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Step 1

Random variables

Before the walk



Measurable spaces

A measurable space is a set () equipped with a family of sefs

A ¢ Q

called the events of the space, such that
(1) the set () is an event
(if) if Ay, Ay, ... are events, then (J2, A; is an event

(1) if A is an event, then itfs complement O\ A is an event



lllustration

Every fopological space Q) induces a measurable space whose events
A C Q

are defined by induction:
— the events of level 0 are the open sets and the closed sets,

— the events of level k + 1 are the countable unions and intersections
(6] (6.0)
Aj Aj
i=1 i=1
of events A; of level k.



Typically...

The measurable space R equipped with its borelian events




Probability spaces

A measurable set Q) equipped with a probability measure

A - PA € [01]

which assigns a value to every event, in such a way that
(1) the event () has probability P (QQ) = 1

(if) the event (J.2, A; has probability

PCJa) = Y pean
i=1 =1

when the events A; are pairwise disjoint.



Random variable

A random variable on a measurable space Y

X : Q — Y
IS d measurable function from a probability space
(Q,P)

called the universe of the random variable.

Notation for an event A of the space Y :

{ XeA } = { weQ | Xw)eA }




Conditional probabilities

Given two random variables
XYy : Q —s Y
and two events A, B such that
P{YeB} # 0
the probability of { X € A } conditioned by { Y € B } is defined as

P{XeA N YeB)}

P{XeA|YeB} := P{YCB|

where
(XeAnYeB}) = X744 n Y 1®).



Expected value

The expected value of a random variable

X : Q — R

is defined as

EX) = fQ X dP

when the infegral converges absolutely.

In the case of a random variable X with finite image:

E(X) = Z x P{X=x)

x€R



Step 2

Markov chains

Stochastic processes
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Finite Markov chains

A Markov chain is a sequence of random variables
Xo,Xl,Xz,... . Q) — Y
on a measurable space Y such that

P{Xym=y | Xi=x,....Xu=xn} = P{Xpp1=y | Xn=xn}

Every Markov chain is described by its tfransition matrix

Px,y) = P{ Xpn1=y | Xn=x}
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Stationary distribution

A stationary distribution of the Markov chain

P

is a probability measure 7 on the state space Y such that

n = TnP

A stationary distribution m is a fixpoint of the fransition matrix P

12



Reversible Markov chains

A probability distribution = on the stafte space Y safisfies the

detailed balance equations

when
n(x) P(x,y) = 7m(y) P(y,x)

for all elements x, y of the state space Y.

Property. Every such probability distribution 7 is stationary.
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Proof of the statement

Suppose that

n(x) P(x,y) = 7n(y) P(y,x)
for all elements x, y of the state space Y. In that case,

1t P(x) = Zyey ni(y) P(y, x) by definifion
= Zyey 1i(x) P(x, y) detailed balance equation

= T1(x) property of the matrix P
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Irreducible Markov chains

A Markov chain is irreducible when for any two states

x,y € Q
there exists an infeger
t € IN
such that
Pl(x, y) > 0

where P! is the transition matrix P composed t times with itself.
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Step 3

Random walk

A concrete account of reversible Markov chains

16



Networks

A finite undirected connected graph
G=(V,E)

where every edge e = {x, y} has a conductance

ce) € { xeR | x>0 }

The inverse of the conductance

is called the resistance of the edge.
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Weighted random walk

Every network defines a Markov chain

c(x, y)
c(x)

P(x,vy)
where

) = ). cxy)
X~y

Here, x ~ y means that {x, y} is an edge of the graph G.
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A stationary probability

Define the probability distribution
c(x)

N(X) = E
where
cg = Z Z c(x, y)
xeV X~y

The Markov chain P is reversible with respect to the distribution .

Consequence.

the distribution 7t is stationary for the Markov chain P.
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Conversely...

Every Markov chain P on a finite set Y reversible with respect o the
probability 7 may be recovered from the random walk on the graph
G = (VE)

with set of vertices
v =7
and edges
xyy € E <<= Pkxy>0

weighted by the conductance

c(y) = m) P, y).
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Step 4

Harmonic functions

Expected value of hitting fime is harmonic
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Harmonic functions

A function
h : Q — R

IS harmonic at a vertex x when

) = ). Py) hy)

yed
Here, P denotes a given transition matrix.

Harmonic functions at a vertex x define a vector space
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Expected value

The expected value of a random variable on R is defined as

E(X) = fQ X dP

INn the finite case:
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Hitting time

The hiffing time g associated to a set of vertices B is defined as

tg = min { t>0 | X;€B }

This defines a random variable

Xt Y — B

B

which maps every v € Y to the first element b it reaches in the set B.
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Proof of the statement

where
Hito(b) = X' ()

Hiti(0) = X7'0) \ X (B)

Hit,. ) = X1, \ | ] Hit, ()

This establishes that each X;Bl (b) is an event of the universe (), and
thus that X+, is a random variable.
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Expected value

Given a function
hg : B — R
define the random variable:
hpoXep ¢ ¥ — QO — R

whose expected value at the vertex x is denoted

Ex[hBOXTB]
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Existence of an harmonic function

Observation: the function

h @ x = Exl[hpoXq¢y]

(1) coincides with hg on the vertices of B

(1) IS harmonic on every vertex x in the complement Q) \ B,
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Ex[hBOXTB]

Proof of the statement

Ey[hpoXpy]l = hp(D)

= Lyeq Py Ex[hpoXey | Xq=y]
= ZyEQ P(x,y) Ey[hBOXTB]

= Zy~x E}/[hBOXTB ]
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Uniqueness of the harmonic function

There exists a unigue function

h : QO — R
such that

(1) coincides with g on the verfices of B

(i1) IS harmonic on every vertex x in the complement Q \ B.
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Proof of the statement

First, reduce the statement to the particular case
hg = 0
Then, consider a vertex x € Q) \ B such that
h(x) = max{h(z)|zeQ}
Then, for every vertex y connected o x, one has
h(y) = max{h(z)|z€Q}

because the function i is harmonic.
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Step 5

Electric networks

Expected values as conductance
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Idea

Now that we know that

h . X g EX[hBOXTB]

defines the unique harmonic function on the vertices of Q) \ B...

let us find another way to define this harmonic function!
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Voltage

We consider asource a and asink z and thus define

B = { a , z }

and define a voltage as any function

W : V — R

harmonic on the vertices of V' \ {a, z}.

A voltage W is determined by its boundary values W(a) and W(z)
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Flows

A flow 6 is a function on oriented edges of the graph, such that

0y = - 0y
The divergence
div : x B Z 0 (x7)
Yy~Xx
Observe that

Yooy dive(® = 0
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Flows from source 1o sink

A flow from a to z is a flow such that
(i) Kirchnoff's node law: divo (x) = 0

(1) the vertex a isasource: divd (a) > 0

Observe that

divo(z) = -—div0 (a)




Current flow

The current flow I induced by a voltage W is defined as

W(x) - W
16) = ot ) W) - W) ]

From this follows Ohm’s law:

r(xy) I(xy) = W(y) - W)
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where

P, (17 < T;lz_)

R(ae z)

Main theorem

c(@) R(aez)

W(a) — W(z)
| T]]

- C(aez)
B ¢ (a)
W(a) — W(z)

div O (a)
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Edge-cutset

An edge-cutset separating a from z is a set of vertices

I1

such that every path from a to z crosses I1.

If 11, Is a set of disjoint edge-cutset separating sets, then

R(a e z2) Z ZC(B) )~

eer
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Energy of a flow

The energy of a flow is defined as:

EO) = Y [0 re

e

Theorem. (Thompson’s Principle) For any finite connected graph,

Rae—z) =inf { &O) | Oisaunitflow fromafoz }

where a unit flow 6 is a flow from a 1o z such that

divo @ = 1.
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