
Algorithmic specifications in linear logic with
subexponentials

Vivek Nigam† and Dale Miller

INRIA-Saclay & LIX/École Polytechnique
Palaiseau, France

3 December 2010, LIX

Based on a paper with the same title that appeared in PPDP 2010.
† Now on a Humboldt Fellowship at L.U.M. Munich.

Overview of high-level goals

I Use focused proof systems to justify algorithmic interpretation
of proof search

I Use subexponentials to locate data and processes.

I Describe a algorithmic programming language based on
located multisets

I Speculate on parallel and distributed computing and bigraphs.

Outline

Synthetic connectives and focused proofs in linear logic

The subexponentials of linear logic

Subexponentials and explicit algorithm specification

Outline

Synthetic connectives and focused proofs in linear logic

The subexponentials of linear logic

Subexponentials and explicit algorithm specification

The LLF focused proof system for linear logic

Negative rules

Ψ; ∆ ⇑ L

Ψ; ∆ ⇑ ⊥, L
[⊥]

Ψ; ∆ ⇑ F ,G , L

Ψ; ∆ ⇑ F O G , L
[O]

Ψ,F ; ∆ ⇑ L

Ψ; ∆ ⇑ ?F , L
[?]

Ψ; ∆ ⇑ >, L
[>]

Ψ; ∆ ⇑ F , L Ψ; ∆ ⇑ G , L

Ψ; ∆ ⇑ F & G , L
[&]

Ψ; ∆ ⇑ B[y/x], L

Ψ; ∆ ⇑ ∀x .B, L
[∀]

Positive rules

Ψ; · ⇓ 1
[1]

Ψ; ∆1 ⇓ F Ψ; ∆2 ⇓ G

Ψ; ∆1,∆2 ⇓ F ⊗ G
[⊗]

Ψ; · ⇑ F

Ψ; · ⇓ !F
[!]

Ψ; ∆ ⇓ F1

Ψ; ∆ ⇓ F1 ⊕ F2
[⊕l]

Ψ; ∆ ⇓ F2

Ψ; ∆ ⇓ F1 ⊕ F2
[⊕r]

Ψ; ∆ ⇓ B[t/x]

Ψ; ∆ ⇓ ∃x .B
[∃]

Ψ a set, ∆ a multiset, L a list. There are one-sided sequents!

Identity, Decide, and Reaction rules

Ψ;A ⇓ A⊥
[I1]

Ψ,A; · ⇓ A⊥
[I2]

Ψ; ∆ ⇓ F

Ψ; ∆,F ⇑ ·
[D1]

Ψ,F ; ∆ ⇓ F

Ψ,F ; ∆ ⇑ ·
[D2]

In [I1] and [I2], A is atomic. In [D1] and [D2], F is positive.

Ψ; ∆,F ⇑ L

Ψ; ∆ ⇑ F , L
[R ⇑] provided that F is positive or an atom

Ψ; ∆ ⇑ F

Ψ; ∆ ⇓ F
[R ⇓] provided that F is negative

An atom A is negative and A⊥ is positive.

An example of a “macro-rule”

Assume that Ψ contains the formula a⊥ ⊗ b⊥ ⊗ c. A deviation
that focuses on that formula must have the following shape.

Ψ; ∆1 ⇓ a⊥
[I1]

Ψ; ∆2 ⇓ b⊥
[I1]

Ψ; ∆3, c ⇑ ·
Ψ; ∆3 ⇑ c

[R ⇑]

Ψ; ∆3 ⇓ c
[R ⇓]

Ψ; ∆1,∆2,∆3 ⇓ a⊥ ⊗ b⊥ ⊗ ¬c
[⊗× 2]

Ψ; ∆1,∆2,∆3 ⇑ ·
[D2]

This derivation is possible only if ∆1 is {a} and if ∆2 is {b}.
Thus, the corresponding “macro-rule” is

Ψ; c,∆3 ⇑ ·
Ψ; a, b,∆3 ⇑ ·

.

Thus, selecting this formula corresponds to the “action” of
replacing two members of a multiset with one.

Arithmetic: add fixed points

We shall add the fixed point operators µ and ν which will be de
Morgan duals of each other (µ is positive and ν is negative).

We shall only adopt the unfolding rules for them, so they will not
be distinguishable.

For an approach to induction and co-induction, see David Baelde’s
recent papers on µMALL.

The additional (micro) rules for LLF are the following.

Ψ; ∆ ⇑ B(νB)t̄, Γ

Ψ; ∆ ⇑ νBt̄, Γ
Ψ; ∆ ⇓ B(µB)t̄

Ψ; ∆ ⇓ µBt̄

Arithmetic: add equality

Formulas of the form t = s are positive while formulas of the form
t 6= s are negative.

Ψσ; Θσ ⇑ Γσ

Ψ; Θ ⇑ Γ, s 6= t
†

Ψ; Θ ⇑ Γ, s 6= t
‡

Ψ; · ⇓ t = t

The proviso † requires the terms s and t to be unifiable and for σ
to be their most general unifier. The proviso ‡ requires that the
terms s and t are not unifiable.

Oddly:

3 6= 3 ◦−◦⊥ 3 6= 4 ◦−◦ > 3 = 3 ◦−◦ 1 3 = 4 ◦−◦ 0

Seems that equality (as a logical connective) can denote an
additive and a multiplicative unit.

A couple of fixed points

Encode the natural numbers using zero 0 and successor s.

x ≤ y
∆
= [x = 0] ⊕

[∃x ′y ′.(x = s x ′)⊗ (y = s y ′)⊗ x ′ ≤ y ′].

plus y w u
∆
= [y = 0⊗ w = u]⊕

[∃y ′u′.(y = s y ′)⊗ (u = s u′)⊗ plus y ′ w u′].

Notice that the following are “macro-rules.”

Ψ; · ⇓ 5 ≤ 8

Ψ; Γ, q(0, 3) ⇑ · Ψ; Γ, q(1, 2) ⇑ · Ψ; Γ, q(2, 1) ⇑ · Ψ; Γ, q(3, 0) ⇑ ·
Ψ; Γ ⇑ ∀x∀y .(plus x y 3)⊥ O q(x , y)

(. . . assuming that formulas of the form q(·, ·) are positive).

Computing the minimum of a multiset

{ ∃x∃y [l(x)⊥ ⊗ l(y)⊥ ⊗ (x ≤ y)⊗ l(x)],
∃x [l(x)⊥ ⊗ !min(x)] },

The macro rules determined by focusing on these two rules are:

Ψ; Γ, l(x) ⇑ ·
Ψ; Γ, l(x), l(y) ⇑ ·

provided x ≤ y
Ψ;min(x) ⇑ ·

Ψ; l(x) ⇑ ·
The use of ! in the second clause above is important.

The sequent

Ψ; · ⇑ min(m)−◦ [l(m1) O · · · O l(mn)]

is provable if and only if m is the minimum of the (non-empty)
multiset {m1, . . . ,mn}. [[Also, Ψ contains the min program, etc.]]

There is only one multiset, and it is global!

Performing interesting computations with multiset will almost
certainly require many of them. Linear logic (Girard 1987) only
provides one and its global.

Are we stuck? Are we doomed to go the route of Logical
Algorithms by McAllester and Ganzinger and introduce lots of
non-logical features into “proof systems”?

Not necessarily: the exponentials of linear logic have a feature
(“bug”) that allows us to enrich our computing paradigm with
multiple multisets.

Outline

Synthetic connectives and focused proofs in linear logic

The subexponentials of linear logic

Subexponentials and explicit algorithm specification

Connectives can be canonical

The pair of connectives ⊗ and O are canonical since

` B⊥ O C⊥,B ⊗ C and ` B⊥ O C⊥,B ⊗ C

follow from the inference rules:

` Γ,B,C

` Γ,B O C

` Γ1,B ` Γ2,C

` Γ1, Γ2,B ⊗ C

` Γ,B,C

` Γ,B O C

` Γ1,B ` Γ2,C

` Γ1, Γ2,B ⊗ C

All connectives of linear logic are canonical except for the
exponentials.

The exponentials are not canonical

The promotion rule is
` ?Γ,B

` ?Γ, !B

To prove !B −◦ !B we have

oops

` ?B⊥, !B

Since the exponentials are not canonical, there are numerous ways
to develop them. E.g., lite, elementary, soft linear logics. We
pursue another avenue.

Subexponentials

Danos, Joinet, and Schellinx (“The structure of exponentials:
Uncovering the dynamics of linear logic proofs”, Kurt Gödel
Colloquium, 1993). (We introduce the term subexponential.)

A subexponential signature is a tuple 〈I ,�,W, C〉 where

I I is a set of indexes (naming the subexponentials),

I � is a pre-order on I ,

I W and C are both subsets of I , and

I W and C are upward closed wrt �.

If k ∈ I then ?k and !k are two dual subexponentials.

If k ∈ W then ?k admit weakening (on the right).

If k ∈ C then ?k admit contraction (on the right).

Proof rules for subexponentials

Assume that x ∈ I , y ∈ C, and z ∈ W.

` C ,∆

` ?xC ,∆
D
` ?yC , ?yC ,∆

` ?yC ,∆
C

` ∆
` ?zC ,∆

W

The promotion rule in particularly interesting:

` ?x1C1, . . . , ?
xnCn,C

` ?x1C1, . . . , ?
xnCn, !

aC
!a

provided a � xi for all i = 1, . . . , n.

Refer to this proof system as SELLΣ (linear logic over the
subexponential signature Σ).

Cut and initial elimination holds for SELLΣ.

The promotion rule as a gate keeper

Notice that if x 6� y then the promotion rule can be applied to the
sequent

` ?xC1, . . . , ?
xCn, ?

yD1, . . . , ?
yDm, !

yC

only if n = 0: the premise of that promotion rule would then be
` ?yD1, . . . , ?

yDm,C .

The promotion rule can then be seen as a guard that allows a
certain proof-search reduction only when the collection
{C1, . . . ,Cn} located at x is empty.

The promotion rule will allow us to test some locations for
emptiness: computation can then move to another phase.

Eg: select the minimum from one location, then process the graph
edges placed in another location, etc.

Why the name?

We use the term subexponential since the equivalence

?(A⊕ B) ◦−◦ (?A O ?B)

—which relates the exponential ?, the additive ⊕, and the
multiplicative O—fails when ? does not admit contraction and/or
weakening.

Outline

Synthetic connectives and focused proofs in linear logic

The subexponentials of linear logic

Subexponentials and explicit algorithm specification

A couple of assumptions for the rest of this talk

Neither

I the “affine” subexponential (i ∈ W and i /∈ C) nor

I the “relevant” subexponential (i /∈ W and i ∈ C)

will be used here.

Instead, we shall assume that

I W = C (only bounded and unbounded subexponentials) and

I the pre-ordered set 〈I ,�〉 has a maximum element, written ∞,
which is unbounded.

Further restrictions: no sub-locations

A complemented subexponential signature on set I is the signature

〈{∞} ∪ I ∪ Î ,�, {∞}, {∞}〉

where

I Î is a copy of the index set I containing elements of the form l̂
whenever l ∈ I ,

I the order relation � does not relate any two members in I nor
any two members of l̂ , and

I l̂ � k such that l and k are distinct members of I .

The promotion rule with the subexponential !l̂ succeeds only if the
indexed context is empty at location l : all other locations need not
be considered.

We shall not use ?l̂ : that is, no data will not be “stored” in
complemented locations.

The specification language Bag

t ::= c ∈ C | var tup ::= 〈t1, . . . , tn〉 (n ≥ 0)

pat ::= tup | λvar.pat
conda ::= t1Ht2 condl ::= is empty locb
cond ::= conda | condl

prog ::= load tup loc prog | unloadi loc pat bprog
| while conda (λK .prog) prog
| loopi locb kprog prog | new loc λL.prog
| if cond prog | prog 8 prog | K | end

bprog ::=prog | λvar.bprog
kprog ::=λK .prog | λvar.kprog
lprog ::=λK .prog | λL.lprog | λvar.lprog

The definition of Bag primitives

Define the delays: δ−(C) is C O ⊥ and δ+(C) is C ⊗ 1.

load 〈t̄〉 l prog ∆
= ?l l(t̄) O δ+(prog)

unloadi l pat bprog
∆
= l(pat v̄)⊥ ⊗ [δ−(bprog v̄)]

loopi l kp prog
∆
= [l(v̄)⊥ ⊗ δ−((kp v̄) (loopi l kp prog))]⊕ !l̂(prog)

prog1 8 prog2
∆
= prog1 ⊕ prog2

if (is empty l) prog
∆
= !l̂(prog)

if (t1Ht2) prog
∆
= t1Ht2 ⊗ δ−(prog)

new loc lprog
∆
= el lprog

end
∆
= ⊥

while (t1Ht2) kprog prog
∆
=

[(t1Ht2)⊗δ−(kprog (while (t1Ht2) kprog prog))]⊕[(t1H̃t2)⊗δ−(prog)]

Here, H is a binary test (say, =, ≤, >) and H̃ is its complement.

To delay or not to delay?

The size of a macro rule is related to how difficult it will be to
implement. Macro connectives can be broken by inserting delays.
Notice that there are no delays written into the definition of the 8
operator since we wish that the choice provided by that operator is
merged with choices in the instructions it accumulates.
For example, the instructions

(if (x ≤ y) prog1) 8 (if (is empty l) prog2)

are equated to the formula

((x ≤ y)⊗ δ−(prog1))⊕ !l̂prog2.

This synthetic connective combines internally the test x ≤ y with
the emptiness check of location l .

Size of macro rules

∃x∃y .[l(x)⊥ ⊗ δ+
(
l(y)⊥ ⊗ δ+((x ≤ y)⊗ cont)

)
]

Represents three separate actions before you can pursue the
continuation: read a value for x ; read a value for y ; and check that
x ≤ y . Easy to implement but one might need to “backtrack”.
Better is the following:

∃x∃y .[l(x)⊥⊗δ+
(
l(y)⊥ ⊗ δ+(((x ≤ y)⊗ cont1)⊕ (x > y)⊗ cont2))

)
]

∃x∃y .[l(x)⊥ ⊗ l(y)⊥ ⊗ (x ≤ y)⊗ cont]

Represents the single action of reading two numbers x and y such
that x ≤ y . Probably very hard to implement.

Parallel and distributed computing?

Multifocusing for parallel execution. In the minimum example, one
needs only log(n) sequential multifocused sets.

Distributed computing: the emptiness check can be limited to
processes: it is no longer a global locking mechanism.

Is there an interesting bigraph here? The tree structure would be
the collection of locations marked by their subexponentials. The
other graph is links between multiset elements that share common
constants (common names allow synchronization).

	Synthetic connectives and focused proofs in linear logic
	The subexponentials of linear logic
	Subexponentials and explicit algorithm specification

