
Towards a theory of computational complexity

for concurrent processes

Damiano Mazza
Laboratoire d’Informatique de Paris Nord

CNRS–Université Paris 13

Panda meeting
École polytechnique, 24 November 2011

Joint work with Ugo Dal Lago (Bologna), Tobias Heindel (CEA), and
Daniele Varacca (PPS)

From functions to behaviors

• The original perspective of recursion theory:

a program computes a function.

• Albeit enormously complex, an operating system is still a program. What
function does it compute?

• The more modern perspective of concurrency theory:

a program has a behavior.

Formalizing behaviors: labelled transition systems

• A widely accepted way of formalizing the notion of “behavior” is that of
labelled transition system.

• Labels are of the form

– iξ (input action)
– oξ (output action)
– τ (internal action)

where i, o range over channels and ξ may in principle belong to any set.
We restrict to ξ ∈ W = {0, 1}∗. As usual, |ξ| is the length of ξ.

• We formally define a behavior as an equivalence class (with respect to
coupled similarity) of labelled transition systems.

Functions as behaviors

• Of course every function f : W → W may be seen as a behavior:

• · · · • · · · •

• · · · •

of(ξ)

· · · •

•

iξ

ξ ∈ W

which we may write in CCS notation as i(x).o〈f(x)〉.

• Needless to say, this is far from exhausting all possible behaviors. . .

Computing behaviors

• Not every function is computable; of course, neither is every behavior.

• Process calculi may be used to define a notion of effective behavior, in
analogy with recursive functions.

• However, process calculi are not quite computational models. In
particular, they lack a clear resource semantics, or cost model.

• Our proposal is to define a sensible process machine.

A process calculus

• String and boolean expressions (x ∈ V and ξ ∈ W):

E ::= x
∣

∣ ξ
∣

∣ 0(E)
∣

∣ 1(E)
∣

∣ tail(E)

B ::= tt
∣

∣ ff
∣

∣ 0?(E)
∣

∣ ε?(E).

• Processes (O (resp. I) is either E or an output (resp. input) channel):

P,Q ::= 0
∣

∣ A〈E1, . . . , En〉
∣

∣ O〈E〉.P
∣

∣ I(E).P
∣

∣ B.(P,Q)
∣

∣ P | Q,

where A ranges over process variables, each with a definition of the form

A(x1, . . . , xn)
def
= P.

The process machine

• A finite, read-only code memory, where a finite sequence of definitions

A0
def
= P0, A1(~x1)

def
= P1, . . . , An(~xn)

def
= Pn is stored;

• an unbounded number of processors, each with a pointer register,
pointing to the code memory, and an unbounded private memory in
which assignments of the form x := ξ are stored;

• an unbounded number of internal channels, each identified by a string
and with an unbounded capacity to queue up strings, through which
processors may communicate;

• an interface, with separate input and output channels, from which strings
may be read/sent from/to the external world.

States

• We may represent the state of a processor of the machine by a pair
(P,M) where P is a process and M a finite function V → W.

• The state of channels may be represented by a finite queue function Θ
from W to finite sequences of W.

• Then, a state of the machine is represented by a pair

[Γ]Θ

where Γ = (P1,M1), . . . , (Pn,Mn) is a finite multiset of processor states
(the active processors) and Θ is a queue function.

Executing processes (1)

Nil: [(0,M),Γ]Θ
τ

−→ [Γ]Θ;

Rec: if A(x1, . . . , xn)
def
= P ,

[(A〈E1, . . . , En〉,M),Γ]Θ
τ

−→ [(P, {x1 7→ EM
1 , . . . , xn 7→ EM

n }),Γ]Θ;

Snd: [(E1〈E2〉.P,M),Γ]Θ
τ

−→ [(P,M),Γ]Θ′,
where Θ′ is equal to Θ everywhere except in EM

1 , where it is equal to
Θ(EM

1) · EM
2 ;

Rcv: [(E(x).P,M),Γ]Θ
τ

−→ [(P,M ∪ {x 7→ ξ}),Γ]Θ′,
where we must have Θ(EM) = ξ ·q, and then Θ′ is equal to Θ everywhere
except in EM , where it is equal to q;

Executing processes (2)

Out: [(o〈E〉.P,M),Γ]Θ
oEM

−→ [(P,M),Γ]Θ;

Inp: [(i(x).P,M),Γ]Θ
iξ
−→ [(P,M ∪ {x := ξ}),Γ]Θ;

Cnd: [(B.(P,Q),M),Γ] : Θ
τ

−→

{

[(P,M),Γ] : Θ, if BM = tt
[(Q,M),Γ] : Θ, if BM = ff

Spn: [(P | Q,M),Γ] : Θ
τ

−→ [(P,M), (Q,M),Γ] : Θ.

Traces

• Observe how, given a process P , the transitions of the machine from
[(P, ∅)]∅ define a labelled transition system [P]. With this, we may define
effective behaviors.

• Moreover, we may define a trace as a sequence of transitions.

• Two transitions are orthogonal if they are not both send, receive, output,
or input transitions on the same channel.

• Orthogonal transitions commute, defining an equivalence relation ∼ on
traces. This will be essential for defining the temporal cost model of our
machine.

Causality

• Trace equivalence yields an event structure. In particular, we have a
pre-order . between traces (f . g if g ∼ fg′), which becomes a causal

order ≤ between equivalence classes of traces.

• An equivalence class represents a transition t when all of its traces are of
the form ft and, for every trace g, g ∼ ft implies g = g′t with g′ ∼ f .

• Given a transition t, we may speak of the transitions which are causally

necessary for it to occur, i.e., t↓= {t′ | t′ ≤ t}.

What is space?

• Let [(P1,M1), . . . , (Pn,Mn)]Θ be a state of the machine. Its size is the
sum of the sizes of all strings appearing in the codomain of M1, . . . ,Mn

and Θ (counting multiplicities).

• If f is a trace, we define space(f) to be the maximum size of the states
visited by f .

• f ∼ f ′ implies space(f) = space(f ′).

• Therefore, the space cost space(t) of a transition t is uniquely defined as
space(ft), where ft is any trace in the equivalence class representing t.

What is time?
• Each transition t is assigned a weight $t:

Nil: constant;
Rec: the time it takes to evaluate the expressions, plus a constant;
Snd,Rcv,Out,Inp: the time it takes to evaluate the expressions, plus

the length of the string sent/received, plus a constant;
Cnd: the time it takes to evaluate the Boolean expression, plus a

constant;
Spn: the time it takes to duplicate the memory, plus a constant.

• The time cost of a transition t is

time(t) = max
C∈tot(t↓)

∑

t′∈C

$t′.

where tot(t↓) denotes the set of all chains below t.

Input size

• Let t be a transition. We define inp(t) to be the subset of t↓ consisting
all transitions whose label is of the form iξ. We say that the size of such
an input transition t′ is |ξ|, and we denote it by |t′|.

• We define the input size of a transition t as

‖t‖ =
∑

t′∈inp(t)

|t′|.

Complexity classes

• Let f, g be proper complexity functions.

• We define BTS(f, g) as the set of behaviors b such that:

– there exists a process P such that [P] ∈ b;
– for every output transition t generated in the execution of P ,

time(t) ≤ f(‖t‖),

space(t) ≤ g(‖t‖).

Sanity check: the functional case
• We denote by FUN the set of functional behaviors. If b ∈ FUN, we may
associate with it a language (subset of W) langb. Then, we define

FUNTS(f, g) = lang(BTS(f, g) ∩ FUN).

• Some results:

– TIME(f(n)) ⊆ FUNTS(f(n), f(n));
– FUNTS(f(n), g(n)) ⊆ TIME(f(n)(g(n) + n)2);
– ATIME(f(n)) ⊆ FUNTS(f(n), 2f(n)).

• These imply:

– P =
⋃

k<ω FUNTS(nk, nk), EXP =
⋃

k<ω FUNTS(2n
k
, 2n

k
). . .

– PSPACE ⊆
⋃

k<ω FUNTS(nk, 2n
k
).

Perspectives

• The relationship with standard (functional) complexity classes must be
explored further. We know that, at present, we can only hope to capture
superlinear time and space (i.e., we cannot capture NC or L).

• However, our framework is extremely flexible; we have used very little
of it for the moment. For instance, for what concerns extra-functional
behaviors, we know that the way the complexity is to be measured must
be given with the behavior.

• This allows to capture some interesting extra-functional behaviors, such
as servers and streams.

