
The Metagrammar Compiler:

An NLP Application with a Multi-paradigm

Architecture

Denys Duchier, Joseph Le Roux, and Yannick Parmentier

LORIA
Campus Scientifique,
BP 239,
F-54 506 Vandœuvre-lès-Nancy, France
{duchier,leroux,parmenti}@loria.fr

Summary. The concept of metagrammar has been introduced to factorize infor-
mation contained in a grammar. A metagrammar compiler can then be used to
compute an actual grammar from a metagrammar. In this paper, we present a new
metagrammar compiler based on 2 important concepts from logic programming,
namely (1) the Warren’s Abstract Machine and (2) constraints on finite set.

1 Introduction

In order to develop realistic NLP applications and support advanced research
in computational linguistics, large scale grammars are needed. By the end
of 90’s, several such grammars had been developed by hand; especially for
English [1] and French [2].

Unsurprisingly, wide-coverage grammars become increasingly hard to ex-
tend and maintain as they grow in size and scope. There is often grammatical
information which cannot be adequately modularized and factorized using the
facilities offered by standard grammar formalisms. As a consequence, grammar
rules become distressingly rife with structural redundancy and any modifica-
tion frequently needs to be repeated in many places; what should be a simple
maintenance intervention turns into a chore which is both work intensive and
error prone.

For these reasons, and others, a new methodology for grammar develop-
ment has emerged that is based on the compilation of meta-descriptions. These
meta-descriptions should help express simply linguistically relevant intuitions,
as well as mitigate the redundancy issue through better means of factorizing
the information present in the rules of the grammar.

In this paper, we present a system designed for generating a wide-coverage
Tree Adjoining Grammar (TAG) from such a meta-description (generally

2 Denys Duchier, Joseph Le Roux, and Yannick Parmentier

called a metagrammar). Our proposal is especially novel in that it adopts
a resolutely multi-paradigmatic approach: it combines (1) an object-oriented
specification language for abstracting, structuring, and encapsulating frag-
ments of grammatical information, (2) a logic programming backbone for
expressing the combinations and non-deterministic choices of the metagram-
matical specification, (3) a constraint-based back-end to resolve underspecified
combinations.

2 Tree Adjoining Grammars

In this section, we informally introduce the notion of a tree adjoining grammar

(tag).
A grammar is a formal device used to describe the syntax of natural (or

artificial) languages. While details vary, at heart, a grammar consists in the
stipulation of a finite number of building blocks and a finite number of oper-
ations to combine them together.

In the Chomskian tradition of context free grammars, the building blocks
are production rules and the only operation is the expansion of a non-terminal
by application of a matching production rule.

In tag, the building blocks are tree fragments, and there are two operations
to combine them called substitution and adjunction. Substitution plugs one
tree fragment into a matching leaf, marked for substitution (i.e. marked with
↓) of another tree fragment:

S
Z

Z
�

�

NP↓ VP

sleeps

NP

John

S
Q

Q
�

�

NP

John

VP

sleeps

+ →

Adjunction splices in one tree fragment, from root to foot node (the latter
marked with ∗), in place of a matching node in another tree fragment:

S
Q

Q
�

�

NP

John

VP

sleeps

VP
Q

Q
�

�

VP∗ ADV

deeply

S
a

aa
!

!!

NP

John

VP
Q

Q
�

�

VP

sleeps

ADV

deeply

+ →

tags are used as a formalism designed for describing natural language syntax
because of their linguistic properties [3]. A precise introduction to tag is given

The Metagrammar Compiler 3

in [4]. tags belong to the family of so-called mildly context-sensitive grammars
as their generative capacity is larger than just the context free languages.

3 The concept of Metagrammar

A tag consists of a very large number (thousands) of tree fragment schemata.
The reason for this large number of trees is that basically a tag enumerates
for each word all its possible patterns of use. Thus, not only can a verb be used
in many ways (e.g. active vs. passive), but its arguments can also be realized
in various ways such as direct object vs. clitic vs. extracted as illustrated in1:

• Jean mange la pomme

• Jean la mange
• la pomme que Jean mange

Thus, while a tag will contain verbal tree fragments for these two construc-
tions:

S

VN N

Jean mange la pomme

SN*

V

N

S

N

N

queLa pomme Jean mange

(extracted object)John eats the apple

The apple that John eats

(canonical object)

they actually both derive from the same linguistic intuitions about the possi-
bilities for realizing a verb and its arguments. A formalism which only allows
us to write tree fragments is insufficient to also express this higher-level view of
how tree fragments actually arise simply from linguistic regularities governing
how verbs and their arguments can be realized.

Adopting a more engineering-minded view, we arrive at a dual perspective
on essentially the same issue: current large-scale tag suffer from a high degree
of structural redundancy as illustrated in:

S S

V

V V P N

est

N N PPVN

mangéeLa pomme par

eats the appleJohn

Jean mange la pomme

The apple is eaten by John

Jean

1 In this paper, the tree schematas are inspired by [2] and are characterised by the
absence of VP or NP nodes.

4 Denys Duchier, Joseph Le Roux, and Yannick Parmentier

In order to ease development and maintenance, it would again be advanta-
geous to be able to factorize such common chunks of grammatical information.
Thus we have illustrated two important motivations for the factorization of
grammatical information: (1) structure sharing to avoid redundancy [5], and
(2) alternative choices to express diathesis such as active, passive. Attempts
to address these issues lead to the notion of metagrammar, i.e. to formalisms
which are able to describe grammars at a higher-level of abstraction and in
more modular ways.

4 Existing Metagrammars and Compilers

The notion of metagrammar as a practical device of linguistic description (as
opposed to merely increasingly expressive grammar formalisms) has a fairly
short history, but is now rapidly gaining support in the linguistic community.
In this section, we first review the seminal work of Candito [6], then the revised
improvements of Gaiffe [7], finally leading to our own proposal2.

4.1 A framework based on 3 linguistic dimensions

The first implementation of a metagrammar (mg) compiler was realized by
Marie-Hélène Candito [6]. It laid down the bases of the mg concept which are:

• a mg is a modular and hierarchical representation of the trees of a tag

• the hierarchy is based on linguistic principles

This compiler was used at the Université Paris 7 to automate the writing of
the French tag, was coded in Common LISP, and dealt with verbal trees.

Candito’s mg methodology stipulates three dimensions, each containing
hierarchically organized classes:

1. the first dimension provides the initial subcategorization frame (e.g. active
transitive verb) which reflects the number of arguments of a verb and their
positions.

2. the second dimension handles the redistribution of syntactic functions,
i.e. the modifications of the function of the arguments defined in the 1st

dimension (e.g. active becoming passive).
3. the third dimension expresses the different realizations for each syntactic

function (canonical, cleft, etc).

Classes typically contain some topological information (e.g. tree descriptions
[9]). The combination operation picks one class from the 1st dimension, one
class from the 2nd dimension and n classes from the 3rd dimension, where n is
the number of realized arguments of the verb. Figure 1 illustrates the idea of
this 3-dimensional hierarchy and offers an example of a generated tag tree.
Candito’s approach has the following drawbacks:

2 One should also consult Xia’s work [8] to have a more complete view of the process
of automatic generation of tags.

The Metagrammar Compiler 5

Dimension 2 Dimension 3Dimension 1

PP S

P
N0 N1 V

Par

Vm

(subcategorization frame) (redistribution of syntactic functions) (realization of syntactic functions)

strict
transitive

personal
full subject −

canonical
position

position

par−object
wh−questioned

wh−questioned par object
canonical subject

personal full passive
strict transitive

(Example inspired by "A principle−based

hierarchical representation of LTAGs"

Candito 96)

passive

Sr

Generated Rule (TAG tree)Produced class

Fig. 1. 3-dimensional hierarchy.

1. class evaluation is non monotonic, as some information can be erased
during the compilation process, e.g. in agentless passive.

2. there is no clean separation between the knowledge encoded in the meta-
description and the procedural knowledge encoded in the compiler. As
a result (a) the compiler is hard to extend, and (b) you cannot define
meta-descriptions with more than 3 dimensions.

3. the combination mechanism wildly attempts all possible class crossings.
It is difficult to achieve enough control to avoid undesirable combinations.

4.2 A framework based on the concept of Needs and Resources

To address the issues identified with Candito’s approach, Bertrand Gaiffe et

al. at LORIA developed a new mg compiler [7], in Java, with the following
properties:

• the process of class evaluation is monotonic;
• you may define an arbitrary number of dimensions instead of being limited

to the strictly 3-dimensional approach of Candito.

In this implementation, a mg corresponds to several hierarchies of classes
in multiple inheritance relation. The classes contain partial tree descriptions
and/or node equations. The novelty is that classes can be annotated with
Needs and Resources. For instance, the class for a transitive verb bears the

6 Denys Duchier, Joseph Le Roux, and Yannick Parmentier

annotation that it needs a subject and an object, while a class for a nominal
construction would indicate that it supplies e.g. a subject. The combination
process that produces the tag grammar is entirely driven by the idea of
matching needs and resources. However, there are still some drawbacks:

1. while the notion of needs and resources generalizes Candito’s approach and
allows to drive the combination process more accurately, it still exhibits
the same practical drawback, namely that too many useless crossings must
be explored. This problem, also present in Candito, comes from the lack of
separation between the realization of structure sharing and the expression
of alternative choices.

2. All node names have global scope (same as with Candito). In wide-
coverage grammars, name management, and the discovery and handling
of name conflicts become unrealistically difficult.

3. Since names have global scope, it is not possible to instantiate the same
class more than once in a complex crossing because the names of the two
instances would clash. This poses problems e.g. for constructions requiring
two prepositional arguments.

4.3 A framework based on nondeterminism and underspecification

Our approach realizes a methodology developed jointly with Benoit Crabbé
at LORIA and aimed at large tag lexica [10]. Crabbé’s essential insight is
that instead of matching nodes very strictly by names, we can use some form
of underspecification. The main requirements are:

1. There are no transformations, such as deletion, to compute a special form
(i.e. passive, middle, extracted. . . for verbs) from the canonical form (ba-
sic active frame). Only alternative constructions are given. This is an
important point (see [11]) since it makes our formalism monotonic and
declarative.

2. Instead of being given names, nodes are assigned colors, which basically
correspond again to a notion of needs and resources, that constrain how
they can (or must) be matched.

3. Linguistically motivated global well-formedness principles can be stated
that limit the admissibility of resulting combinations.

We depart from previous approaches on the following points:

1. The mg uses a logical language of conjunctions and disjunctions to express
directly how abstractions are to be combined. With Candito, the mech-
anism is completely external to the mg. With Gaiffe, it is still implicit,
but driven by needs and resources. Our method brings us consequent time
savings during grammar generation.

2. The mg consists of classes arranged in a multiple inheritance hierarchy.
Each class can introduce local identifiers, and their scope in the hierarchy
can be managed with precision using import and export declarations.
Renaming is supported.

The Metagrammar Compiler 7

3. We expressedly wanted our mg to handle not only syntax, but also se-
mantics. For this reason, our design is multi-dimensional, where each di-
mension is dedicated to a descriptive level of linguistic information. To
our knowledge, ours is the first mg compiler to offer such a naturally
integrated syntax/semantics interface.

4. Our design is not tag-specific and can be instantiated differently to ac-
commodate other formalisms. It is currently being adapted for Interaction
Grammars [12].

Our tool is implemented in Mozart/Oz and has been used by linguists at
LORIA to develop French wide-coverage grammars.

5 A new Metagrammatical Formalism

In this section, we first introduce the logical core of our formalism using the
paradigm of Extended Definite Clause Grammars [13]. Then we introduce the
object-oriented concrete level and show how it can be translated into this core.

5.1 Logical core

Metagrammar as grammar of the lexicon.

There is a well-known descriptive device which offers abstractions, alterna-
tions, and compositions, namely the traditional generative grammar expressed
as production rules. In our mg application, the elements which we wish to
combine are not words but e.g. tree descriptions, yet the idea is otherwise
unchanged:

Clause ::= Name → Goal (1)

Goal ::= Description | Name | Goal ∨ Goal | Goal ∧ Goal (2)

We thus start with a logical language which can be understood as a definite

clause grammar (dcg) where the terminals are tree Descriptions. We can
already write abstractions such as:

TransitiveVerb → Subject ∧ ActiveVerb ∧ Object

Subject → CanonicalSubject ∨ WhSubject

Tree description language.

We adopt a tree Description language that is based on dominance constraints:

Description ::= x → y | x →∗ y | x ≺ y | x ≺+ y | x[f :E] | x(p:E)
(3)

x, y range over node variables, → represents immediate dominance, →∗ its
reflexive transitive closure, ≺ is immediate precedence, and ≺+ its transi-
tive closure. x[f :E] constrains feature f on node x, while x(p:E) specifies its
property p, such as color.

8 Denys Duchier, Joseph Le Roux, and Yannick Parmentier

Accumulations in several dimension.

When the meta-grammar terminals are syntactic tree fragments, we have a
meta-grammar that can describe syntax, but we also want to support other
descriptive levels such as semantics. Basically, we want to accumulate descrip-
tive fragments on multiple levels.

This can be done simply by reaching for the formalism of extended definite

clause grammars (edcg) [13]: where a dcg has a single implicit accumulator,
an edcg can have multiple named accumulators, and the operation of accu-
mulation can be defined arbitrarily for each one. In (2), we replace Description

with:

Dimension += Description

which explicitly accumulates Description on level Dimension. In our appli-
cation to tag we currently use 3 accumulators: syn for syntax, sem for
semantics, and dyn for an open feature structure accumulating primarily
morpho-syntactic restrictions and other items of lexical information.

Managing the scope of identifiers.

One of our goals is to support a concrete language with flexible scope manage-
ment for identifiers. This can be achieved using explicit imports and exports.
We can accommodate the notion of exports by extending the syntax of clauses:

Clause ::= 〈f1:E1, . . . , fn:En〉 ⇐ Name → Goal (4)

where 〈f1:E1, . . . , fn:En〉 represents a record of exports. Correspondingly, we
extend the abstract syntax of a Goal to replace the invocation of an abstrac-
tion Name with one that will accommodate the notion of imports:

Var ⇐ Name (5)

To go with this extension, we assume that our expression language permits
feature lookup using the dot operator, so that we can write Var.fk, and that
Goals can also be of the form E1 = E2 to permit equality constraints. Finally,
we allow writing Name instead of ⇐ Name when the exports are not of
interest.

5.2 Object-oriented concrete syntax

A mg specification consists of (1) definitions of types, features and properties,
(2) class definitions, (3) valuations. For lack of space, we omit concrete support
for defining types, typed features attaching morpho-syntactic information with
nodes, and properties annotating nodes with e.g. color or an indication of their
nature (anchor, substitution node, foot-node. . .). We introduce the concrete
syntax for class definitions by example, together with its translation into the
logical core.

The Metagrammar Compiler 9

Class definitions.

Classes may actually take parameters, but we omit this detail here. A class
may introduce local identifiers, and export some of them, and has a body
which is just a Goal. Here is an example on the left, and its translation into
the logical core on the right:

class A

define ?X ?Y

export X

{ X=f(Y) }

≡ 〈X:X〉 ⇐ A → X = f(Y)

Inheritance is expressed with import declarations. Importing class A in the
definition of class B is very much like instantiating (calling) it in B’s body,
except for scope management: when A is imported, all its identifiers are made
available in B’s scope and automatically added to B’s exports.

class B { A } ≡ 〈〉 ⇐ B → R ⇐ A

class B import A ≡ R ⇐ B → R ⇐ A

Our concrete language of course supports importing/exporting only selected
identifiers, and renaming on import/export, but that is beyond the scope of
this article. To get an intuitive understanding of how the concrete language
is mapped to the core, let’s look at the following example:

class C1

declare ?X

export X

{

<syn>

{node X[cat=s]}

}

class C2

declare ?Y

export Y

{

<syn>

{node Y[tense=past]}

}

class C

import C1 C2

{

<syn>

{X->Y}

}

C1 (resp. C2) declares local identifier X (resp. Y) and exports it. Both of these
classes accumulate some syntactic descriptions (a new node with some fea-
tures). C imports both these classes and therefore can access X and Y as if
they were locally defined, and adds the syntactic constraint that X immedi-
ately dominates Y. This code gets translated into the core as follows:

〈X:X〉 ⇐ C1 → syn += node(X)
∧ syn += X [cat = s]

〈Y:Y 〉 ⇐ C2 → syn += node(Y)
∧ syn += Y [tense = past]

〈X:X, Y:Y 〉 ⇐ C → E1 ⇐ C1 ∧ X = E1.X

∧ E2 ⇐ C2 ∧ Y = E2.Y

∧ syn += X → Y

10 Denys Duchier, Joseph Le Roux, and Yannick Parmentier

Valuations.

While a grammar traditionally stipulates a start symbol, we have found it
more convenient to let the grammar writer supply any number of statements
of the form value E. For each one, all valuations of E, computed with our
non-deterministic mg, are to be contributed to the lexicon.

6 Implementation of the Metagrammar Processor

The processor consists of 3 modules: a front-end to compile the object-oriented
concrete syntax into the logical core, a virtual machine (vm) to execute core
programs, and a solver to take the resulting accumulated trees descriptions
and compute their minimal models, i.e. the tag trees which they describe.

6.1 Compiler front-end

The compilation process converts the mg object-oriented concrete syntax into
our logic programming core, then compiles the latter into instructions for a
vm inspired by the Warren Abstract Machine (wam) [14].

Parsing was implemented using gump. The next step of compilation is
to take care of scope management and resolve all identifiers. By examining
and following import/export declarations, we compute for each class (1) all
the identifiers in its scope, (2) its export record. This is sufficient to permit
translation into the core.

We then compile the logical core into symbolic code (scode) for our vm.
Every instruction is represented by a record and we have instructions for
conjunction conj(_ _) and disjunction disj(_ _).

6.2 An object-oriented virtual machine

The vm implements a fairly standard logic programming kernel with chrono-
logical backtracking, but with some extensions. Contrary to the wam which
uses structure copying, our vm uses structure sharing where a term is repre-
sented by a pair of a pattern and an environment in which to interpret it.
This technique enables us to save memory space, although pointer derefer-
encing can be time consuming. The vm is implemented as an object with
methods for each instruction: in this manner it can directly execute scode. It
maintains a stack of instructions (the success continuation), and a trail (the
failure continuation) to undo bindings and explore alternatives.

The vm is meant to be extended with support for multiple accumulators.
Each extension provides dedicated registers and specialized instructions for
accumulating descriptions.

There are a number of reasons why it was more convenient to build our own
vm rather than target an existing logic programming language. (1) this makes

The Metagrammar Compiler 11

it easy to extend the vm with efficient support for non-standard datatypes such
as open feature structures, properties, nodes and tree descriptions. (2) non-
standard datatypes often require non-standard extensions of unification (e.g.
the polarities of interaction grammars). (3) advanced constraint programming
support is required to compute solutions of accumulated tree descriptions

When the vm has computed a complete derivation for a valuation state-
ment, it takes a snapshot of its accumulators and sends it for further processing
by the solver. It then backtracks to enumerate all possible derivations.

At the end of the execution we possibly have tree descriptions for each
valuation of class. For tag formalism trees are needed, thus we then have
to find all the trees that are specifications of those descriptions. Because of
the high complexity of this satisfiability problem, we chose a constraint-based
approach to decrease the search space.

6.3 A constraint-based tree description solver

In the last stage of processing, the snapshot (D1, . . . , Dn)3 taken by the vm

is then submitted to a solver module, where, for each dimension i, there is
a specialized solver Si for computing the solutions (models) Si(Di) of the
corresponding accumulated description Di. The lexical entries contributed by
the snapshot are then: {(M1, . . . , Mn) | Mi ∈ Si(Di) for 1 ≤ i ≤ n}

In the case of semantics, the solver is trivial and basically just returns the
description itself. However, for syntax, we use a dominance constraint solver
based on the set constraint approach of [15] which we extended to implement
Crabbé’s semantics for the color annotation of nodes.

When observed from a specific node x, the nodes of a solution tree (a

Eq

Up

Down

Left

Right

model), and hence the variables which they interpret, are partitioned into 5
regions: the node denoted by x itself, all nodes below, all nodes above, all
nodes to the left, and all nodes to the right. The main idea is to introduce
corresponding set variables Eqx, Upx, Downx, Leftx, Rightx to encode the sets
of variables that are interpreted by nodes in the model which are respectively
equal, above, below, left, and right of the node interpreting x. The interested
reader should refer to [15] for the precise formalization.

Color constraints.

An innovative aspect of Crabbé’s approach is that nodes are decorated with
•b •r ◦w ⊥

•b ⊥ ⊥ •b ⊥

•r ⊥ ⊥ ⊥ ⊥

◦w •b ⊥ ◦w ⊥

⊥ ⊥ ⊥ ⊥ ⊥

colors (red, black, white) that constrains how they can be merged when com-
puting models. The color combination rules are summarized in the table in
the margin: a red node cannot merge with any node, a black node can only
merge with white nodes, and a white node must merge with a black node.
Thus, in a valid model, we only have red and black nodes; in fact, exactly
those which where already present in the input description. Intuitively, black

3 assuming n dimensions

12 Denys Duchier, Joseph Le Roux, and Yannick Parmentier

nodes represent nodes that can be combined, red nodes are nodes that can-
not, and white nodes those that must be combined. Thus, in valid models, all
white nodes are absorbed by black nodes.

We extend the formalization of [15] with variables RBx representing the
unique red or black node that each x is identified with. We write Vb, Vr, and
Vw for the sets of resp. black, red and white variables in the description. A
red node cannot be merged with any other node (6), a black node can only
be merged with white nodes (7), a white node must be merged with a black
node (8):

x ∈ Vr ⇒ RBx = x ∧ Eqx = {x} (6)

x ∈ Vb ⇒ RBx = x (7)

x ∈ Vw ⇒ RBx ∈ Vb (8)

Finally, two nodes are identified iff they are both identified with the same red
or black node. Thus we must extend the clause of [15] for x ¬= y as follows,
where ‖ denotes disjointness:

x ¬= y ≡ (Eqx‖Eqy ∧ RBx 6= RBy) (9)

7 Conclusion

We motivated and presented a metagrammar formalism that embraces a
multi-paradigm perspective, and we outlined its implementation in a Mozart-
based tool. Our approach is innovative in that it combines an object-oriented
management of linguistic abstraction, with a logic programming core to ex-
press and enumerate alternatives, and with constraint solving of dominance-
based tree descriptions. That is why we chose Mozart/Oz: this multi-paradigm
language provides parsing tools along with useful libraries for dealing with
constraints.

Our new mg processor has already been used to develop a significant tag

for French, with over 3000 trees. And we are currently interfacing this tool
with two parsers: the LORIA LTAG PARSER4 version 2 [16] and the DyALog5

system [17]. We are also extending it to support Interaction Grammars [12].

4 http://www.loria.fr/~azim/LLP2/help/fr/index.html
5 ftp://ftp.inria.fr/INRIA/Projects/Atoll/Eric.Clergerie/DyALog/

References

[1] XTAG-Research-Group: A lexicalized tree adjoining grammar for english.
Technical Report IRCS-01-03, IRCS, University of Pennsylvania (2001)
Available at http://www.cis.upenn.edu/˜xtag/gramrelease.html.

[2] Abeillé, A., Candito, M., Kinyon, A.: Ftag: current status and parsing
scheme. In: VEXTAL, Venice, Italy. (1999)

[3] Kroch, A., Joshi, A.: The linguistic relevance of tree adjoining grammars.
Technical report, MS-CIS-85-16, University of Pennsylvania, Philadel-
phia (1985)

[4] Joshi, A., Schabes, Y.: Tree-adjoining grammars. In Rozenberg, G.,
Salomaa, A., eds.: Handbook of Formal Languages. Volume 3. Springer,
Berlin, New York (1997) 69 – 124

[5] Vijay-Shanker, K., Schabes, Y.: Structure sharing in lexicalized tree
adjoining grammars. In: Proceedings of the 16th International Confer-
ence on Computational Linguistics (COLING’92), Nantes, pp. 205 - 212.
(1992)

[6] Candito, M.: Représentation modulaire et paramétrable de grammaires
électroniques lexicalisées : application au français et à l’italien. PhD
thesis, Université Paris 7 (1999)

[7] Gaiffe, B., Crabbé, B., Roussanaly, A.: A new metagrammar compiler.
In: Proceedings of the 6th International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6), Venice. (2002)

[8] Xia, F., Palmer, M., Vijay-Shanker, K.: Toward semi-automating gram-
mar development. In: Proc. of the 5th Natural Language Processing
Pacific Rim Symposium(NLPRS-99), Beijing, China. (1999)

[9] Rogers, J., Vijay-Shanker, K.: Reasoning with descriptions of trees. In:
Proceedings of the 30th Annual Meeting of the Association for Compu-
tational Linguistics, pp. 72 - 80. (1992)

[10] Crabbé, B.: Lexical classes for structuring the lexicon of a tag. In: Pro-
ceedings of the Lorraine/Saarland workshop on Prospects and Advances
in the Syntax/Semantics Interface. (2003)

14 References

[11] Crabbé, B.: Alternations, monotonicity and the lexicon : an application
to factorising information in a tree adjoining grammar. In: Proceedings
of the 15th ESSLLI, Vienne. (2003)

[12] Perrier, G.: Interaction grammars. In: Proceedings of the 18th Interna-
tional Conference on Computational Linguistics (COLING’2000), Saar-
brucken, pp. 600 - 606. (2000)

[13] Van Roy, P.: Extended dcg notation: A tool for applicative program-
ming in prolog. Technical report, Technical Report UCB/CSD 90/583,
Computer Science Division, UC Berkeley (1990)

[14] Ait-Kaci, H.: Warren’s abstract machine: A tutorial reconstruction. In
Furukawa, K., ed.: Logic Programming: Proc. of the Eighth International
Conference. MIT Press, Cambridge, MA (1991) 939

[15] Duchier, D.: Constraint programming for natural language processing
(2000) Lecture Notes, ESSLLI 2000. Available at http://www.ps.uni-
sb.de/Papers/abstracts/duchier-esslli2000.html.

[16] Crabbé, B., Gaiffe, B., Roussanaly, A.: Représentation et gestion du lex-
ique d’une grammaire d’arbres adjoints (2004) Traitement Automatique
des Langues, 43,3.

[17] Villemonte de la Clergerie, E.: Designing efficient parsers with DyALog
(2004) Slides presented at GLINT, Universidade Nova de Lisboa.

