First steps in random walks (a brief introduction to Markov chains)

Paul-André Melliès

CNRS, Université Paris Denis Diderot

ANR Panda

Ecole Polytechnique 4 mai 2010

Step 1

Random variables

Before the walk

Measurable spaces

A **measurable space** is a set Ω equipped with a family of sets

$A \subseteq \Omega$

called the events of the space, such that

- (i) the set Ω is an event
- (*ii*) if $A_1, A_2, ...$ are events, then $\bigcup_{i=1}^{\infty} A_i$ is an event
- (*iii*) if A is an event, then its complement $\Omega \setminus A$ is an event

Illustration

Every topological space Ω induces a measurable space whose events

are defined by induction:

- the events of level 0 are the open sets and the closed sets,
- the events of level k + 1 are the **countable** unions and intersections

of events A_i of level k.

Typically...

The measurable space ${\mathbb R}$ equipped with its **borelian** events

Probability spaces

A measurable set Ω equipped with a **probability measure**

 $A \quad \mapsto \quad \mathbf{P}(A) \quad \in \quad [0,1]$

which assigns a value to every event, in such a way that

(i) the event Ω has probability $\mathbf{P}(\Omega) = 1$

(*ii*) the event $\bigcup_{i=1}^{\infty} A_i$ has probability

$$\mathbf{P} \left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} \mathbf{P} \left(A_i \right)$$

when the events A_i are pairwise disjoint.

Random variable

A random variable on a measurable space Υ

 $X \quad : \quad \Omega \quad \longrightarrow \quad \Upsilon$

is a **measurable** function from a probability space

 (Ω, \mathbf{P})

called the **universe** of the random variable.

Notation for an event A of the space Υ :

 $\{X \in A \} := \{\omega \in \Omega \mid X(\omega) \in A \} = X^{-1}(A)$

Conditional probabilities

Given two random variables

 $X, Y : \Omega \longrightarrow \Upsilon$

and two events A, B such that

 $\mathbf{P} \{ Y \in B \} \neq 0$

the **probability** of { $X \in A$ } **conditioned** by { $Y \in B$ } is defined as

$$\mathbf{P} \{ X \in A \mid Y \in B \} := \frac{\mathbf{P} \{ X \in A \cap Y \in B \}}{\mathbf{P} \{ Y \in B \}}$$

where

$$\{ X \in A \cap Y \in B \} = X^{-1}(A) \cap Y^{-1}(B).$$

Expected value

The **expected value** of a random variable

 $X : \Omega \longrightarrow \mathbb{R}$

is defined as

$$\mathbf{E} (X) = \int_{\Omega} X d\mathbf{P}$$

when the integral converges absolutely.

In the case of a random variable X with finite image:

$$\mathbf{E} (X) = \sum_{x \in \mathbb{R}} x \mathbf{P} \{ X = x \}$$

Step 2

Markov chains

Stochastic processes

Finite Markov chains

A Markov chain is a sequence of random variables

 X_0, X_1, X_2, \ldots : $\Omega \longrightarrow \Upsilon$

on a measurable space Υ such that

 $\mathbf{P} \{ X_{n+1} = y \mid X_1 = x_1, \dots, X_n = x_n \} = \mathbf{P} \{ X_{n+1} = y \mid X_n = x_n \}$

Every Markov chain is described by its **transition matrix**

$$P(x, y) := \mathbf{P} \{ X_{n+1} = y \mid X_n = x \}$$

Stationary distribution

A stationary distribution of the Markov chain

Р

is a probability measure π on the state space Υ such that

 $\pi = \pi P$

A stationary distribution π is a fixpoint of the transition matrix P

Reversible Markov chains

A probability distribution π on the state space Υ satisfies the

detailed balance equations

when

 $\pi(x) P(x, y) = \pi(y) P(y, x)$

for all elements x, y of the state space Υ .

Property. Every such probability distribution π is stationary.

Proof of the statement

Suppose that

 $\pi(x) P(x, y) = \pi(y) P(y, x)$

for all elements x, y of the state space Υ . In that case,

$$\pi P(x) = \sum_{y \in \Upsilon} \pi(y) P(y, x)$$
by definition
= $\sum_{y \in \Upsilon} \pi(x) P(x, y)$ detailed balance equation
= $\pi(x)$ property of the matrix P

Irreducible Markov chains

A Markov chain is **irreducible** when for any two states

 $x, y \in \Omega$

there exists an integer

 $t \in \mathbb{N}$

such that

 $P^t(x,y) > 0$

where P^t is the transition matrix P composed t times with itself.

Step 3

Random walk

A concrete account of reversible Markov chains

Networks

A finite undirected connected graph

G = (V, E)

where every edge $e = \{x, y\}$ has a **conductance**

 $c(e) \in \{ x \in \mathbb{R} \mid x > 0 \}.$

The inverse of the conductance

$$r(e) = \frac{1}{c(e)}$$

is called the **resistance** of the edge.

Weighted random walk

Every network defines a Markov chain

$$P(x, y) = \frac{c(x, y)}{c(x)}$$

where

$$c(x) = \sum_{x \sim y} c(x, y)$$

Here, $x \sim y$ means that $\{x, y\}$ is an edge of the graph G.

A stationary probability

Define the probability distribution

$$\pi(x) = \frac{c(x)}{c_G}$$

where

$$c_G = \sum_{x \in V} \sum_{x \sim y} c(x, y)$$

The Markov chain P is reversible with respect to the distribution π .

Consequence.

the distribution π is **stationary** for the Markov chain *P*.

Conversely...

Every Markov chain P on a finite set Υ reversible with respect to the probability π may be recovered from the random walk on the graph

G = (V, E)

with set of vertices

 $V = \Upsilon$

and edges

$$\{x, y\} \in E \iff P(x, y) > 0$$

weighted by the conductance

 $c(x, y) = \pi(x) P(x, y).$

Step 4

Harmonic functions

Expected value of hitting time is harmonic

Harmonic functions

A function

 $h : \Omega \longrightarrow \mathbb{R}$

is **harmonic** at a vertex *x* when

$$h(x) = \sum_{y \in \Omega} P(x, y) h(y)$$

Here, *P* denotes a given transition matrix.

Harmonic functions at a vertex x define a vector space

Expected value

The **expected value** of a random variable on \mathbb{R} is defined as

$$\mathbf{E}(X) = \int_{\Omega} X d\mathbf{P}$$

In the finite case:

$$\mathbf{E}(X) = \sum_{x \in \mathbb{R}} x \mathbf{P} \{ X = x \}$$

Hitting time

The hitting time τ_B associated to a set of vertices *B* is defined as

 $\tau_B = \min \{ t \ge 0 \mid X_t \in B \}$

This defines a random variable

 $X_{\tau_B} : \Upsilon \longrightarrow B$

which maps every $v \in \Upsilon$ to the first element b it reaches in the set B.

Proof of the statement

$$X_{\tau_B}^{-1}(b) = \bigcup_{n=0}^{\infty} \operatorname{Hit}_n(b)$$

where

$$\mathbf{Hit}_{0}(b) = X_{0}^{-1}(b)$$
$$\mathbf{Hit}_{1}(b) = X_{1}^{-1}(b) \setminus X_{0}^{-1}(B)$$
$$\mathbf{Hit}_{n+1}(b) = X_{n+1}^{-1}(b) \setminus \bigcup_{b \in B} \mathbf{Hit}_{n}(b)$$

This establishes that each $X_{\tau_B}^{-1}(b)$ is an event of the universe Ω , and thus that X_{τ_B} is a random variable.

Expected value

Given a function

 $h_B : B \longrightarrow \mathbb{R}$

define the random variable:

 $h_B \circ X_{\tau_B} : \Upsilon \longrightarrow \Omega \longrightarrow \mathbb{R}$

whose expected value at the vertex x is denoted

 $\mathbf{E}_{\mathcal{X}} \left[h_B \circ X_{\tau_B} \right]$

Existence of an harmonic function

Observation: the function

$$h : x \mapsto \mathbf{E}_x [h_B \circ X_{\tau_B}]$$

- (i) coincides with h_B on the vertices of B
- (*ii*) is harmonic on every vertex x in the complement $\Omega \setminus B$.

Proof of the statement

$$\mathbf{E}_{b} \left[h_{B} \circ X_{\tau_{B}} \right] = h_{B} (b)$$

$$\mathbf{E}_{x} [h_{B} \circ X_{\tau_{B}}] = \sum_{y \in \Omega} P(x, y) \mathbf{E}_{x} [h_{B} \circ X_{\tau_{B}} | X_{1} = y]$$
$$= \sum_{y \in \Omega} P(x, y) \mathbf{E}_{y} [h_{B} \circ X_{\tau_{B}}]$$
$$= \sum_{y \sim x} \mathbf{E}_{y} [h_{B} \circ X_{\tau_{B}}]$$

Uniqueness of the harmonic function

There exists a unique function

 $h : \Omega \longrightarrow \mathbb{R}$

such that

- (i) coincides with h_B on the vertices of B
- (*ii*) is harmonic on every vertex x in the complement $\Omega \setminus B$.

Proof of the statement

First, reduce the statement to the particular case

 $h_B = 0$

Then, consider a vertex $x \in \Omega \setminus B$ such that

 $h(x) = max \{ h(z) \mid z \in \Omega \}$

Then, for every vertex y connected to x, one has

 $h(y) = max \{ h(z) \mid z \in \Omega \}$

because the function h is harmonic.

Step 5

Electric networks

Expected values as conductance

Idea

Now that we know that

$$h : x \mapsto \mathbf{E}_x [h_B \circ X_{\tau_B}]$$

defines the **unique** harmonic function on the vertices of $\Omega \setminus B$...

let us find **another way** to define this harmonic function!

Voltage

We consider a source a and a sink z and thus define

 $B = \{ a, z \}$

and define a voltage as any function

 $W : V \longrightarrow \mathbb{R}$

harmonic on the vertices of $V \setminus \{a, z\}$.

A voltage W is determined by its boundary values W(a) and W(z)

Flows

A flow θ is a function on **oriented edges** of the graph, such that

$$\theta(\vec{xy}) = -\theta(\vec{yx})$$

The divergence

div
$$\theta$$
 : $x \mapsto \sum_{y \sim x} \theta(x \vec{y})$

Observe that

 $\sum_{x \in V} \operatorname{div} \theta(x) = 0$

Flows from source to sink

A flow from a to z is a flow such that

- (i) Kirchnoff's node law: $\operatorname{div} \theta(x) = 0$
- (*ii*) the vertex *a* is a source: $\operatorname{div} \theta(a) \ge 0$

Observe that

 $\mathbf{div}\;\theta\;(z) = -\mathbf{div}\;\theta\;(a)$

Current flow

The current flow I induced by a voltage W is defined as

$$I(x\vec{y}) = \frac{W(x) - W(y)}{r(x, y)} = c(x, y) [W(x) - W(y)]$$

From this follows Ohm's law:

$$r(x\vec{y}) I(x\vec{y}) = W(y) - W(x)$$

Main theorem

$$\mathbf{P}_{a} (\tau_{z} < \tau_{a}^{+}) = \frac{1}{c(a) \mathcal{R}(a \leftrightarrow z)} = \frac{C(a \leftrightarrow z)}{c(a)}$$

where

$$\mathcal{R}(a \leftrightarrow z) = \frac{W(a) - W(z)}{\|I\|} = \frac{W(a) - W(z)}{\operatorname{div} \theta(a)}$$

Edge-cutset

An edge-cutset separating a from z is a set of vertices

Π

such that every path from a to z crosses Π .

If Π_k is a set of disjoint edge-cutset separating sets, then

$$\mathcal{R}(a \leftrightarrow z) \geq \sum_{k} (\sum_{e \in \Pi_{k}} c(e))^{-1}$$

Energy of a flow

The energy of a flow is defined as:

$$\mathcal{E}(\theta) = \sum_{e} [\theta(e)]^2 r(e)$$

Theorem. (Thompson's Principle) For any finite connected graph,

 $\mathcal{R}(a \leftrightarrow z) = \inf \{ \mathcal{E}(\theta) \mid \theta \text{ is a unit flow from } a \text{ to } z \}$

where a unit flow θ is a flow from a to z such that

div θ (*a*) = 1.