
Benchmarking Model Checkers with
Distributed Algorithms

Étienne Coulouma-Dupont

November 24, 2011

Introduction LastVoting Simulator Benchmarks Conclusion

Introduction
The Consensus Problem
Consensus : application
Paxos

LastVoting
Hypothesis
The Algorithm
Analysis of the Algorithm

Simulator
Motivations
Benchmark

Benchmarks
Various parameters
POEM

ALCOOL

2/66

Introduction LastVoting Simulator Benchmarks Conclusion

Introduction

LastVoting

Simulator

Benchmarks

3/66

Introduction LastVoting Simulator Benchmarks Conclusion

Panda Project

Industrial Benchmark Airbus Code
Academic Benchmark Paxos Algorithm

4/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Consensus Problem

The Consensus Problem

I Context: Distributed Systems
I Consensus is the problem of making processes agree on a

common value in spite of faults

5/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Consensus Problem

The Consensus Problem

An Algorithms solves Consensus if and only if it satifies the
following conditions:

I Integrity: Any decision value is the proposed value of some
process.

I Agreement: No two different values are decided.
I Termination: All process eventually decide.

6/66

Introduction LastVoting Simulator Benchmarks Conclusion

Consensus : application

Consensus Algorithm with industrial applications

Chubby (Google, 2006) [Bur06][CGR07] implements a fault
tolerant data-base:

I Fault-tolerance is achieved through replication
I Consistency is achieved using Paxos Algorithm

7/66

Introduction LastVoting Simulator Benchmarks Conclusion

Paxos

Paxos

I Family of algorithms built to solve Consensus
I First published by Leslie Lamport in 1998 [Lam98]
I Termination is not guaranteed without additional

assumptions on liveness
I Safety is guaranteed

8/66

Introduction LastVoting Simulator Benchmarks Conclusion

Paxos

Several implementations in different models:
ChandraToueg Attach to each process in the system a failure

detector
LastVoting Synchronous communication (rounds)

9/66

Introduction LastVoting Simulator Benchmarks Conclusion

Paxos

Related Works

This algorithm has been intensively studied
I Fuzzati [Fuz08]: proof of Paxos and ChandraToueg with

rewriting rules
I Küfner et al.: assisted proofs in Isabelle
I Tsuchiya & Schiper: model-checking of LastVoting

I SAT solver: up to 10 processes
I Traditional tools: up to 4 processes

10/66

Introduction LastVoting Simulator Benchmarks Conclusion

Introduction

LastVoting

Simulator

Benchmarks

11/66

Introduction LastVoting Simulator Benchmarks Conclusion

Hypothesis

LastVoting : Hypothesis

Assumptions for the environment:
I with transmission faults : in each round, the adversary

chooses a set of edges in which all messages will be
correctly transmitted

I pseudo-synchronous: any message which is not received
in the same round as the one during which it was send is
thrown out by the process which receives it

I complete network: simplifies the way algorithms are
expressed

I each process has a unique identity

12/66

Introduction LastVoting Simulator Benchmarks Conclusion

Hypothesis

LastVoting : Hypothesis

We assume that each process p has at any time access to the
following pieces of information:

I The round r in which it is
I The coordinator at round r

13/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

The Algorithm’s Procedure

Since there is no deterministic consensus algorithm in a
pure asynchronous system, some synchrony condition must
be assumed to solve the problem. In the HO model such
a condition is represented as a predicate over the collec-
tions of HO sets (HO(p, r))p∈Π,r>0 and of coordinators
(Coord(p, φ))p∈Π,φ>0. For example, the following predi-
cate specifies a sufficient condition for the LastVoting algo-
rithm to solve consensus:

∃φ0 > 0, ∃co ∈ Π,∀p ∈ Π :
(co = Coord(p, φ0))
∧ (|HO(co, 4φ0 − 3)| > n/2)
∧ (|HO(co, 4φ0 − 1)| > n/2)
∧ (co ∈ HO(p, 4φ0 − 2)) ∧ (co ∈ HO(p, 4φ0))

(1)

In words, phase φ0 is a synchronous phase where: all pro-
cesses agree on the same coordinator co; co can hear from
a majority of processes in the first and third rounds of that
phase; and every process can hear from co in the second and
fourth rounds. If such a phase φ0 occurs, then all processes
will make a decision at the end of this phase. This condi-
tion is required only for termination. Agreement can never
be violated no matter how bad the HO set is. For simplic-
ity, in the paper we limit our discussion to verification of
such algorithms — algorithms that are always safe, even in
completely asynchronous runs.

3. Verification of Agreement

In this section, we present our approach to the verifica-
tion of agreement. The verification of termination is dis-
cussed in Section 4.

Our reasoning consists of two levels. Section 3.1
presents the phase-level reasoning, which shows that agree-
ment verification can be accomplished by examining only
single phases of algorithm execution. Section 3.2 then de-
scribes how model checking can be used to analyze the sin-
gle phases at the round level.

3.1. Phase Level Analysis

At the upper-level of our reasoning, we perform a phase-
wise analysis, rather than round-wise. We define a config-
uration as a (n + 1)-tuple consisting of the states of the n
processes and the phase number. Let C be the set of all pos-
sible configurations; that is,

C = S1 × · · · × Sn × N+

where Sp is a set of states of a process p and N+ is
a set of positive integers. Given a configuration c =
(s1, · · · , sn, φ) ∈ C, we denote by φ(c) the phase num-
ber φ of c. It should be noted that the state of a process is
a value assignment to the variables of the process. Hence

ci ci+1
ci-1 ci+2

c1 ck+1c2 ck

Phase iPhase i-1 Phase i+1

Figure 1. Transitions of configurations at the
phase level (top) and at the round level (bot-
tom).

any set of configurations can be represented by a predicate
over the process variables of all processes and φ; that is,
the predicate represents a set of configurations for which it
evaluates to true. We therefore use the notions of a set of
configurations and of such a predicate interchangeably.

Let V al be the set of values that may be proposed. We
define a ternary relation R ⊆ C × 2V al × C as follows:
(c, d, c′) ∈ R iff the system can transit from the configu-
ration c at the beginning of phase φ(c) to the next config-
uration c′ at the beginning of the next phase φ(c′) while
deciding the values in d during phase φ(c). By definition
φ(c) + 1 = φ(c′) if (c, d, c′) ∈ R.

Let Init be the set of the configurations that can occur
at the beginning of phase 1. We define a run as an infinite
sequence c1d1c2d2 · · · (ci ∈ C, di ⊆ V al) such that c1 ∈
Init and (ci, di, ci+1) ∈ R for all i ≥ 1. We let Run
denote the set of all runs. Let Reachable be a set of all
configurations that can occur in a run; that is, Reachable =
{c | ∃c1d1c2d2 · · · ∈ Run, ∃i ≥ 1 : c = ci}. We say that a
configuration c is reachable iff c ∈ Reachable. Agreement
holds iff:

∀c1d1c2d2 · · · ∈ Run :
∣∣∣
⋃

i>0

di

∣∣∣ ≤ 1 (2)

The key feature of our verification approach is that it can
determine whether Formula (2) holds or not without explor-
ing all runs. In doing this, the notion of univalence plays a
crucial role. A configuration is said to be univalent if there
is only one value that can be decided from this configura-
tion [13]. If the configuration is univalent and v is the only
value that can be decided, then the configuration is said to
be v-valent. Formally:

Definition 1 (Univalence) A configuration ci is v-valent iff⋃
j≥i dj = ∅ or

⋃
j≥i dj = {v} holds for every sequence

cidici+1di+1 · · · such that ∀j ≥ i : (cj , dj , cj+1) ∈ R.

By definition, any configuration next to a v-valent configu-
ration is also v-valent. That is, we have:

3

Figure: Transitions of configurations at the phase level (top) and at
the round level (bottom) [TS11].

14/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

The Algorithm’s Procedure

In each round r , each process p:
I can send a messages according to a sending function Sr

p,
depending on the process’ state

I then can compute a new state according to a state
transition function T r

p , depending on the messages
received

15/66

Selection (r = 4φ− 3)

Coord

envoi

Ack (r = 4φ− 1)

Coord

envoi

Commit (r = 4φ− 2)

Coord

envoi

Decision (r = 4φ)

Coord

envoi

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Notations

I co = Coord(φ)

I D(φ) = {p ∈ Π |d4φ−3
p 6= ?}

I for all p ∈ Π and r ∈ [4φ− 3,4φ− 1], RCV (p, r) is the set
of processes from which p receives a non empty message
in round r

17/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Initialization :
xp ∈ Val , initially vp

// vp is the proposed value of p.

votep ∈ Val ∪ {?}, initially ?

// Val is the set of values that may be proposed.

commitp a Boolean, initially false
readyp a Boolean, initially false
tsp ∈ N, initially 0

18/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Round r = 4φ− 3 : // #RCV (co,4φ− 3) > n/2
Sr

p :
send 〈xp, tsp〉 to Coord(p, φ)

T r
p :

if p = Coord(p, φ) and number of 〈ν, θ〉 received > n/2
then

let be the largest θ from 〈ν, θ〉 received;

votep := one ν such that 〈ν, θ〉 is received;
commitp := true;

19/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Round r = 4φ− 2 : // #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2
Sr

p :

if p = Coord(p, φ) and commitp then
send 〈votep〉 to all processes;

T r
p :

if received〈v〉 from Coord(p, φ) then
xp := v ;
tsp := φ;

20/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Round r = 4φ− 1 : // #RCV (co,4φ− 1) > n/2
Sr

p :

if tsp = φ then
send 〈ack〉 to Coord(p, φ);

T r
p :

if p = Coord(p, φ) and number of 〈ack〉 received > n/2
then

readyp := true;

21/66

Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Round r = 4φ : // ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ)
Sr

p :

if Coord(p, φ) and readyp then
send 〈votep〉 to all processes;

T r
p :

if received〈v〉 from Coord(p, φ) then
DECIDE (v)

if p = Coord(p, φ) then
readyp := false;
commitp := false;

22/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Terminology
Given a partial execution, we define

0-Valence if the value 0 is to be decided
1-Valence if the value 1 is to be decided

Univalence if one the above holds
Bivalence if none of the above holds

Formally, Univalence is defined for LastVoting as follows:

∃ v ∈ Val , ∃ P ⊆ Π :

∧#P ≥ n/2
∧ P = {p ∈ Π |prp = v} ∧ (∀q ∈ Π \P : tsq < tsp)

23/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

s0

s1 s′1

s′2s2

s3 s′3

s4 s′4

CPROP

BV OTE

CACK

BDEC

F01

F12

F23

F34

F13

F33

F11

1

25/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Execution-tree (graph. . .)

C

A

DB

dec none

dec none/univ
dec none/univ/dec part

*

dec alldec partuniv

dec none/univ dec part/dec all

dec all

1

26/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Example of execution

φ = 1
↓
p1 p2 p3

pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 0
d1 =? d2 =? d3 =?

s0

1

27/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 1
↓
p1 p2 p3

ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 0
d1 =? d2 =? d3 =?

s0

s1

CPROP

1

28/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 1
↓
p1 p2 p3

ho1 = 0 ho2 = 0 ho3 = 1
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

s′2

CPROP

F12

1

29/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 2
↓

p1 p2 p3
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

s′2

CPROP

F12

1

30/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 2
↓

p1 p2 p3
ho1 = 0 ho2 = 1 ho3 = 1
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

1

31/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 2
↓

p1 p2 p3
ho1 = 1 ho2 = 0 ho3 = 0
pr1 = 1 pr2 = 0 pr3 = 1
ts1 = 2 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

s′3

F13

1

32/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
pr1 = 1 pr2 = 0 pr3 = 1
ts1 = 2 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

s′3

F13

1

33/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
ho1 = 1 ho2 = 1 ho3 = 0
pr1 = 1 pr2 = 0 pr3 = 1
ts1 = 2 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

1

34/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
ho1 = 0 ho2 = 1 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 =?

s0

s1

s2

CPROP

BV OTE

1

35/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 =?

s0

s1

s2

s3

CPROP

BV OTE

CACK

1

36/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 = 1

s0

s1

s2

s3

s′4

CPROP

BV OTE

CACK

F34

1

37/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 = 1

s0

s1

s2

s3

s′4

CPROP

BV OTE

CACK

F34

1

38/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

ho1 = 1 ho2 = 1 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 = 1

s0

s1

CPROP

1

39/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 4 ts2 = 3 ts3 = 4
d1 =? d2 =? d3 = 1

s0

s1

s2

CPROP

BV OTE

1

40/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 4 ts2 = 3 ts3 = 4
d1 =? d2 =? d3 = 1

s0

s1

s2

s3

CPROP

BV OTE

CACK

1

41/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

ho1 = 1 ho2 = 1 ho3 = 0
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 4 ts2 = 3 ts3 = 4
d1 = 1 d2 = 1 d3 = 1

s0

s1

s2

s3

s4

CPROP

BV OTE

CACK

BDEC

1

42/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Comparison with the asynchronous version

I Each process has a infinite set of integers which is disjoint
from the sets of the other processes

I This set is used to uniquely identify the consensus
requests

I In the asynchronous version, the coordinator first
broadcasts the request number of the new request

I The last broadcast is a flooding broadcast procedure

43/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Computability of Paxos

I Paxos does not terminate [FLP85][Fuz08]
I Optimal condition not known for consensus algorithms

44/66

Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Fuzzati’s proof of Paxos

A general pattern of rule:

Condition(s)
(RULE)

Action(s) or Event(s)

Example of rule from Fuzzati’s Paxos’ rules:

S(i) = (a, r ,p,b, (>, ι),⊥)
(CRASH) 〈B,C,S〉 → 〈B,C,S{i 7→ (a, r ,p,b, (⊥, ι),⊥)}〉

45/66

Introduction LastVoting Simulator Benchmarks Conclusion

Introduction

LastVoting

Simulator

Benchmarks

46/66

Introduction LastVoting Simulator Benchmarks Conclusion

Motivations

Motivations

I Correct Algorithms
I Benchmark Algorithms’ performances

47/66

Introduction LastVoting Simulator Benchmarks Conclusion

Benchmark

Benchmark
L
V
O
p
t
1

L
V
O
p
t
2

L
V
O
p
t
3

M
y
L
V
O
p
t
2

M
y
L
V
O
p
t
3

5

10

15

20

du
ré

e
m

oy
en

ne
/te

st
(µ

s)

Banc d’essai pour N = 3

LVOpt version=1
LVOpt version=2
LVOpt version=3
MyLVOpt version=2
MyLVOpt version=3

L
V
O
p
t
1

L
V
O
p
t
2

L
V
O
p
t
3

M
y
L
V
O
p
t
2

M
y
L
V
O
p
t
3

0

50

100

150

du
ré

e
m

oy
en

ne
/te

st
(µ

s)

Banc d’essai pour N = 4

LVOpt version=1
LVOpt version=2
LVOpt version=3
MyLVOpt version=2
MyLVOpt version=3

48/66

Introduction LastVoting Simulator Benchmarks Conclusion

Introduction

LastVoting

Simulator

Benchmarks

49/66

Introduction LastVoting Simulator Benchmarks Conclusion

Motivations

Benchmarking with Paxos
I Tsuchiya & Schiper:

I SAT Solvers: up to 10 processes
I NuSMV: up to 4 processes
I SPIN: up to 3 processes

I Our work in progress:
I POEM (Peter Niebert, Marseille):

frontend for different tools with partial order techniques
preprocessing

I ALCOOL (CEA/List, Panda):
Topological techniques

50/66

Introduction LastVoting Simulator Benchmarks Conclusion

Motivations

Benchmarking with Paxos
I Tsuchiya & Schiper:

I SAT Solvers: up to 10 processes
I NuSMV: up to 4 processes
I SPIN: up to 3 processes

I Our work in progress:
I POEM (Peter Niebert, Marseille):

frontend for different tools with partial order techniques
preprocessing

I ALCOOL (CEA/List, Panda):
Topological techniques

50/66

Introduction LastVoting Simulator Benchmarks Conclusion

Various parameters

Toward Benchmarking of Model-Checkers

I Number n of processes of the system

I Number of losses for the system:newline
I for one round
I for one phase
I for k phases
I for one execution

I Number of losses per process:newline
I for one phase
I for k phases
I for one execution

51/66

Introduction LastVoting Simulator Benchmarks Conclusion

Various parameters

Toward Benchmarking of Model-Checkers

I Number n of processes of the system
I Number of losses for the system:newline

I for one round
I for one phase
I for k phases
I for one execution

I Number of losses per process:newline
I for one phase
I for k phases
I for one execution

51/66

Introduction LastVoting Simulator Benchmarks Conclusion

POEM

POEM

Checking is done with IF requests (first order logic):
(d[0]<>NOT_DEF) and (d[1]<>NOT_DEF) and (d[0]<>d[1])
Current problem: false positives (Bug in the frontend?)

52/66

Introduction LastVoting Simulator Benchmarks Conclusion

POEM

First Tests

4 6 8 10

0

20

40

60

number of processes

du
ra

tio
n

(s
)

0 perte/ronde
1 perte/ronde

53/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

ALCOOL

I ALCOOL can detect deadlocks and forbidden zones
I We transform the properties which are to be verified into

deadlock properties
I Example:

B0 and B1 two n-ary synchronization barriers
Agreement −→ process p waits on Bdp

I Current problem: false positive (feature)

54/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Example 2

#mutex m
processes:
p1 = P(m).V(m)
p2 = P(m).V(m)
init:
p1 p2

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1

55/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1

56/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Basically only 2 executions:
I p1.p2

I p2.p1

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1

57/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

I p1.p2 : x=8

I p2.p1 : x=5

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1

@(x,1)

@(x,x+3)

@
(
x
,
x
*
2
)

57/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Example 3

#mutex a b
processes:
p1 = P(a).P(b).V(b).V(a)
p2 = P(b).P(a).V(a).V(b)
init:
p1 p2

P
(
b
)

P
(
a
)

V
(
a
)

V
(
b
) p2

P(a)

P(b)

V(b)

V(a)

p1

58/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Example 4

#synchronization 2 b
processes:
p1 = @(x,1).
(W(b) + [x==1] + void)
p2 = @(x,0).W(b)
init:
p1 p2

@
(
x
,
1
) p2

@(x,0)

W(b)

p1

1

59/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Example 4

#synchronization 2 b
processes:
p1 = @(x,1).W(b)
p2 = @(x,0).W(b)
init:
p1 p2

@
(
x
,
1
)

W
(
b
) p2

@(x,0)

W(b)

p1

1

60/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

@
(
x
,
1
) p2

@(x,0)

W(b)

p1

1

@
(
x
,
1
)

W
(
b
) p2

@(x,0)

W(b)

p1

1

61/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Example 5

#synchronization 2 b s
processes:
p1 = void.W(s).@(x,1).
(W(b) + [x==1] + void)
p2 = @(x,0).W(s).W(b)
init:
p1 p2

W
(
s
)

@
(
x
,
1
) p2

@(x,0)

W(s)

W(b)

p1

1

62/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Example 5

#synchronization 2 b s
processes:
p1 = W(s).@(x,1).W(b)
p2 = @(x,0).W(s).W(b)
init:
p1 p2

W
(
s
)

@
(
x
,
1
)

W
(
b
) p2

@(x,0)

W(s)

W(b)

p1

1

63/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

W
(
s
)

@
(
x
,
1
) p2

@(x,0)

W(s)

W(b)

p1

1

W
(
s
)

@
(
x
,
1
)

W
(
b
) p2

@(x,0)

W(s)

W(b)

p1

1

64/66

Introduction LastVoting Simulator Benchmarks Conclusion

ALCOOL

Benchmarks: ALCOOL

I Analysis of numerical variables
I Analysis of potential deadlocks
I ALCOOL +POEM?

65/66

Introduction LastVoting Simulator Benchmarks Conclusion

Introduction
The Consensus Problem
Consensus : application
Paxos

LastVoting
Hypothesis
The Algorithm
Analysis of the Algorithm

Simulator
Motivations
Benchmark

Benchmarks
Various parameters
POEM

ALCOOL

66/66

Introduction LastVoting Simulator Benchmarks Conclusion

BURROWS, MIKE: The Chubby lock service for
loosely-coupled distributed systems.
In Proceedings of the 7th symposium on Operating
systems design and implementation, OSDI ’06, pages
335–350, Berkeley, CA, USA, 2006. USENIX Association.

CHANDRA, TUSHAR D., ROBERT GRIESEMER and JOSHUA

REDSTONE: Paxos made live: an engineering perspective.
In Proceedings of the twenty-sixth annual ACM symposium
on Principles of distributed computing, PODC ’07, pages
398–407, New York, NY, USA, 2007. ACM.

FISCHER, MICHAEL J., NANCY A. LYNCH and MICHAEL S.
PATERSON: Impossibility of distributed consensus with one
faulty process.
J. ACM, 32:374–382, April 1985.

66/66

Introduction LastVoting Simulator Benchmarks Conclusion

FUZZATI, RACHELE: A formal approach to fault tolerant
distributed consensus.
PhD thesis, École Polytechnique Fédérale de Lausanne,
Lausanne, 2008.

LAMPORT, LESLIE: The part-time parliament.
ACM Transactions on Computer Systems, 16:133–169,
1998.

TSUCHIYA, TATSUHIRO and ANDRÉ SCHIPER: Verification
of consensus algorithms using satisfiability solving.
Distributed Computing, 23:341–358, 2011.

66/66

	Introduction
	The Consensus Problem
	Consensus : application
	Paxos

	LastVoting
	Hypothesis
	The Algorithm
	Analysis of the Algorithm

	Simulator
	Motivations
	Benchmark

	Benchmarks
	Various parameters
	poem
	alcool

