Proving Copyless Message Passing

Jules Villard* Etienne Lozes! Cristiano Calcagno?

1SV, ENS Cachan, CNRS

2Imperial College, London

ANR PANDA - Sept. 10 = PPS

Copyless Message Passing
Language Highlights
Contracts

Local Reasoning for Copyless Message Passing
Separation Logic
Separation Logic Extended
Proofs in Separation Logic. . .
... Extended
Proof Sketch

Conclusion

Qutline

Inspiration: Singularity [Fahndrich & al. 06]

Singularity: a research project and an operating system.
» No memory protection: all processes share the same address
space
» Memory isolation is verified at compile time (Singf language)
» No shared resources. Instead, processes communicate by
copyless message passing
» Communications are ruled by contracts

» Many guarantees ensured by the compiler:

e race freedom (process isolation)
e contract obedience
e progress (?)

1/31

Singf communication model

Channels are bidirectional and asynchronous
channel = pair of FIFO queues

Channels are made of two endpoints
similar to socket model

Endpoints are allocated, disposed of, and may be
communicated through channels
under some conditions, similar to internal mobility in m-calculus

Communications are ruled by user-defined contracts
similar to session types

2 /31

Message Passing with copies

\<

5
[
W

send(cell,e,m);

*z = receive(cell,f);

Message Passing with copies

\<

5
[
W

send(cell,e,m);

*z = receive(cell,f);

Message Passing with copies

5
[
W

send(cell,e,m);

*z = receive(cell,f);

Message Passing with copies

5
[
W

send(cell,e,m);

*z = receive(cell,f);

Message Passing with copies

5
[
W

send(cell,e,m);

*z = receive(cell,f);

Message Passing with copies

\
o/]

send(cell,e,m);

*z = receive(cell,f);

Message Passing with copies

[>

(oz

/\
< mw

send(cell,e,m);

*z = receive(cell,f);

Copyless Message Passing (shared memory)

send(cell,e,m); *z = receive(cell,f);

Copyless Message Passing (shared memory)

send(cell,e,m); *z = receive(cell,f);

Copyless Message Passing (shared memory)

m
[>
f \
< W
send(cell,e,m); *z = receive(cell,f);

Copyless Message Passing (shared memory)

m
[>
f \
< W
send(cell,e,m); *z = receive(cell,f);

Copyless Message Passing (shared memory)

send(cell,e,m);

*z = receive(cell,f);

DA

4 /31

Copyless Message Passing (shared memory)

send(cell,e,m);

*z = receive(cell,f);

DA

4 /31

In this talk [APLAS 09

» Define a simple model of this language

» Provide a proof system based on Separation Logic

5 /31

In this talk [APLAS 09

» Define a simple model of this language

» Provide a proof system based on Separation Logic

e Validate programs w.r.t. ownership
e Compositional approach
e Provide a tool for annotated programs

5 /31

Syntax of the Programming Language

Expressions and Boolean Expressions
E = x¢& Var|/l€ Loc|e € Endpoint | v e Val
B == E=E|Band B|notB

Atomic commands
c = x =E

| x = new() | dispose(x) | x = E=f|x—=f=E]|...

Programs
p = c|p;p|pllp|if Bthen pelse p | while B {p} | local x inp

6 /31

Syntax of atomic commands (continued)

cui= ..
| (e,f) = open(C) (creates a channel with endpoints e,f)
| close (E,E") (channel disposal)
| send(m, E, E') (sends message m over endpoint E)
| x = receive(m, E) (receives message m over endpoint E)
Comments

> m is a message identifier, not the value of the message

> both endpoints of a channel must be closed together

7 /31

A very simple example

local e,f in
(e,f) = open(C);
send(m,e,a); b = a;
b = receive(m,f); ~
close(e,f);

8 /31

Channels, Contracts

Processes communicate through channels.
» A channel is made of two endpoints.
» It is bidirectional and asynchronous.

» It must follow a contract.

Contracts dictate which sequences of messages are admissible.
» |t is a finite state machine, where arrows are labeled by a
message's name and a direction: send (!) or receive (?).
» Dual endpoints of a channel follow dual contracts
(C=C[?<]).
» We consider leak-free contracts that ensure absence of
memory leaks

9 /31

Contract Example

message ack
message cell
message close_me

contract C {
initial state transfer { !cell -> wait;
!close_me -> end; }
state wait { 7ack -> transfer; }
final state end {}
}

lcell

transfer wait_ack

Iclose me

10 / 31

__Our tool

heaps that hop!

Qutline

Local Reasoning for Copyless Message Passing
Separation Logic
Separation Logic Extended
Proofs in Separation Logic. . .
... Extended
Proof Sketch

Separation Logic

Assertion Language

Syntax
E = x|neN expressions
A 1= E;=E | Ef #E, stack predicates
| empy, | E1 — Ep heap predicates
| AL ANAy | Ap x Ay formulas
Semantics
(s,h)E E1=Ey iff [E1]s =[E2]s
(s,h) E empy iff dom(h) =10
(s,h) E E1 — Ex iff dom(h) ={[E1]s} & h([Ei]s) = [E2]s
(S, h) = A1 VAN A2 IfF (S, /7) = Al & (S, h) = A2
(S, h) E Apx Ay iff Jh1, ho. dom(hl) N dom(hg) =0

& h=hy Uhy
& (S,hl) ':Al & (S, hz)':Az

14 / 31

Assertion Language (extension)

Intuitively E %5 (C{a}, E') means :

» E is an allocated endpoint

> its peer is E’
» it is ruled by contract C
> it currently is in contract’s state a

- W e

True/False

x—d:10xy+—d:11 satisfiable, 2 cells
x—=d:10Ay+—d:11 false
x—d:100Ay—d:10 satisfiable, x = y
x = = AxB(—,-) false

16 / 31

Soundness

Proof System

Proof of Programs

{ x—d:10 }
y = new();
{x—=d:10xy+——}
y->d = 42;
{x—d:10xy—d:42 }
dispose(x);
{y—d:42}
X = y;
{x—d:2Ax=y }

19 / 31

Proof System (extended)

Annotating Messages

» We have to know the contents of messages

» Each message m appearing in a contract is described by a
formula I, of our logic.

» |,, may refer to two special variables:

e val will denote the location of the message in memory
e src will denote the location of the sending endpoint

21 /31

Small Axioms for Communications

Receive rule:

a-beC
{E®S(C{a}, f)} x = receive(m, E) {EFS(C{b},) * Im(x, F)}

22 /31

Small Axioms for Communications

Send rules:

a-"sbeC
{EXS(C{a}, =) x Im(E', E)} send(E.m,E") {EFS(C{b}, —)}

a-"sbeC
{EB(C{a}, =) « (EFF(C{b},) = Im(E', E))}
send(E.m,E")
{emp}

22 /31

Small Axioms for Communications

Open and Close rules:

i = init(C)
{emp} (e,f) = open(C) {e¥(C{i},f) x FES(C{i},e)}

f € final(C)
{EFF(C{f},E)« EFF(C{F}, E)} close(EE) {emp}

22 /31

Back to Contracts

» Why is the close rule sound?

f € final(C)
{ETS(C{F}. E) » EFS(C{f}. E)} close(E,E") {emp}

Leak-free Contracts

A contract C is leak-free if whenever both ends of a channel ruled
by C are in the same final state, there are no pending messages in
the channel.

23 /31

Properties of Contracts

A state s is synchronizing if every cycle that goes through it
contains at least one send and one receive.

Im X I'my O
o« &__°®

Properties of Contracts

Properties of Contracts

Properties of Contracts

Soundness

Theorem 7 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A and
terminates,

1. contracts are respected

p does not fault on memory accesses
p does not leak memory

the final state satisfies B

there is no race

no communication error occur

SISO COR 1D

there is no deadlock

25 / 31

Soundness

Theorem 7 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A and
terminates,

1. contracts are respected

p does not fault on memory accesses

p does not leak memory thanks to contracts!
the final state satisfies B

there is no race

no communication error occur thanks to contracts!

SISO COR 1D

there is no deadlock

25 / 31

Soundness

Theorem 7 (Soundness for Copyless Message Passing)

If a Hoare triple {A} p {B} is provable and the contracts are leak
free, then if the program p starts in a state satisfying A and
terminates,

1. contracts are respected

2. p does not fault on memory accesses

3. p does not leak memory thanks to contracts!
4. the final state satisfies B

5. there is no race

6. no communication error occur thanks to contracts!
7. there is no deadlock not yet. ..

25 / 31

Proof of the Example

//1list (x)

local e,f;

(e,f) = open(C);
//1ist(x) * e|->(C{i},f) *x f|->(C{i},e)
//(list(x)*xel|->(C{i},£)) * (£|->(C{i},e))

local t; local y, e=0;
while (x != null) { while (e == 0) {
t = x->tl; { y = receive(cell, £f);
send (cell, e, x); free(y);
X = t; send (ack, f);
receive (ack, e); } I Y+ {
send(close_me, e, e); e = receive(close_me, f);
3

close(e, £f);

26 / 31

// list(x) * el->(C{i},£)
local t;
while (x != null) {

t = x->tl;

send (cell, e, x);

X = t;
receive (ack, e); 1}

send(close_me, e, e);

Proof of the Example

26 / 31

Proof of the Example

// list(x) * el->(C{i},f)
local t;
while (x != null) {
// xl->Y % 1s(Y) * el|->(C{i},f)
t = x->tl;
// xl->Y % 1s(Y) * el->(C{i},f) /| t=Y
send (cell, e, x);
// 1list(t) * el|->(C{ack},f)
X = t;
receive (ack, e); }
// el->(C{transfer},f)
send(close_me, e, e);
// emp

26 / 31

Proof of the Example

//1list (x)
local e,f;
(e,f) = open(C);
//1list(x) * el->(C{i},f) * £|->(C{i},e)
// (list(x)*el|->(C{i},£)) * (£|->(C{i},e))

local t; local y, e=0;
while (x !'= null) { while (e == 0) {
t = x->tl; { y = receive(cell, £f);
send(cell, e, x); free(y);
X = t; send (ack, f);
receive (ack, e); } I } o+ {
send(close_me, e, e); e = receive(close_me, f);
3

close(e, £f);

26 / 31

Proof of the Example

//1list (x)

local e,f;

(e,f) = open(C);
//1list(x) * el->(C{i},f) * £|->(C{i},e)
// (list(x)*el|->(C{i},£)) * (£|->(C{i},e))

local t; local y, e=0;
while (x !'= null) { while (e == 0) {
t = x->tl; { y = receive(cell, £f);
send(cell, e, x); free(y);
X = t; send (ack, f);
receive (ack, e); } I } o+ {
send(close_me, e, e); e = receive(close_me, f);
// emp }r

close(e, £f);

26 / 31

// £l->(C{i},e)

local x, e=0;
while (e == 0) {
{ x = receive(cell, £f);
dispose(x);

send (ack, f);

P+ A
e = receive(close_me, f);
}

}

close(e, £f);

Proof of the Example

26 / 31

Proof of the Example

// f1->(C{i},e)
local x, e=0;

// £l->(C{i},e) /| e=0

while (e == 0) {
// £l->(C{i},e) /| e=0
{ x = receive(cell, £f);

// fl->(C{ack},e) * x |-> -
dispose (x);

// fl->(C{ack},e)

send (ack, f);

P+ A

e = receive(close_me, f);

// fl->(C{end},e) * el->(C{end},f)
}

}

// fl->(C{end},e) * el|l->(C{end},f)
close(e, f);

// emp

26 / 31

Proof of the Example

//1list (x)

local e,f;

(e,f) = open(C);
//1list(x) * el->(C{i},f) * £|->(C{i},e)
// (list(x)*el|->(C{i},£)) * (£|->(C{i},e))

local t; local y, e=0;
while (x !'= null) { while (e == 0) {
t = x->tl; { y = receive(cell, £f);
send(cell, e, x); free(y);
X = t; send (ack, f);
receive (ack, e); } I } o+ {
send(close_me, e, e); e = receive(close_me, f);
// emp }r

close(e, £f);

26 / 31

Proof of the Example

//1list (x)

local e,f;

(e,f) = open(C);
//1list(x) * el->(C{i},f) * £|->(C{i},e)
// (list(x)*el|->(C{i},£)) * (£|->(C{i},e))

local t; local y, e=0;
while (x !'= null) { while (e == 0) {
t = x->tl; { y = receive(cell, £f);
send(cell, e, x); free(y);
X = t; send (ack, f);
receive (ack, e); } I } o+ {
send(close_me, e, e); e = receive(close_me, f);
// emp }r
close(e, f);
// emp

26 / 31

Proof of the Example

//1list (x)

local e,f;

(e,f) = open(C);
//1list(x) * el->(C{i},f) * £|->(C{i},e)
// (list(x)*el|->(C{i},£)) * (£|->(C{i},e))

local t; local y, e=0;
while (x !'= null) { while (e == 0) {
t = x->tl; { y = receive(cell, £f);
send(cell, e, x); free(y);
X = t; send (ack, f);
receive (ack, e); } I } o+ {
send(close_me, e, e); e = receive(close_me, f);
// emp }r
close(e, f);
// emp
// emp

26 / 31

Conclusion

Conclusion

In this Talk [APLAS’09]

» Formalization of heap-manipulating, message passing programs
with contracts

v

Contracts help us to ensure the absence of memory leaks

v

Proof system

v

Tool to prove specifications: Heap-Hop

v

Not in this talk: semantics (based on abstract separation logic)

27 /31

Conclusion

In this Talk [APLAS’09]

» Formalization of heap-manipulating, message passing programs
with contracts

v

Contracts help us to ensure the absence of memory leaks

v

Proof system

v

Tool to prove specifications: Heap-Hop

v

Not in this talk: semantics (based on abstract separation logic)

In a Future Talk

» Contracts help us to ensure the absence of deadlocks
» Tackle real case studies: Singularity, MPI, distributed GC, ...

27 /31

	Copyless Message Passing
	Language Highlights
	Contracts

	Local Reasoning for Copyless Message Passing
	Separation Logic
	Separation Logic Extended
	Proofs in Separation Logic…
	…Extended
	Proof Sketch

	Conclusion

