
1. greedy decoding, rank edges by $(A;; + Aj;) / |1 ¢ - ¢ |1, add them one by one if
no conflict (+option 2-opt)
2. MCTS, k transformation are sampled guided by heatmap

MIS
1. greedy decoding from heatmap A;

Results

TSP (

8

-~ Linear schedule
—— cosine schedule

Table 1: Comparing results on TSP-50 and TSP-100. * denotes the
baseline for computing the performance gap. | indicates that the
diffusion model samples a single solution as its greedy decoding
scheme. Please refer to Sec. 4 for details.

g

Effective step Ty _;

° ALGORITHM TYPE TSP-50 TSP-100
0 3 4 6 8 10 LENGTH] GAP(%)] LENGTH | GAP(%)|
Denoising step 1
CONCORDE* Exact 5.69 0.00 7.76 0.00
16 Eﬂntmws'msme 2-OPT HEURISTICS 5.86 2.95 8.03 3.54
08 b N —— Discrete-cosine AM GREEDY 5.80 1.76 8.12 4.53
— 5 =7 Discrete-linear GCN GREEDY 5.87 3.10 8.41 8.38
%0 . TRANSFORMER GREEDY 5.71 0.31 7.88 1.42
g POMO GREEDY 5.73 0.64 7.84 1.07
02 SYmM-NCO GREEDY - - 7.84 0.94
DPDP 1k-IMPROVEMENTS 5.70 0.14 7.89 1.62
IMAGE DIFFUSION GREEDY' 5.76 1.23 7.92 2.11
T 3 T ® % W 0 OuRrs GREEDY' 5.70 0.10 7.78 0.24
prfuston steps AM 1k X SAMPLING 5.73 0.52 7.94 2.26
. . . GCN 2k X SAMPLING 5.70 0.01 7.87 1.39
Figure 1: Comparison of continu- TransrormER 2k X SAMPLING 5.69 0.00 7.76 0.39
ous (Gaussian noise) and discrete ~ POMO $X AUGMENT 5.69 0.03 7.77 0.14
. . N . SyM-NCO 100x SAMPLING - - 7.79 0.39
(Bernoulli noise) diffusion models mpam 50X SAMPLING 570 003 779 038
with different inference diffusion steps DPDP 100k-IMPROVEMENTS 5.70 0.00 777 0.00
OuRrs 16 X SAMPLING 5.69 -0.01 7.76 -0.01

and inference schedule (linear vs.
cosine).

TSP (2)

Table 2: Results on large-scale TSP problems. RL, SL, AS, G, S, BS, and MCTS denotes Reinforcement
Learning, Supervised Learning, Active Search, Greedy decoding, Sampling decoding, Beam-search, and Monte
Carlo Tree Search, respectively. * indicates the baseline for computing the performance gap. Results of baselines
are taken from Fu et al. [27] and Qiu et al. [92], so the runtime may not be directly comparable. See Section 4
and appendix for detailed descriptions.

ALGORITHM TYPE TSP-500 TSP-1000 TSP-10000
LENGTH] GaAP| TIME| |LENGTH| GaAP| TIME] |LENGTH| GAP] TIME |
CONCORDE EXACT 16.55" — 37.66m| 23.12% — 6.65h N/A N/A N/A
GUROBI EXACT 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 16.55 0.00% 46.28m| 23.12 0.00% 2.57Th | 71.77* — 8.8h
LKH-3 (LESS TRAILS) HEURISTICS 16.55 0.00% 3.03m | 23.12 0.00% 7.73m | 71.79 — 51.27m
FARTHEST INSERTION HEURISTICS 18.30 10.57% Os 25.72 11.25% 0s 80.59 12.29% 6s
AM RL+G 20.02 20.99% 1.51m | 31.15 34.75% 3.18m | 141.68 97.39% 5.99m
GCN SL+G 29.72 79.61% 6.67m | 48.62 110.29% 28.52m| N/A N/A N/A
POMO+EAS-EMB RL+AS+G 19.24 16.25% 12.80h N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB RL+AS+G 24.54 48.22% 11.61h| 49.56 114.36% 63.45h N/A N/A N/A
DIMES RL+G 18.93 14.38% 0.97m | 26.58 1497% 2.08m | 86.44 20.44% 4.65m
DIMES RL+AS+G 17.81 7.61% 2.10h 2491 7.74% 4.4%h 80.45 12.09% 3.07h
OuRs (DIFUSCO) SL+Gt 18.35 10.85% 3.6lm | 26.14 13.06% 11.86m| 98.15 36.75% 28.51m
OURS (DIFUSCO) SL+Gf+2-0PT 16.80 1.49% 3.65m | 23.56 1.90% 12.06m| 73.99 3.10% 35.38m
EAN RL+S+2-0PT 23.75 43.57% 57.76m| 47.73 106.46% 5.39h N/A N/A N/A
AM RL+BS 19.53 18.03% 21.99m| 29.90 29.23% 1.64h | 129.40 80.28% 1.81h
GCN SL+BS 30.37 83.55% 38.02m| 51.26 121.73% 51.67m N/A N/A N/A
DIMES RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m 85.75 19.48% 4.80m
DIMES RL+AS+S 17.80 7.55% 2.11h 24.89 7.710% 4.53h 80.42 12.05% 3.12h
‘OuRrs (DIFUSCO) SL+S 17.23 4.08% 11.02m| 25.19 8.95% 46.08m| 95.52 33.09% 6.5%h
Ours (DIFUSCO) SL+S+2-0PT 16.65 0.57% 11.46m| 23.45 1.43% 48.09m| 73.89 2.95% 6.72h
ATT-GCN SL+MCTS 16.97 2.54% 2.20m | 23.86 3.22% 4.10m | 7493 4.39% 21.49m
DIMES RL+MCTS 16.87 1.93% 2.92m | 23.73 2.64% 6.87Tm | 74.63 3.98% 29.83m
DIMES RL+AS+MCTS| 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06 3.19% 3.57h
OURS (DIFUSCO) SL+MCTS 16.63 0.46% 10.13m| 23.39 1.17% 24.47m| 73.62 2.58% 47.36m

Conclusion

Summary
- A lot of Maths!
- SOTA results on 2 benchmarks (with lot of compettitors)
- modelisation tailored for graph problems

- A new? GNN architecture

Questions

- Can we take into account decomposition in this framework (cf. recent works in
NLP)?

SSp-LM: Semi-autoregressive Simplex-based Diffusion Language Model
for Text Generation and Modular Control

Xiaochuang Han* Sachin Kumar*® Yulia Tsvetkov#
#Paul G. Allen School of Computer Science & Engineering, University of Washington
*Language Technologies Institute, Carnegie Mellon University
{xhan77, yuliats}ecs.washington.edu® sachinkecs.cmu.edu®

	Intro
	Definition
	Discrete or Continuous Distributions
	Predicting Assignments
	Results
	Conclusion

