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Step 1

Random variables

Before the walk
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Measurable spaces

A measurable space is a set Ω equipped with a family of sets

A ⊆ Ω

called the events of the space, such that

(i) the set Ω is an event

(ii) if A1,A2, ... are events, then
⋃
∞

i=1 Ai is an event

(iii) if A is an event, then its complement Ω \ A is an event
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Illustration

Every topological space Ω induces a measurable space whose events

A ⊆ Ω

are defined by induction:

– the events of level 0 are the open sets and the closed sets,

– the events of level k + 1 are the countable unions and intersections
∞⋃

i=1

Ai

∞⋂
i=1

Ai

of events Ai of level k.
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Typically...

The measurable space R equipped with its borelian events

5



Probability spaces

A measurable set Ω equipped with a probability measure

A 7→ P (A) ∈ [0, 1]

which assigns a value to every event, in such a way that

(i) the event Ω has probability P (Ω) = 1

(ii) the event
⋃
∞

i=1 Ai has probability

P (
∞⋃

i=1

Ai ) =

∞∑
i=1

P ( Ai )

when the events Ai are pairwise disjoint.
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Random variable

A random variable on a measurable space Υ

X : Ω −→ Υ

is a measurable function from a probability space

( Ω , P )

called the universe of the random variable.

Notation for an event A of the space Υ :

{ X ∈ A } := { ω ∈ Ω | X(ω) ∈ A } = X−1 (A)

7



Conditional probabilities

Given two random variables

X,Y : Ω −→ Υ

and two events A, B such that

P { Y ∈ B } , 0

the probability of { X ∈ A } conditioned by { Y ∈ B } is defined as

P { X ∈ A | Y ∈ B } :=
P { X ∈ A ∩ Y ∈ B }

P { Y ∈ B }

where

{ X ∈ A ∩ Y ∈ B } = X−1(A) ∩ Y−1(B).
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Expected value

The expected value of a random variable

X : Ω −→ R

is defined as

E (X) =

∫
Ω

X d P

when the integral converges absolutely.

In the case of a random variable X with finite image:

E (X) =
∑
x∈R

x P { X = x }
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Step 2

Markov chains

Stochastic processes
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Finite Markov chains

A Markov chain is a sequence of random variables

X0 , X1 , X2 , . . . : Ω −→ Υ

on a measurable space Υ such that

P { Xn+1 = y | X1 = x1, . . . ,Xn = xn } = P { Xn+1 = y | Xn = xn }

Every Markov chain is described by its transition matrix

P(x, y) := P { Xn+1 = y | Xn = x }
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Stationary distribution

A stationary distribution of the Markov chain

P

is a probability measure π on the state space Υ such that

π = π P

A stationary distribution π is a fixpoint of the transition matrix P
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Reversible Markov chains

A probability distribution π on the state space Υ satisfies the

detailed balance equations

when

π(x) P(x, y) = π(y) P(y, x)

for all elements x, y of the state space Υ.

Property. Every such probability distribution π is stationary.
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Proof of the statement

Suppose that

π(x) P(x, y) = π(y) P(y, x)

for all elements x, y of the state space Υ. In that case,

π P(x) =
∑

y∈Υ π(y) P(y, x) by definition

=
∑

y∈Υ π(x) P(x, y) detailed balance equation

= π(x) property of the matrix P
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Irreducible Markov chains

A Markov chain is irreducible when for any two states

x, y ∈ Ω

there exists an integer

t ∈ N

such that

Pt(x, y) > 0

where Pt is the transition matrix P composed t times with itself.
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Step 3

Random walk

A concrete account of reversible Markov chains
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Networks

A finite undirected connected graph

G = (V,E)

where every edge e = {x, y} has a conductance

c(e) ∈ { x ∈ R | x > 0 }.

The inverse of the conductance

r(e) =
1

c(e)

is called the resistance of the edge.
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Weighted random walk

Every network defines a Markov chain

P(x, y) =
c(x, y)
c(x)

where

c(x) =
∑
x∼y

c(x, y)

Here, x ∼ y means that {x, y} is an edge of the graph G.
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A stationary probability

Define the probability distribution

π(x) =
c(x)
cG

where

cG =
∑
x∈V

∑
x∼y

c(x, y)

The Markov chain P is reversible with respect to the distribution π.

Consequence.

the distribution π is stationary for the Markov chain P.
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Conversely...

Every Markov chain P on a finite set Υ reversible with respect to the
probability π may be recovered from the random walk on the graph

G = (V,E)

with set of vertices

V = Υ

and edges

{x, y} ∈ E ⇐⇒ P(x, y) > 0

weighted by the conductance

c(x, y) = π(x) P(x, y).
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Step 4

Harmonic functions

Expected value of hitting time is harmonic
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Harmonic functions

A function

h : Ω −→ R

is harmonic at a vertex x when

h(x) =
∑
y∈Ω

P(x, y) h(y)

Here, P denotes a given transition matrix.

Harmonic functions at a vertex x define a vector space
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Expected value

The expected value of a random variable on R is defined as

E (X) =

∫
Ω

X d P

In the finite case:

E (X) =
∑
x∈R

x P { X = x }
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Hitting time

The hitting time τB associated to a set of vertices B is defined as

τB = min { t ≥ 0 | Xt ∈ B }

This defines a random variable

XτB : Υ −→ B

which maps every υ ∈ Υ to the first element b it reaches in the set B.
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Proof of the statement

X−1
τB (b) =

∞⋃
n=0

Hit n (b)

where

Hit 0(b) = X−1
0 (b)

Hit 1(b) = X−1
1 (b) \ X−1

0 (B)

Hit n+1 (b) = X−1
n+1 (b) \

⋃
b∈B

Hit n (b)

This establishes that each X−1
τB

(b) is an event of the universe Ω, and
thus that XτB is a random variable.
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Expected value

Given a function

hB : B −→ R

define the random variable:

hB ◦ XτB : Υ −→ Ω −→ R

whose expected value at the vertex x is denoted

Ex [ hB ◦ XτB ]
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Existence of an harmonic function

Observation: the function

h : x 7→ Ex [ hB ◦ XτB ]

(i) coincides with hB on the vertices of B

(ii) is harmonic on every vertex x in the complement Ω \ B.
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Proof of the statement

E b [ hB ◦ XτB ] = hB (b)

E x [ hB ◦ XτB ] =
∑

y∈Ω P(x, y) E x [ hB ◦ XτB | X1 = y ]

=
∑

y∈Ω P(x, y) E y [ hB ◦ XτB ]

=
∑

y∼x E y [ hB ◦ XτB ]
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Uniqueness of the harmonic function

There exists a unique function

h : Ω −→ R

such that

(i) coincides with hB on the vertices of B

(ii) is harmonic on every vertex x in the complement Ω \ B.
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Proof of the statement

First, reduce the statement to the particular case

hB = 0

Then, consider a vertex x ∈ Ω \ B such that

h(x) = max { h(z) | z ∈ Ω }

Then, for every vertex y connected to x, one has

h(y) = max { h(z) | z ∈ Ω }

because the function h is harmonic.
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Step 5

Electric networks

Expected values as conductance

31



Idea

Now that we know that

h : x 7→ Ex [ hB ◦ XτB ]

defines the unique harmonic function on the vertices of Ω \ B...

let us find another way to define this harmonic function!

32



Voltage

We consider a source a and a sink z and thus define

B = { a , z }

and define a voltage as any function

W : V −→ R

harmonic on the vertices of V \ {a, z}.

A voltage W is determined by its boundary values W(a) and W(z)
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Flows

A flow θ is a function on oriented edges of the graph, such that

θ ( ~xy) = − θ ( ~yx)

The divergence

div θ : x 7→

∑
y∼x

θ ( ~xy)

Observe that

∑
x∈V div θ (x) = 0
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Flows from source to sink

A flow from a to z is a flow such that

(i) Kirchnoff’s node law: div θ (x) = 0

(ii) the vertex a is a source: div θ (a) ≥ 0

Observe that

div θ (z) = − div θ (a)
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Current flow

The current flow I induced by a voltage W is defined as

I( ~xy) =
W(x) −W(y)

r(x, y)
= c(x, y) [ W(x) −W(y) ]

From this follows Ohm’s law:

r( ~xy ) I( ~xy ) = W(y) −W(x)
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Main theorem

Pa ( τz < τ+
a ) =

1
c (a) R ( a↔ z )

=
C ( a↔ z )

c (a)

where

R ( a↔ z ) =
W(a) − W(z)

‖ I ‖
=

W(a) − W(z)
div θ (a)

37



Edge-cutset

An edge-cutset separating a from z is a set of vertices

Π

such that every path from a to z crosses Π.

If Πk is a set of disjoint edge-cutset separating sets, then

R ( a↔ z) ≥

∑
k

(
∑
e∈Πk

c(e) )−1

38



Energy of a flow

The energy of a flow is defined as:

E (θ) =
∑

e
[θ(e)]2 r(e)

Theorem. [Thompson’s Principle] For any finite connected graph,

R(a↔ z) = inf { E(θ) | θ is a unit flow from a to z }

where a unit flow θ is a flow from a to z such that

div θ (a) = 1.
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