Probabilistic models and concurrent systems

PANDA meeting, September 2009

Samy Abbes (PPS, Université Paris 7)

Probabilistic concurrent systems

A work in collaboration with A. Benveniste (2004-2009).

- A framework to randomize non-sequential processes
- Models of event structures and 1-bounded Petri nets under their partial orders semantics
 - A Petri net defines a regular event structure

Some features of the model

Localizes the state space

- Branching cells: a notion of "local state" for Petri nets and event structures different from place or transition
- Homogeneity of the probability yields Markov nets
- Local actions that occur concurrently are independent in probability
 - dynamical product form of the probability distribution of processes

For comparison:

- A Markov chain is completly sequential (no concurrency, trivial product form with 1 component)
- Independent random variables are completely concurrent and never synchronize
- Markov nets are a mixture of these

Bug or Feature? Time

- NO totally ordered time
- The global clock is partially ordered
 - understandable when thinking of several usual clocks runing in parallel and synchronizing at some instants only
- Not compatible with a Markov chain running on the state space of a Petri net (natural endowing sequential model → partially ordered model)

Bug or Feature? Time

Consequence:

Markov nets are not a temporised model

Question:

- Can Markov nets help for modeling a system with physical time?
 - PANDA will hopefully help me answering the question, by analyzing Airbus data
 - The methodology for validating the model is still not set up

Advantages of the model; challenges

Advantages:

- Local estimation, local learning. Needs more advances in the ergodic theory of the model
- Diagnosis and observation is order-independent for concurrent events

Challenges:

- Ergodic theory: explore the notions of convergence for partially ordered time processes
 - ▶ beyond the usual generalization from " $n \to \infty$, $n \in \mathbb{N}$ " to " $i \to \infty$, i in a directed set"
- Composition. Some steps have been done in this direction [Abbes et Benveniste, 2008, HAL-published].

Probabilistic PANDA

- Validation of a partial orders probabilistic model for the modeling of a temporised system. The answer is not obvious.
- Advances in ergodic and learning theory of distributed systems
- Composition of concurrent probabilistic systems
- Members:
 - C. Palamidessi (LiX)
 - S. Abbes (P7, PPS)
 - M.-A. Steineur (PhD to start)
 - Whoever's interested