First steps in random walks

(a brief introduction to Markov chains)

Paul-André Melliès
CNRS, Université Paris Denis Diderot

ANR Panda

Ecole Polytechnique 4 mai 2010

Step 1

Random variables

Before the walk

Measurable spaces

A measurable space is a set Ω equipped with a family of sets

$$
A \subseteq \Omega
$$

called the events of the space, such that the set Ω is an event
(ii) if A_{1}, A_{2}, \ldots are events, then $\bigcup_{i=1}^{\infty} A_{i}$ is an event
(iii) if A is an event, then its complement $\Omega \backslash A$ is an event

Illustration

Every topological space Ω induces a measurable space whose events

$$
A \subseteq \Omega
$$

are defined by induction:

- the events of level 0 are the open sets and the closed sets,
- the events of level $k+1$ are the countable unions and intersections

of events A_{i} of level k.

Typically...

The measurable space \mathbb{R} equipped with its borelian events

Probability spaces

A measurable set Ω equipped with a probability measure

$$
A \quad \mapsto \quad \mathbf{P}(A) \quad \in \quad[0,1]
$$

which assigns a value to every event, in such a way that
(i) the event Ω has probability $\mathbf{P}(\Omega)=1$
(ii) the event $\bigcup_{i=1}^{\infty} A_{i}$ has probability

$$
\mathbf{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbf{P}\left(A_{i}\right)
$$

when the events A_{i} are pairwise disjoint.

Random variable

A random variable on a measurable space Υ

$$
X: \Omega \longrightarrow \Upsilon
$$

is a measurable function from a probability space

$$
(\Omega, \mathbf{P})
$$

called the universe of the random variable.

Notation for an event A of the space Υ :

$$
\{X \in A \quad\} \quad:=\quad\{\omega \in \Omega \quad \mid \quad X(\omega) \in A \quad\} \quad=\quad X^{-1}(A)
$$

Conditional probabilities

Given two random variables

$$
X, Y: \Omega \longrightarrow \Upsilon
$$

and two events A, B such that

$$
\mathbf{P}\{Y \in B\} \neq 0
$$

the probability of $\{X \in A\}$ conditioned by $\{Y \in B\}$ is defined as

$$
\mathbf{P}\{X \in A \mid Y \in B\}:=\frac{\mathbf{P}\{X \in A \cap Y \in B\}}{\mathbf{P}\{Y \in B\}}
$$

where

$$
\{X \in A \cap Y \in B\}=X^{-1}(A) \cap Y^{-1}(B) .
$$

Expected value

The expected value of a random variable

$$
X: \Omega \quad \longrightarrow \mathbb{R}
$$

is defined as

$$
\mathbf{E}(X)=\int_{\Omega} X d \mathbf{P}
$$

when the integral converges absolutely.

In the case of a random variable X with finite image:

$$
\mathbf{E}(X)=\sum_{x \in \mathbb{R}} x \quad \mathbf{P}\{X=x\}
$$

Step 2

Markov chains

Stochastic processes

Finite Markov chains

A Markov chain is a sequence of random variables

$$
X_{0}, X_{1}, X_{2}, \ldots: \Omega \quad \longrightarrow
$$

on a measurable space Υ such that

$$
\mathbf{P}\left\{X_{n+1}=y \mid X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right\}=\mathbf{P}\left\{X_{n+1}=y \mid X_{n}=x_{n}\right\}
$$

Every Markov chain is described by its transition matrix

$$
P(x, y):=\mathbf{P}\left\{X_{n+1}=y \mid X_{n}=x\right\}
$$

Stationary distribution

A stationary distribution of the Markov chain
P
is a probability measure π on the state space Υ such that

$$
\pi=\pi P
$$

A stationary distribution π is a fixpoint of the transition matrix P

Reversible Markov chains

A probability distribution π on the state space Υ satisfies the detailed balance equations
when

$$
\pi(x) P(x, y)=\pi(y) P(y, x)
$$

for all elements x, y of the state space Υ.

Property. Every such probability distribution π is stationary.

Proof of the statement

Suppose that

$$
\pi(x) P(x, y)=\pi(y) P(y, x)
$$

for all elements x, y of the state space Υ. In that case,

$$
\begin{aligned}
\pi P(x) & =\sum_{y \in \Upsilon} \pi(y) P(y, x) & & \text { by definition } \\
& =\sum_{y \in \Upsilon} \pi(x) P(x, y) & & \text { detailed balance equation } \\
& =\quad \pi(x) & & \text { property of the matrix } P
\end{aligned}
$$

Irreducible Markov chains

A Markov chain is irreducible when for any two states

$$
x, y \in \Omega
$$

there exists an integer

$$
t \in \mathbb{N}
$$

such that

$$
P^{t}(x, y)>0
$$

where P^{t} is the transition matrix P composed t times with itself.

Step 3

Random walk

A concrete account of reversible Markov chains

Networks

A finite undirected connected graph

$$
G=(V, E)
$$

where every edge $e=\{x, y\}$ has a conductance

$$
c(e) \in\{x \in \mathbb{R} \mid x>0\} .
$$

The inverse of the conductance

$$
r(e)=\frac{1}{c(e)}
$$

is called the resistance of the edge.

Weighted random walk

Every network defines a Markov chain

$$
P(x, y)=\frac{c(x, y)}{c(x)}
$$

where

$$
c(x)=\sum_{x \sim y} c(x, y)
$$

Here, $x \sim y$ means that $\{x, y\}$ is an edge of the graph G.

A stationary probability

Define the probability distribution

$$
\pi(x)=\frac{c(x)}{c_{G}}
$$

where

$$
c_{G}=\sum_{x \in V} \sum_{x \sim y} c(x, y)
$$

The Markov chain P is reversible with respect to the distribution π.

Consequence.

the distribution π is stationary for the Markov chain P.

Conversely...

Every Markov chain P on a finite set Υ reversible with respect to the probability π may be recovered from the random walk on the graph

$$
G=(V, E)
$$

with set of vertices

$$
V=\Upsilon
$$

and edges

$$
\{x, y\} \in E \Longleftrightarrow P(x, y)>0
$$

weighted by the conductance

$$
c(x, y)=\pi(x) P(x, y)
$$

Step 4

Harmonic functions

Expected value of hitting time is harmonic

Harmonic functions

A function

$$
h: \Omega \longrightarrow \mathbb{R}
$$

is harmonic at a vertex x when

$$
h(x)=\sum_{y \in \Omega} P(x, y) h(y)
$$

Here, P denotes a given transition matrix.
Harmonic functions at a vertex x define a vector space

Expected value

The expected value of a random variable on \mathbb{R} is defined as

$$
\mathbf{E}(X)=\int_{\Omega} X d \mathbf{P}
$$

In the finite case:

$$
\mathbf{E}(X)=\sum_{x \in \mathbb{R}} x \quad \mathbf{P}\{X=x\}
$$

Hitting time

The hitting time τ_{B} associated to a set of vertices B is defined as

$$
\tau_{B}=\min \left\{t \geq 0 \quad \mid \quad X_{t} \in B\right\}
$$

This defines a random variable

$$
X_{\tau_{B}}: \Upsilon \longrightarrow B
$$

which maps every $v \in \Upsilon$ to the first element b it reaches in the set B.

Proof of the statement

$$
X_{\tau_{B}}^{-1}(b)=\bigcup_{n=0}^{\infty} \operatorname{Hit}_{n}(b)
$$

where

$$
\begin{gathered}
\operatorname{Hit}_{0}(b)=X_{0}^{-1}(b) \\
\operatorname{Hit}_{1}(b)=X_{1}^{-1}(b) \backslash X_{0}^{-1}(B) \\
\operatorname{Hit}_{n+1}(b)=X_{n+1}^{-1}(b) \backslash \bigcup_{b \in B} \operatorname{Hit}_{n}(b)
\end{gathered}
$$

This establishes that each $X_{\tau_{B}}^{-1}(b)$ is an event of the universe Ω, and thus that $X_{\tau_{B}}$ is a random variable.

Expected value

Given a function

$$
h_{B}: B \quad \longrightarrow \mathbb{R}
$$

define the random variable:

$$
h_{B} \circ X_{\tau_{B}}: \Upsilon \longrightarrow \Omega \quad \mathbb{R}
$$

whose expected value at the vertex x is denoted

$$
\mathrm{E}_{x}\left[h_{B} \circ X_{\tau_{B}}\right]
$$

Existence of an harmonic function

Observation: the function

$$
h: x \quad \mapsto \quad \mathbf{E}_{x}\left[h_{B} \circ X_{\tau_{B}}\right]
$$

(i) coincides with h_{B} on the vertices of B
(ii) is harmonic on every vertex x in the complement $\Omega \backslash B$.

Proof of the statement

$$
\begin{aligned}
& \mathbf{E}_{b}\left[h_{B} \circ X_{\tau_{B}}\right] \quad=h_{B}(b) \\
& \mathbf{E}_{x}\left[h_{B} \circ X_{\tau_{B}}\right]=\sum_{y \in \Omega} \quad P(x, y) \mathbf{E}_{x}\left[h_{B} \circ X_{\tau_{B}} \mid X_{1}=y\right] \\
&=\quad \sum_{y \in \Omega} P(x, y) \mathbf{E}_{y}\left[h_{B} \circ X_{\tau_{B}}\right] \\
&=\quad \sum_{y \sim x} \quad \mathbf{E}_{y}\left[h_{B} \circ X_{\tau_{B}}\right]
\end{aligned}
$$

Uniqueness of the harmonic function

There exists a unique function

$$
h: \Omega \longrightarrow \mathbb{R}
$$

such that
(i) coincides with h_{B} on the vertices of B
(ii) is harmonic on every vertex x in the complement $\Omega \backslash B$.

Proof of the statement

First, reduce the statement to the particular case

$$
h_{B}=0
$$

Then, consider a vertex $x \in \Omega \backslash B$ such that

$$
h(x)=\max \{h(z) \mid z \in \Omega\}
$$

Then, for every vertex y connected to x, one has

$$
h(y)=\max \{h(z) \mid z \in \Omega\}
$$

because the function h is harmonic.

Step 5

Electric networks

Expected values as conductance

Idea

Now that we know that

$$
h: x \quad \mapsto \quad \mathbf{E}_{x}\left[h_{B} \circ X_{\tau_{B}}\right]
$$

defines the unique harmonic function on the vertices of $\Omega \backslash B \ldots$
let us find another way to define this harmonic function!

Voltage

We consider a source a and a sink z and thus define

$$
B=\{a, z\}
$$

and define a voltage as any function

$$
W: V \quad \longrightarrow \quad \mathbb{R}
$$

harmonic on the vertices of $V \backslash\{a, z\}$.

A voltage W is determined by its boundary values $W(a)$ and $W(z)$

Flows

A flow θ is a function on oriented edges of the graph, such that

$$
\theta(x \overrightarrow{y y})=-\theta(\overrightarrow{y x})
$$

The divergence

$$
\operatorname{div} \theta: x \mapsto \sum_{y \sim x} \theta(x \vec{y})
$$

Observe that

$$
\sum_{x \in V} \operatorname{div} \theta(x)=0
$$

Flows from source to sink

A flow from a to z is a flow such that
(i) Kirchnoff's node law: $\operatorname{div} \theta(x)=0$
(ii) the vertex a is a source: $\operatorname{div} \theta(a) \geq 0$

Observe that

Current flow

The current flow I induced by a voltage W is defined as

$$
I(\overrightarrow{x y})=\frac{W(x)-W(y)}{r(x, y)}=c(x, y)[W(x)-W(y)]
$$

From this follows Ohm's law:

$$
r(x \vec{y}) I(x \overrightarrow{x y})=W(y)-W(x)
$$

Main theorem

$$
\mathbf{P}_{a}\left(\tau_{z}<\tau_{a}^{+}\right)=\frac{1}{c(a) \mathcal{R}(a \leftrightarrow z)}=\frac{C(a \leftrightarrow z)}{c(a)}
$$

where

$$
\mathcal{R}(a \leftrightarrow z)=\frac{W(a)-W(z)}{\|I\|}=\frac{W(a)-W(z)}{\operatorname{div} \theta(a)}
$$

Edge-cutset

An edge-cutset separating a from z is a set of vertices

П

such that every path from a to z crosses Π.
If Π_{k} is a set of disjoint edge-cutset separating sets, then

$$
\mathcal{R}(a \leftrightarrow z) \geq \sum_{k}\left(\sum_{e \in \Pi_{k}} c(e)\right)^{-1}
$$

Energy of a flow

The energy of a flow is defined as:

$$
\mathcal{E}(\theta)=\sum_{e}[\theta(e)]^{2} r(e)
$$

Theorem. (Thompson's Principle) For any finite connected graph,

$$
\mathcal{R}(a \leftrightarrow z) \quad=\inf \quad\{\mathcal{E}(\theta) \quad \mid \quad \theta \text { is a unit flow from } a \text { to } z\}
$$

where a unit flow θ is a flow from a to z such that

$$
\operatorname{div} \theta(a)=1 .
$$

