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The Consensus Problem

The Consensus Problem

I Context: Distributed Systems
I Consensus is the problem of making processes agree on a

common value in spite of faults
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The Consensus Problem

The Consensus Problem

An Algorithms solves Consensus if and only if it satifies the
following conditions:

I Integrity: Any decision value is the proposed value of some
process.

I Agreement: No two different values are decided.
I Termination: All process eventually decide.
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Consensus : application

Consensus Algorithm with industrial applications

Chubby (Google, 2006) [Bur06][CGR07] implements a fault
tolerant data-base:

I Fault-tolerance is achieved through replication
I Consistency is achieved using Paxos Algorithm
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Paxos

Paxos

I Family of algorithms built to solve Consensus
I First published by Leslie Lamport in 1998 [Lam98]
I Termination is not guaranteed without additional

assumptions on liveness
I Safety is guaranteed
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Paxos

Several implementations in different models:
ChandraToueg Attach to each process in the system a failure

detector
LastVoting Synchronous communication (rounds)
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Paxos

Related Works

This algorithm has been intensively studied
I Fuzzati [Fuz08]: proof of Paxos and ChandraToueg with

rewriting rules
I Küfner et al.: assisted proofs in Isabelle
I Tsuchiya & Schiper: model-checking of LastVoting

I SAT solver: up to 10 processes
I Traditional tools: up to 4 processes
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Hypothesis

LastVoting : Hypothesis

Assumptions for the environment:
I with transmission faults : in each round, the adversary

chooses a set of edges in which all messages will be
correctly transmitted

I pseudo-synchronous: any message which is not received
in the same round as the one during which it was send is
thrown out by the process which receives it

I complete network: simplifies the way algorithms are
expressed

I each process has a unique identity

12/66



Introduction LastVoting Simulator Benchmarks Conclusion

Hypothesis

LastVoting : Hypothesis

We assume that each process p has at any time access to the
following pieces of information:

I The round r in which it is
I The coordinator at round r
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The Algorithm

The Algorithm’s Procedure

Since there is no deterministic consensus algorithm in a
pure asynchronous system, some synchrony condition must
be assumed to solve the problem. In the HO model such
a condition is represented as a predicate over the collec-
tions of HO sets (HO(p, r))p∈Π,r>0 and of coordinators
(Coord(p, φ))p∈Π,φ>0. For example, the following predi-
cate specifies a sufficient condition for the LastVoting algo-
rithm to solve consensus:

∃φ0 > 0, ∃co ∈ Π,∀p ∈ Π :
(co = Coord(p, φ0))
∧ (|HO(co, 4φ0 − 3)| > n/2)
∧ (|HO(co, 4φ0 − 1)| > n/2)
∧ (co ∈ HO(p, 4φ0 − 2)) ∧ (co ∈ HO(p, 4φ0))

(1)

In words, phase φ0 is a synchronous phase where: all pro-
cesses agree on the same coordinator co; co can hear from
a majority of processes in the first and third rounds of that
phase; and every process can hear from co in the second and
fourth rounds. If such a phase φ0 occurs, then all processes
will make a decision at the end of this phase. This condi-
tion is required only for termination. Agreement can never
be violated no matter how bad the HO set is. For simplic-
ity, in the paper we limit our discussion to verification of
such algorithms — algorithms that are always safe, even in
completely asynchronous runs.

3. Verification of Agreement

In this section, we present our approach to the verifica-
tion of agreement. The verification of termination is dis-
cussed in Section 4.

Our reasoning consists of two levels. Section 3.1
presents the phase-level reasoning, which shows that agree-
ment verification can be accomplished by examining only
single phases of algorithm execution. Section 3.2 then de-
scribes how model checking can be used to analyze the sin-
gle phases at the round level.

3.1. Phase Level Analysis

At the upper-level of our reasoning, we perform a phase-
wise analysis, rather than round-wise. We define a config-
uration as a (n + 1)-tuple consisting of the states of the n
processes and the phase number. Let C be the set of all pos-
sible configurations; that is,

C = S1 × · · · × Sn × N+

where Sp is a set of states of a process p and N+ is
a set of positive integers. Given a configuration c =
(s1, · · · , sn, φ) ∈ C, we denote by φ(c) the phase num-
ber φ of c. It should be noted that the state of a process is
a value assignment to the variables of the process. Hence

ci ci+1
ci-1 ci+2

c1 ck+1c2 ck

Phase iPhase i-1 Phase i+1

Figure 1. Transitions of configurations at the
phase level (top) and at the round level (bot-
tom).

any set of configurations can be represented by a predicate
over the process variables of all processes and φ; that is,
the predicate represents a set of configurations for which it
evaluates to true. We therefore use the notions of a set of
configurations and of such a predicate interchangeably.

Let V al be the set of values that may be proposed. We
define a ternary relation R ⊆ C × 2V al × C as follows:
(c, d, c′) ∈ R iff the system can transit from the configu-
ration c at the beginning of phase φ(c) to the next config-
uration c′ at the beginning of the next phase φ(c′) while
deciding the values in d during phase φ(c). By definition
φ(c) + 1 = φ(c′) if (c, d, c′) ∈ R.

Let Init be the set of the configurations that can occur
at the beginning of phase 1. We define a run as an infinite
sequence c1d1c2d2 · · · (ci ∈ C, di ⊆ V al) such that c1 ∈
Init and (ci, di, ci+1) ∈ R for all i ≥ 1. We let Run
denote the set of all runs. Let Reachable be a set of all
configurations that can occur in a run; that is, Reachable =
{c | ∃c1d1c2d2 · · · ∈ Run, ∃i ≥ 1 : c = ci}. We say that a
configuration c is reachable iff c ∈ Reachable. Agreement
holds iff:

∀c1d1c2d2 · · · ∈ Run :
∣∣∣
⋃

i>0

di

∣∣∣ ≤ 1 (2)

The key feature of our verification approach is that it can
determine whether Formula (2) holds or not without explor-
ing all runs. In doing this, the notion of univalence plays a
crucial role. A configuration is said to be univalent if there
is only one value that can be decided from this configura-
tion [13]. If the configuration is univalent and v is the only
value that can be decided, then the configuration is said to
be v-valent. Formally:

Definition 1 (Univalence) A configuration ci is v-valent iff⋃
j≥i dj = ∅ or

⋃
j≥i dj = {v} holds for every sequence

cidici+1di+1 · · · such that ∀j ≥ i : (cj , dj , cj+1) ∈ R.

By definition, any configuration next to a v-valent configu-
ration is also v-valent. That is, we have:

3

Figure: Transitions of configurations at the phase level (top) and at
the round level (bottom) [TS11].
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The Algorithm

The Algorithm’s Procedure

In each round r , each process p:
I can send a messages according to a sending function Sr

p,
depending on the process’ state

I then can compute a new state according to a state
transition function T r

p , depending on the messages
received
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The Algorithm

Notations

I co = Coord(φ)

I D(φ) = {p ∈ Π |d4φ−3
p 6= ?}

I for all p ∈ Π and r ∈ [4φ− 3,4φ− 1], RCV (p, r) is the set
of processes from which p receives a non empty message
in round r
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The Algorithm

Initialization :
xp ∈ Val , initially vp

// vp is the proposed value of p.

votep ∈ Val ∪ {?}, initially ?

// Val is the set of values that may be proposed.

commitp a Boolean, initially false
readyp a Boolean, initially false
tsp ∈ N, initially 0
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The Algorithm

Round r = 4φ− 3 : // #RCV (co,4φ− 3) > n/2
Sr

p :
send 〈xp, tsp〉 to Coord(p, φ)

T r
p :

if p = Coord(p, φ) and number of 〈ν, θ〉 received > n/2
then

let be the largest θ from 〈ν, θ〉 received;

votep := one ν such that 〈ν, θ〉 is received;
commitp := true;
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The Algorithm

Round r = 4φ− 2 : // #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2
Sr

p :

if p = Coord(p, φ) and commitp then
send 〈votep〉 to all processes;

T r
p :

if received〈v〉 from Coord(p, φ) then
xp := v ;
tsp := φ;
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The Algorithm

Round r = 4φ− 1 : // #RCV (co,4φ− 1) > n/2
Sr

p :

if tsp = φ then
send 〈ack〉 to Coord(p, φ);

T r
p :

if p = Coord(p, φ) and number of 〈ack〉 received > n/2
then

readyp := true;

21/66



Introduction LastVoting Simulator Benchmarks Conclusion

The Algorithm

Round r = 4φ : // ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ)
Sr

p :

if Coord(p, φ) and readyp then
send 〈votep〉 to all processes;

T r
p :

if received〈v〉 from Coord(p, φ) then
DECIDE (v)

if p = Coord(p, φ) then
readyp := false;
commitp := false;
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Analysis of the Algorithm

Terminology
Given a partial execution, we define

0-Valence if the value 0 is to be decided
1-Valence if the value 1 is to be decided

Univalence if one the above holds
Bivalence if none of the above holds

Formally, Univalence is defined for LastVoting as follows:

∃ v ∈ Val , ∃ P ⊆ Π :

∧#P ≥ n/2
∧ P = {p ∈ Π |prp = v} ∧ (∀q ∈ Π \P : tsq < tsp)
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Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66



Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66



Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66



Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

Termination

Termination holds iff Psync(φ) eventually holds:

Psync(φ) , ∃φ > 0, ∃co ∈ Π :

ronde1 : ∧ #RCV (co,4φ− 3) > n/2 (CPROP(φ))

ronde2 : ∧ #{p ∈ Π | co ∈ RCV (p,4φ− 2)} > n/2 (BVOTE(φ))

ronde3 : ∧ #RCV (co,4φ− 1) > n/2 (CACK (φ))

ronde4 : ∧ ∀p ∈ Π \D(φ) : co ∈ RCV (p,4φ) (BDEC(φ))

24/66



Introduction LastVoting Simulator Benchmarks Conclusion

Analysis of the Algorithm

s0

s1 s′1

s′2s2

s3 s′3

s4 s′4

CPROP

BV OTE

CACK

BDEC

F01

F12

F23

F34

F13

F33

F11

1
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Analysis of the Algorithm

Execution-tree (graph. . . )

C

A

DB

dec none

dec none/univ
dec none/univ/dec part

*

dec alldec partuniv

dec none/univ dec part/dec all

dec all

1
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Analysis of the Algorithm

Example of execution

φ = 1
↓
p1 p2 p3

pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 0
d1 =? d2 =? d3 =?

s0

1
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Analysis of the Algorithm

φ = 1
↓
p1 p2 p3

ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 0
d1 =? d2 =? d3 =?

s0

s1

CPROP

1
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Analysis of the Algorithm

φ = 1
↓
p1 p2 p3

ho1 = 0 ho2 = 0 ho3 = 1
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

s′2

CPROP

F12

1
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Analysis of the Algorithm

φ = 2
↓

p1 p2 p3
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

s′2

CPROP

F12

1
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Analysis of the Algorithm

φ = 2
↓

p1 p2 p3
ho1 = 0 ho2 = 1 ho3 = 1
pr1 = 0 pr2 = 0 pr3 = 1
ts1 = 0 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

1
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Analysis of the Algorithm

φ = 2
↓

p1 p2 p3
ho1 = 1 ho2 = 0 ho3 = 0
pr1 = 1 pr2 = 0 pr3 = 1
ts1 = 2 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

s′3

F13

1
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Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
pr1 = 1 pr2 = 0 pr3 = 1
ts1 = 2 ts2 = 0 ts3 = 1
d1 =? d2 =? d3 =?

s0

s1

CPROP

s′3

F13

1
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Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
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Analysis of the Algorithm

φ = 3
↓

p1 p2 p3
ho1 = 0 ho2 = 1 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 =?

s0

s1

s2

CPROP

BV OTE

1
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Analysis of the Algorithm
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Analysis of the Algorithm

φ = 3
↓
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Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 2 ts2 = 3 ts3 = 3
d1 =? d2 =? d3 = 1

s0

s1
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s3
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F34
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Analysis of the Algorithm

φ = 4
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Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

ho1 = 1 ho2 = 0 ho3 = 1
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 4 ts2 = 3 ts3 = 4
d1 =? d2 =? d3 = 1

s0

s1

s2

CPROP

BV OTE

1
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Analysis of the Algorithm
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Analysis of the Algorithm

φ = 4
↓
p1 p2 p3

ho1 = 1 ho2 = 1 ho3 = 0
pr1 = 1 pr2 = 1 pr3 = 1
ts1 = 4 ts2 = 3 ts3 = 4
d1 = 1 d2 = 1 d3 = 1

s0

s1

s2

s3

s4

CPROP
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CACK
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1
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Analysis of the Algorithm

Comparison with the asynchronous version

I Each process has a infinite set of integers which is disjoint
from the sets of the other processes

I This set is used to uniquely identify the consensus
requests

I In the asynchronous version, the coordinator first
broadcasts the request number of the new request

I The last broadcast is a flooding broadcast procedure
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Analysis of the Algorithm

Computability of Paxos

I Paxos does not terminate [FLP85][Fuz08]
I Optimal condition not known for consensus algorithms
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Analysis of the Algorithm

Fuzzati’s proof of Paxos

A general pattern of rule:

Condition(s)
(RULE)

Action(s) or Event(s)

Example of rule from Fuzzati’s Paxos’ rules:

S(i) = (a, r ,p,b, (>, ι),⊥)
(CRASH) 〈B,C,S〉 → 〈B,C,S{i 7→ (a, r ,p,b, (⊥, ι),⊥)}〉
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Motivations

Motivations

I Correct Algorithms
I Benchmark Algorithms’ performances
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Benchmark

Benchmark
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Motivations

Benchmarking with Paxos
I Tsuchiya & Schiper:

I SAT Solvers: up to 10 processes
I NuSMV: up to 4 processes
I SPIN: up to 3 processes

I Our work in progress:
I POEM (Peter Niebert, Marseille):

frontend for different tools with partial order techniques
preprocessing

I ALCOOL (CEA/List, Panda):
Topological techniques
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Various parameters

Toward Benchmarking of Model-Checkers

I Number n of processes of the system

I Number of losses for the system:newline
I for one round
I for one phase
I for k phases
I for one execution

I Number of losses per process:newline
I for one phase
I for k phases
I for one execution
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POEM

POEM

Checking is done with IF requests (first order logic):
(d[0]<>NOT_DEF) and (d[1]<>NOT_DEF) and (d[0]<>d[1])
Current problem: false positives (Bug in the frontend?)
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POEM

First Tests
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ALCOOL

ALCOOL

I ALCOOL can detect deadlocks and forbidden zones
I We transform the properties which are to be verified into

deadlock properties
I Example:

B0 and B1 two n-ary synchronization barriers
Agreement −→ process p waits on Bdp

I Current problem: false positive (feature)
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ALCOOL

Example 2

#mutex m
processes:
p1 = P(m).V(m)
p2 = P(m).V(m)
init:
p1 p2

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1
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ALCOOL

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1
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ALCOOL

Basically only 2 executions:
I p1.p2

I p2.p1

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1
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ALCOOL

I p1.p2 : x=8

I p2.p1 : x=5

P
(
m
)

V
(
m
) p2

P(m)

V(m)

p1

@(x,1)

@(x,x+3)

@
(
x
,
x
*
2
)
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ALCOOL

Example 3

#mutex a b
processes:
p1 = P(a).P(b).V(b).V(a)
p2 = P(b).P(a).V(a).V(b)
init:
p1 p2

P
(
b
)

P
(
a
)

V
(
a
)

V
(
b
) p2

P(a)

P(b)

V(b)

V(a)

p1
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Example 4

#synchronization 2 b
processes:
p1 = @(x,1).
(W(b) + [x==1] + void)
p2 = @(x,0).W(b)
init:
p1 p2

@
(
x
,
1
) p2

@(x,0)

W(b)

p1

1
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Example 4

#synchronization 2 b
processes:
p1 = @(x,1).W(b)
p2 = @(x,0).W(b)
init:
p1 p2

@
(
x
,
1
)

W
(
b
) p2

@(x,0)

W(b)

p1

1
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@
(
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) p2

@(x,0)

W(b)

p1

1

@
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x
,
1
)

W
(
b
) p2

@(x,0)

W(b)

p1

1
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Example 5

#synchronization 2 b s
processes:
p1 = void.W(s).@(x,1).
(W(b) + [x==1] + void)
p2 = @(x,0).W(s).W(b)
init:
p1 p2

W
(
s
)

@
(
x
,
1
) p2

@(x,0)

W(s)

W(b)

p1

1
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Example 5

#synchronization 2 b s
processes:
p1 = W(s).@(x,1).W(b)
p2 = @(x,0).W(s).W(b)
init:
p1 p2

W
(
s
)

@
(
x
,
1
)

W
(
b
) p2

@(x,0)

W(s)

W(b)

p1

1
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W
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Benchmarks: ALCOOL

I Analysis of numerical variables
I Analysis of potential deadlocks
I ALCOOL +POEM?
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