
A Categorical Approach to Describing
Complexity Classes

Baptiste Chanus and Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

26 January 2024

Abstract

We introduce a categorical framework for describing decision prob-
lems and providing machine-independent characterizations of complexity
classes, mixing ideas coming from descriptive complexity and categorical
logic. The framework is based on the opposite of the category of small
Boolean lextensive categories and logical functors. This has nice categor-
ical properties and, crucially, its morphisms may be seen as descriptions
of decision problems. The complexity of problems may be controlled by
restricting morphisms via suitable algebraic and logical properties. We
show the breadth of this approach by capturing several classes of differ-
ent flavor: recursively enumerable problems, NP, P, NL and P/poly.

1 Introduction

The basic objects of study in computability and complexity live in the category
Set of sets and functions: a decision problem is a subset of some set Σ of
instances; a reduction from a problem U ⊆ Σ to a problem V ⊆ ∆ is a (low-
complexity) function r : Σ → ∆ such that r−1(V) = U, a complexity class is
a set of decision problems, and so on. However, the category of sets does not
“know” anything about computability and complexity, in the sense that these
cannot be defined using categorical structures or properties of Set, and one
must rely on external notions, typically machines, automata, circuits and so
on.

The aim of this paper is to present a well-structured categorical formula-
tion of the external machinery that controls computability and complexity. As
a first approximation, the idea is to find a well-behaved (in terms of limits and
colimits) category Data together with a functor (preserving enough limits and
colimits) Γ : Data → Set such that:

1. there is a class of objects of Data, which we may call data types, such that
every possible set of instances of interest is equal to ΓS for some data
type S;

1

2. given problems U ⊆ ΓS and V ⊆ ΓT, a reduction (for a general enough
notion of reduction) is an arrow r : S → T of Data such that (Γr)−1(V) =
U;

3. for any complexity class of interest C, there is a class of arrows K of
Data, definable purely in terms of Data itself, such that a problem U ⊆
ΓS is in C iff there exists a morphism p : X → S in K such that U =
im Γp.

The above description is somewhat vague and technically imprecise and may
therefore be realized in uninteresting ways, so the quality of the framework
really depends on how Data is defined. Our approach draws inspiration
from descriptive complexity and uses categorical logic to find well-beahaved
structures.

Descriptive complexity [Imm99] is grounded on the idea, originally due
to Fagin [Fag74], that the difficulty of a computational problem may be un-
derstood in terms of how expressive a logical language must be in order to
describe it, rather than how many resources a machine must use in order to
solve it. The key insight is to view instances of problems as finite structures
in the sense of model theory. The “yes” instances of a problem then become
finite structures verifying some property, and one may study in which logical
languages there are formulas describing exactly that property.

Categorical logic [Jak99, Joh02] originated in Lawvere’s work [Law63,
Law70] with the observation that the basic set-theoretic operations used to
interpret first-order logic (intersection, complement, images. . .) are available
in any category with enough properties. This unveils an intimate connection
between logical and categorical language. In particular, classes of theories over
a certain logical language exactly correspond to classes of categories with cer-
tain properties, shared with Set. Moreover, if CT is the category corresponding
to a theory T, then models of T are expressed by property-preserving func-
tors CT → Set, and homomorphisms of models by natural transformations.
Similarly, finite models are functors CT → FinSet, the category of finite sets.
This is a direct link with descriptive complexity.

We are therefore led to consider first-order theories which are expressive
enough to match the finite structures used in descriptive complexity. These
theories correspond to (small) Boolean lextensive categories, which themselves
form a category BoolLext. It turns out that letting Data := BoolLextop gives
a very broad context in which all of computability and complexity may be
formulated.

Technically, since the morphisms of BoolLext are functors, to have nice
categorical properties we need to consider natural isomorphisms between
them, so Data turns out to be a strict (2, 1)-category, i.e., a strict 2-category
in which every 2-arrow is invertible. Accordingly, Γ will be a 2-functor
Data → Grpd, rather than a functor Data → Set as mentioned in our initial
sketch. Here, Grpd denotes the (2, 1)-category of groupoids, which are cate-
gories in which every arrow is invertible. Data has 2-limits and well-behaved
finite 2-coproducts, and Γ preserves them.

The intuition is that an object S of Data, which we call a data specification,
has an underlying theory S and is mapped by Γ to the groupoid whose ob-

2

jects are finite models of S and whose arrows are model isomorphisms. Data
types will be data specifications corresponding to finite theories. These are
general enough to address point (1) above. For example, there is a data type
Str such that the objects of ΓStr are, as in descriptive complexity, finite struc-
tures representing binary strings, and the arrows of ΓStr relate two structures
representing the same string.

For what concerns morphisms of Data, given f : S → T with S, T data
types, the object part of the functor Γ f : ΓS → ΓT turns out to be a quantifier-
free query. Therefore, quantifier-free reductions may be expressed by arrows of
Data, as mentioned in (2).

For what concerns (3), a substantial number of interesting complexity
classes may be captured by means of classes of morphisms formulated purely
in terms of data specifications (or, dually, Boolean lextensive categories). We
chose a compromise between conciseness and variety, and present characteri-
zations of recursively enumerable problems, NP, P, NL and P/poly. However,
we currently have characterizations of several other classes, such as AC0 (also
known as FO), L and PH (the polynomial hierarchy), and it is reasonable to
believe that basically anything that may be captured by descriptive complexity
may also be captured by our framework.

Precisely because our approach borrows so much from descriptive com-
plexity, it is important to understand where it diverges from it. The most
important difference is that we formulate everything within one logical frame-
work, that of Boolean lextensive categories, roughly corresponding to (multi-
sorted) quantifier-free classical logic. Whereas descriptive complexity changes
logical language for each complexity class, we rely on the relative difference
between logical theories: in a morphism X → Str of Data, the theory under-
lying X may be seen as an extension of the theory of strings, and the farthest
X is allowed to be from Str, the more problems it will be able to express.

Another difference is that we use finite models rather structures. This is a
minor point but it allows, for example, to express order internally via axioms,
whereas, in descriptive complexity, one must impose externally that order
predicates in a structure are interpreted as desired. The same holds for arith-
metic predicates. Another nice aspect of the categorical approach is that it
naturally accounts for isomorphisms of finite models, although in this paper
we do not make substantial use of this.

The interface between category theory and computational complexity or
automata theory has been growing recently [Abr22, DJR21, CP20, GPR20,
ADW17, AS21, AR23]. While technically unrelated, the contributions of this
paper fit in this line of work and add a new direction to it, providing a uni-
fying framework for defining and studying complexity classes. We strived
to include as much detail as possible to show the breadth of the framework,
including, for example, a proof of the Cook-Levin theorem, which gives a
glimpse of what may be done besides characterizing complexity classes.

Unfortunately, reading this paper still requires some categorical back-
ground: it is written more for the category theorist wanting to learn about
complexity than for the complexity theorist wanting to learn about categories.
This is solely justified by space constraints, which make it much harder to

3

write a paper taking the dual approach.

2 Categories and Theories

2.1 Boolean Lextensive Categories

In what follows, we denote terminal objects by 1, binary products by ×, initial
objects by 0, binary coproducts by + and injections by ιi : Ai → A1 + A2.
Also, we use the following notations for pullback squares:

B ×A C

f ∗g
��

g∗ f // C

g
��

B
f

// A

In particular, f ∗g denotes the pullback of g along f .

Definition 1 (disjointness, pullback-stability) A coproduct A + B with injec-
tions ι1, ι2 is said to be

• disjoint if ι∗1 ι2 and ι∗2 ι1 are initial arrows (i.e., A ×A+B B = 0);

• pullback-stable if, for any f : C → A + B, f ∗ι1 and f ∗ι2 exist and are
injections.

Definition 2 (Boolean lextensive category) A category is lextensive if it has fi-
nite limits and finite disjoint pullback-stable coproducts. Lextensive categories are
distributive, i.e., A × 0 = 0 and A × (B + C) = A × B + A × C [CLW93]. A
logical functor between lextensive categories is a functor preserving all finite limits
and finite coproducts.

Let i : X → A and j : Y → A be two monomorphisms. They are said to be
equivalent if there exists an iso k : X → Y such that i = jk. A subobject of an
object A, denoted by X ↣ A, is an equivalence class of monomorphisms into A.
A subobject X ↣ A of a lextensive category has a complement if there exists a
subobject X ↣ A such that A = X + X.

A lextensive category is Boolean if every subobject has a complement. We denote
by BoolLext the strict (2, 1)-category of small Boolean lextensive categories, logical
functors and natural isomorphisms.

Lemma 3 ([CLW93]) A category is Boolean lextensive iff it has finite products, fi-
nite coproducts, 1 + 1 is disjoint and pullback-stable and every monomorphism is an
injection. Also, a functor between Boolean lextensive categories is logical as soon as it
preserves finite products and finite coproducts.

The prototypical example of Boolean lextensive category is Set, the cate-
gory of sets and functions. Another important example, which is small, is the
skeleton of the category of finite sets F , which we define to be the category
whose objects are obtained by choosing one set [n] of cardinality n for each

4

n ∈ N and whose arrows are arbitrary functions. An example which is not a
Boolean topos is obtained by adding to F a countably infinite set, again with
all functions as arrows. The general construction of Sect. 2.3 will give exam-
ples which are not Boolean pretoposes, i.e., in which the image of an arrow
does not necessarily exist.

2.2 Theories

Boolean lextensive categories are closely related to a certain kind of first-order
theories, which we proceed to describe.

Definition 4 (vocabulary, formula) A vocabulary V is a pair

(Sort(V), Rel(V))

where Sort(V) is a set of sorts and Rel(V) is a set of relation symbols, which
are pairs R ↣ A1 × . . . × Ak of a syntactic symbol R and an ordered list of sorts
A1, . . . , Ak, called the type of the sort. The case k = 0 is allowed and written R ↣ 1.
We may write Ak for A × · · · × A repeated k times.

The formulas on a vocabulary V are defined as follows:

φ, ψ ::= x =A y | R(x1, . . . , xn) | ⊥ | φ ∧ ψ | ¬φ | ∃x.φ

where A ranges overs sorts and x, y, xi range over a countable set of variables. Free
and bound variables in formulas are defined as usual, with ∃ being the only binder.
As customary, we consider equal two formulas which differ only by an injective re-
naming of bound variables (α-equivalence). We use the usual abbreviations available
in classical logic: x ̸=A y := ¬(x =A y), φ ∨ ψ := ¬(¬φ ∧ ¬ψ), ⊤ := ¬⊥, etc.

We denote by φ[y/x] the formula obtained from φ by replacing every free occur-
rence of x with y, possibly after having renamed bound variables so that y is not
captured by a binder.

In the standard semantics of first-order logic, sorts correspond to sets (the
domains for the individuals) and a quantifier-free formula with free variables
in x1 : A1, . . . , xn : An defines a subset of ∏k

i=1 Ai: inductively, x =A y is the
diagonal of A; relation symbols, by definition, are subsets; ⊥ is the empty
subset; ∧ is intersection; and ¬ is complement.

The key observation underlying categorical logic [Joh02] is that any
Boolean lextensive category has enough structure to interpret quantifier-free
logic: in the above, just replace “subset” with “subobject” and “intersection”
with “pullback” (remember that lextensive categories have finite limits). In
fact, Boolean lextensive categories may also interpret a restricted form of exis-
tential quantification. If i : φ → A × B is an injection and p : A × B → B is the
projection, then the image of p ◦ i is precisely ∃x.φ ⊆ B. Unfortunately, p ◦ i
is not injective in general, which means that it does not define a subobject.
However, if, for each y, there is at most one x such that (x, y) ∈ im i, then
p ◦ i is still injective. So Boolean lextensive categories can interpret unique
existential quantification.

What we call theories in this paper are multisorted first-order theories
with equality whose axioms are closed formulas of the form ∀x⃗.φ where φ

5

is quantifier-free except for the presence of provably unique existential quanti-
fiers. This is formalized as follows:

Definition 5 (theory, model, extension) Fix a vocabulary V and let φ be a for-
mula of V with free variables x⃗. As customary, we refer to the closed first-order
formula ∀x⃗.φ as the universal closure of φ. Let Ax be a set of formulas of V. We
say that a formula ψ of V is provable from Ax if the universal closure of ψ is prov-
able in the first-order theory consisting of the universal closures of the formulas in
Ax.

A theory T is a triple

(Sort(T), Rel(T), Ax(T))

where (Sort(T), Rel(T)) is a vocabulary, abusively denoted by T as well, and Ax(T)
is a set of formulas of T, called axioms, admitting a well-founded partial ordering
such that, for all φ ∈ Ax(T) and for every subformula of the form ∃x.ψ of φ with x
of sort A, the formula

(ψ ∧ ψ[x′/x]) ⇒ x =A x′

is provable from the subset of Ax(T) of all axioms strictly below φ.
We say that a formula is provable in the theory T if it is provable from Ax(T).

We say that two formulas φ and φ′ are provably equivalent in T if T proves φ ⇔
φ′.

A model of a theory T is defined as usual, with each sort A being interpreted by
a set JAK, so that a relation symbol R ↣ A1 × · · · × Ak is interpreted by a subset
of JA1K× · · · × JAkK. Isomorphism of models is defined as customary. We denote by
Mod(T) the set of standardized finite models of a theory T, by which we mean
that sorts are interpreted by sets of the form [n], the same sets we used in our definition
of the category F , so that Mod(T) is indeed a set.

A theory T′ is an extension of T if Sort(T) ⊆ Sort(T′), Rel(T) ⊆ Rel(T′) and
Ax(T) ⊆ Ax(T′). Notice that, in that case, a model of T′ may be seen as a model of
T with additional stuff (the individuals of the sets interpreting the additional sorts),
structure (the additional relations) and properties (the additional axioms). We write
T′ = T + X to mean that X is the extra sorts, relation symbols and axioms that T′

adds to T. We say that the extension T′ is finite if X is finite.

Observe that function symbols are absent from our definition of vocabu-
lary because they may be defined in terms of relations, plus suitable axioms.
For example, a unary function symbol f : A → B (where A and B are sorts)
may be simulated by a relation symbol F ↣ A × B together with the axioms

F(x, y) ∧ F(x, y′) ⇒ y =B y′ ∃y.F(x, y).

The existential quantifier in the second axiom is provably unique because of
the first axiom. Then, if one wishes to use a formula of the form φ(f (x)),
one may use instead ∃y.F(x, y) ∧ φ(y). This obviously generalizes to n-ary
function symbols, including constants.

Every small Boolean lextensive category B induces a theory L(B), called
its internal language, whose sorts are the objects of B and whose relation sym-
bols are the subobjects of B (smallness is required so that these are, in fact,

6

sets). Applying the above-mentioned interpretation of first-order logic in B,
any formula φ in this vocabulary whose free variables are x⃗ : A⃗ induces a
subobject of A⃗ in B. If such a subobject is isomorphic to A⃗ itself, then we say
that φ is full. The axioms of L(B) are the full formulas.

Let us now look at some concrete examples of theories. The empty theory
E has no sorts, no relation symbols and no axioms. It has exactly one model
(the empty model). Any inconsistent theory has no model, an example is the
theory ⊨ extending E with the axiom ⊥. The theory of directed graphs Grph
has one sort N, a relation symbol E ↣ N2 and no axioms. Another interesting
example is the theory Str which has one sort N, two relation symbols ≤↣ N2

and X ↣ N, and axioms stating that ≤ is a total order:

x ≤ x x ≤ y ∧ y ≤ z ⇒ x ≤ z

x ≤ y ∧ y ≤ x ⇒ x =N y x ≤ y ∨ y ≤ x.

The elements of Mod(Str) may be identified with binary strings: N is the set
of positions in the string, which are totally ordered from left to right, and X(i)
holds exactly when the string has a 1 at position i. For example, the model
{i < j < k} in which X = {k} represents the string 001. However, observe that
the same string may be represented by different, isomorphic models, such as
{j < k < i} in which X = {i}.

Let Ord be the theory defined like Str, but without the symbol X. Its mod-
els are totally ordered sets. Observe that a finite model of Ord necessarily has
a minimum and a maximum element, but the theory has no access to them.
Consider the theory Chain extending Ord with relation symbols Z, Max ↣ N
and S ↣ N2, axiomatized as follows:

1. If N is not empty, then Z and Max are singletons (i.e., they define con-
stants):

Z(x) ∧ Z(x′) ⇒ x =N x′ Max(x) ∧ Max(x′) ⇒ x =N x′

x =N x ⇒ ∃z.Z(z) x =N x ⇒ ∃m.Max(m)

2. S is an injective partial function (the successor):

S(x, y) ∧ S(x, y′) ⇒ y′ =N y S(x, y) ∧ S(x′, y) ⇒ x′ =N x

3. Zero has no predecessor, max has no successor, every non-zero element
has a predecessor and every non-max element has a successor:

Z(z) ∧ S(x, z) ⇒ ⊥ Max(m) ∧ S(m, y) ⇒ ⊥
Z(z) ∧ y ̸=N z ⇒ ∃x.S(x, y) Max(m) ∧ x ̸=N m ⇒ ∃y.S(x, y)

4. The chain induced by the successor relation is acyclic:

S(x, y) ⇒ x ≤ y ∧ x ̸=N y

The sets Mod(Chain) and Mod(Ord) are in canonical bijection: given a finite
total order, there is only one way of equipping it with a zero, a max and a

7

successor function. However, Chain is more expressive. For example, we may
state that the size of N is n:

∃x1 . . . ∃xnZ(x1) ∧ S(x1, x2) ∧ · · · ∧ S(xn−1, xn) ∧ Max(xn).

By contrast, in Ord (as in any theory) we may only state that there are at most
n elements, via the formula

∨
xi =N xj ranging over all 1 ≤ i ̸= j ≤ n + 1.

Definition 6 (chain sort, chain object) We say that a sort of a theory is a chain
sort if it is equipped with the same relation symbols and axioms as the sort N in
Chain.

Let B be a Boolean lextensive category. A chain object of B is an object A
equipped with subobjects ≤A, ZA, MaxA, SA of A2, A, A, A2, respectively, such that
the axioms of chain sorts are provable in the internal language of B.

Let P be a polynomial with non-negative integer coefficients. In any
Boolean lextensive category the existence of finite products and finite coprod-
ucts allows us to evaluate P at any object A, obtaining another object P(A).
The following says that, if A is a chain object, then so is P(A):

Lemma 7 Chain objects are closed under finite products and finite coproducts.

Proof. The terminal and initial object are trivially chain objects. Let A and B
be chain objects of a Boolean lextensive category. The lexicographic order on
A × B is expressible by

(x ≤A x′) ∨ (x =A x′ ∧ y ≤B y′).

Zero is ZA(x)∧ ZB(y) and max is MaxA(x)∧ MaxB(y), whereas the successor
is

(¬MaxB(y) ∧ x′ =A x ∧ SB(y, y′)) ∨ (MaxB(y) ∧ SA(x, x′) ∧ ZB(y′)).

For what concerns A + B, we equip it with the concatenation of ≤A and ≤B.
Since (A + B)2 = A2 + A × B + B × A + B2, this has four components, which
are ≤A, ⊤, ⊥ and ≤B, respectively. The two components of zero are ZA and
⊥, and the two components of max are ⊥ and MaxB. The successor too has
four components: the ones in A2, B2 and B× A are SA, SB and ⊥, respectively;
the component in A × B is expressed by MaxA(x) ∧ ZB(y). □

2.3 Syntactic Categories

Definition 8 (T-set) Let T be a theory. A context for T is a finite, possibly empty
sequence of variables decorated with sorts of T, of the form xA1

1 . . . xAn
n , and denoted

more concisely by x⃗ : A⃗ or even just x⃗ when the sorts are irrelevant.
A simple T-set is an expression of the form x⃗.φ where φ is a formula of T and x⃗

a context including the free variables of φ, such that the sorts attributed to variables
in x⃗ are consistent with how they appear in φ. Simple T-sets are considered up to
renaming the variables in the context. For example, if R ↣ A× B, then xAyB.R(x, y)
and zAwB.R(z, w) are identified, whereas yBxA.R(x, y) is different.

8

A T-set is a finite (possibly empty) list of simple T-sets, concisely denoted by
(x⃗i.φi)

n
i=1 or, even more concisely, when n is clear from the context or irrelevant, by

(x⃗i.φi).

The intuition behind T-sets is that they are sets expressible by quantifier-
free (except for provably unique existential quantifiers) formulas of T. Every
sort A of T gives a T-set (xA.⊤), which we abusively denote by A. Then, in
general, if x⃗i : A1

i . . . Aki
i , (x⃗i.φi) defines a subset of ∑i A1

i × · · · × Aki
i . Finite

Cartesian products and disjoint unions of T-sets are also T-sets: (x⃗i.φi) ×
(⃗yj.ψj) := (x⃗i y⃗j.φi ∧ψj) and (x⃗i.φi) + (⃗yj.ψj) is concatenation of sequences, the
singleton set is 1 := (⊤) and the empty set 0 := (). This shows, in particular,
that finite sets are always T-sets.

For example, in the theory Grph, the unique sort N represents the set
of nodes of a generic directed graph, and (xy.E(x, y)) ⊆ N2 is its set of
edges. Other examples of Grph-sets are the complement of the set of edges
(xy.¬E(x, y)) ⊆ N2, or

(xyz.¬E(x, x) ∧ ¬E(y, y) ∧ ¬E(z, z) ∧ E(x, y) ∧ E(y, z)) ⊆ N3,

which corresponds to the set of triples of loop-free nodes forming a path of
length 2.

Notice how some different T-sets should morally be identified: for exam-
ple, any T-set (xA.⊥) expresses the empty set (). Logical equivalence is not
enough, we need a more general way of saying that two T-sets are in bijection.

Let S := x⃗.φ and T := y⃗.ψ be simple T-sets, with y⃗ : B⃗. A partial T-function
S ⇀ T is a simple T-set x⃗y⃗.θ such that the following are provable in T:

θ ⇒ φ ∧ ψ (domain and codomain),

θ ∧ θ [⃗y′/y⃗] ⇒ y⃗ =B⃗ y⃗′ (functionality).

In other words, T proves that θ ⊆ S × T is a functional relation. A T-function
S → T is, additionally, provably total, i.e., T proves φ ⇒ ∃y⃗.θ.

Since T-sets are disjoint unions of simple T-sets, T-functions between
them may be defined as matrices of partial functions between the compo-
nents. For example, a T-function (S1, S2) → (T1, T2) will be a 2 × 2 matrix of
partial T-functions θij : Sj ⇀ Ti, such that the domains of θ1j and θ2j form a
partition of Sj.

Definition 9 (T-function) Fix a theory T and let P := (Sj)
n
j=1 and Q := (Ti)

m
i=1

be T-sets, with Sj := x⃗j.φj, x⃗j : A⃗j, Ti := y⃗i.ψi and y⃗i : B⃗i. We may assume all x⃗i and
y⃗j to be pairwise disjoint, even in case P = Q (i.e., we choose different representatives
for the same simple T-sets). A T-function P → Q is an m × n matrix of partial
T-functions x⃗jy⃗i.θij : Sj ⇀ Ti as defined above, such that, for all 1 ≤ i ≤ m and
1 ≤ j ̸= j′ ≤ n, T proves the following:

θij ∧ θij′ ⇒ ⊥ (disjointness)

φj ⇒
m∨

i=1

∃y⃗i.θij (joint totality)

9

T-functions are defined up to equivalence: a matrix (x⃗jy⃗i.θ′ij) such that, for all i and
j, θ′ij and θij are provably equivalent in T defines the same T-function as (x⃗jy⃗i.θij).

Given R := (⃗zk.ρk)
p
k=1 and T-functions θ : P → Q and χ : R → P, we define,

for each 1 ≤ i ≤ m and 1 ≤ k ≤ p,

(θ ◦ χ)ik := z⃗k y⃗i.
n∨

j=1

∃y⃗j.θij ∧ χjk.

One may check that the above defines a T-function θ ◦ χ : R → Q, which we call
composition of θ and χ.

We define the identity T-function on P by letting, for all 1 ≤ j, j′ ≤ n,

(idP)jj′ :=

{
x⃗j x⃗′j.φj ∧ x⃗j =A⃗i

x⃗′j if j = j′,
x⃗j x⃗′j′ .⊥ otherwise.

Notice that we are using the fact that P = (x⃗′j.φj [⃗x′j/x⃗j]) in order to distinguish
source and target contexts. One may verify that idP is indeed a T-function from P to
itself.

Let us look at some consequences of the definition. Consider an arbitrary
theory T. Observe that, for any T-set P = (x⃗j.φj)

n
j=1, there is, as expected,

exactly one T-function !P : 0 → P, given by the empty matrix: the conditions
are vacuously true because 0 = (). Conversely, suppose we have a T-function
f : P → 0. By definition, this too must be the empty matrix. However, when
n ̸= 0 the joint totality condition is no longer trivial: it amounts to φj ⇒ ⊥
for all 1 ≤ j ≤ n. In other words, the existence of an arrow into the empty
T-set forces each φj to be provably equivalent to ⊥. But, if this is the case,
then idP is the n × n matrix whose entries are all equivalent to (x⃗j x⃗′j′ .⊥). This
happens to be also the result of the composition !p ◦ f : the disjunction in the
definition is nullary, hence equal to ⊥. This proves, as expected, that P ∼= 0. It
also realizes, in particular, the desired identification of (xA.⊥) with 0.

Definition 10 (syntactic category) The syntactic category of a Boolean theory T,
denoted by F [T], is defined to be the category whose objects are T-sets and whose
arrows are T-functions. Composition and identities are as in Definition 9. Associa-
tivity and neutrality are a consequence of the fact that T-functions are defined up to
provable equivalence.

The acquainted reader will have recognized in F [T] the standard construc-
tion of the syntactic category of an essentially algebraic theory as presented
in [Joh02] (where these are called cartesian theories), augmented with finite co-
products. Indeed, our theories are essentially algebraic theories over classical
logic rather than intuitionistic logic. The following is therefore expected:

Theorem 11 For every theory T, F [T] is Boolean lextensive.

Let us look at a simple but important example. Recall the empty theory E:
since it has no sorts and no relation symbols, up to equivalence there are only

10

two simple E-sets, ⊤ and ⊥ (non-empty contexts do not exist because we do
not have any sort). Therefore, remembering that (⊥) ∼= 0, up to iso the objects
of F [E] are of the form (⊤, . . . ,⊤), i.e., they may be identified with natural
numbers. We invite the reader to check that an E-function n → m is an m × n
matrix such that each column has exactly one entry equal to ⊤, the rest being
⊥. This, in turn, is the same thing as a function f : {1, . . . , n} → {1, . . . , m}:
given 1 ≤ j ≤ n, the position of the ⊤ entry on the j-th column corresponds
to f (j). So F [E] is equivalent to F , the (skeleton of the) category of finite sets
and functions.

When B is equivalent to F [T] in BoolLext, we write B ≃ F [T] and say
that T presents B. Every small Boolean lextensive category B is presented by
its internal language, i.e., one may prove that F [L(B)] ≃ B. Of course, much
smaller theories than L(B) may present B (think of F , which is presented by
the empty theory, while L(F) has countably many sorts!).

A remarkable property of syntactic categories is that they allow express-
ing models as functors: a model of a theory T is the same as a logical
functor F [T] → Set. This is an idea going all the way back to Lawvere’s
“functorial semantics” [Law63]. Indeed, the objects of F [T] are built us-
ing categorical structures which are preserved by logical functors (monomor-
phisms, diagonals, pullbacks, complements, coproducts), so a logical functor
F : F [T] → Set is determined by its value on atomic formulas, i.e., simple T-
sets of the form xA.⊤ or x⃗.R(x⃗). Once these atomic interpretations are fixed,
we have a structure in the sense of first-order logic, and F(x⃗.φ) is the usual set
interpreting the (open) formula φ in that structure, because those categorical
constructions have the customary meaning in Set.

To see that we actually get a model of T, we observe that, if α ∈ Ax(T)
with free variables x⃗ : A1, . . . , Ak, then we have (x⃗.α) ∼= ∏k

i=1 Ai in F [T]. Since
functors preserve isomorphisms, the interpretation of the (open) formula α is
the whole domain, which means that the structure validates the axiom ∀x⃗.α,
as claimed.

It is worth mentioning that a natural transformation F → G with F, G logi-
cal functors F [T] → Set is exactly an elementary embedding of the correspond-
ing models [Joh02]. We will only need a consequence of this fact, namely that
naturally isomorphic logical functors correspond to isomorphic models.

If logical functors into F [T] → Set are models, then logical functors
F [T] → F are standardized finite models of T, in the sense of Definition 5,
and the homset BoolLext(F [T],F) may be identified with Mod(T). So, for
example, an arrow F [Str] → F of BoolLext represents a binary string.

Generalizing further, a logical functor F : F [T] → F [S] is a choice of an
S-set for each sort and relation symbol of T, such that, for every α ∈ Ax(T)
with free variables x⃗, letting F(x⃗.α) = (⃗yi.ψi), each ψi is provable in S. Since
S-sets are, essentially, sequences of formulas of S, the acquainted reader will
recognize this as a mildly generalized quantifier-free query [Imm99] from the
finite models of S to the finite models of T. Indeed, given a finite model
F [S] → F of S, we obtain a finite model of T by precomposing F.

11

2.4 Algebras

Let A = F [S] and B = F [S + X]. Since every formula of S is a formula of
S + X, there is an inclusion functor A → B sending each object and arrow of
A to “itself”. The idea of algebras is to see any logical functor A → B as an
extension of a theory.

Definition 12 (algebra) Let A be a Boolean lextensive category. An A-algebra is
a Boolean lextensive category B equipped with a morphism A → B of BoolLext,
called the structure map. Given two A-algebras f : A → B and g : A → C, an
algebra morphism h : B → C is a logical functor such that h f ∼= g (in other words,
the (2,1)-category of A-algebras is the undercategory A/BoolLext).

Referring to the notations used before Definition 12, we write B = A[X] to
mean that B is an A-algebra whose structure map is an inclusion.

The category F is 2-initial in BoolLext: given a Boolean lextensive cat-
egory B, we may always define a logical functor F : F → B by letting
F([n]) := 1 + · · · + 1 n times. Up to iso, this is the only possibility because
[n] = [1] + · · ·+ [1] n times and F must preserve finite coproducts. So every
Boolean lextensive category is an F -algebra in a unique way.

The tensor product of A-algebras B and C is the 2-pushout B ⊗A C in
BoolLext, which may be constructed, up to equivalence, as the syntactic cat-
egory of a theory U defined as follows:

• Sort(U) consists of the objects of B and C (modulo isomorphism, they
may be supposed to have no object in common);

• Rel(U) consists of the subobjects of B and C, plus a relation symbol
FZ : f (Z)× g(Z) for each object or subobject Z of A, where f and g are
the structure maps of B and C, respectively;

• Ax(U) consists of the axioms of the internal languages of B and C, plus
axioms asserting that FZ is a bijection f (Z) ∼= g(Z).

In the above construction, the internal languages of B and C may be replaced
(in the sense that we obtain an equivalent category) by any other theories S

and T presenting B and C, and we obtain that U is a common extension of
S and T, which means that there always exist X and Y such that B ⊗A C is
equivalent to B[X] as a B-algebra, or to C[Y] as a C-algebra.

Let S be a theory and S + X an extension. Every f : F [S] → F [T] induces
an extension of T, denoted by T+ f (X), obtained by applying f homomorphi-
cally to X. For example, if X consists of a sort C, a relation symbol R ↣ A×C
with A ∈ Sort(S) and an axiom R(x, z) ∧ φ where φ is a formula of S with
free variables x⃗, and if f (A) = (⃗yi.ψi) with y⃗i : B⃗i and f (x⃗.φ) = (⃗y′j.ψ

′
j),

then f (X) will consist of a sort C, relation symbols Ri ↣ B⃗i × C with axioms
Ri (⃗yi, z) ⇒ ψi, and axioms Ri (⃗yi, z) ∧ ψ′

j. With these notations, the definition
of tensor product directly gives:

Lemma 13 Let B be an A-algebra with structure map f . Then, A[X] ⊗A B ≃
B[f (X)] (as B-algebras).

12

Notice that A is an A-algebra with structure map idA, which is neutral for
⊗A by Lemma 13 (taking X empty). Therefore, for any A-algebra B, we have
B = A⊗A B ≃ A[X] for some X. So, up to equivalence, the structure map of
every A-algebra is an inclusion.

Definition 14 An A-algebra equivalent to A[X] is:

• of finite presentation if X is finite;

• propositional if X contains no sort;

• CNF if it propositional and every axiom of X is of the form

φ ∨
∨
i∈I

αi,

where φ is a formula not containing symbols from X and the αi are relation
symbols of X, possibly negated (I = ∅ is allowed);

• Horn if it is CNF and at most one of the αi is non-negated;

• Krom if it is CNF and I has cardinality at most 2.

Observe that a finite model of a totally ordered sort N (as in Ord) may
always be pictured as an initial segment of N, i.e., of the form {0 < · · · < m}.
A relation symbol R ↣ Nk with N totally ordered is called a numeric predicate,
because it may be seen as a relation on integers.

In descriptive complexity, numeric predicates are important for expres-
siveness reasons. An example is Plus ↣ N3, whose interpretation is posited
to be the (truncated) graph of addition, i.e., Plus(x, y, z) holds exactly when
x + y = z. In our setting, Plus may be axiomatized on top of a chain sort
(Definition 6) in such a way that finite models are forced to interpret it by
standard addition:

Plus(x, y, z) ∧ Plus(x, y, z′) ⇒ z′ =N z

Plus(x, y, z) ∧ Plus(x′, y, z) ⇒ x′ =N x

Plus(x, y, z) ⇔
(Z(y) ∧ z =N x) ∨ (∃y′.∃z′.S(y′, y) ∧ S(z′, z) ∧ Plus(x, y′, z′)).

The proof that finite models are standard is by induction on y.
Something similar may be done for multiplication: we introduce a symbol

TTimes ↣ N4 which is axiomatized so that, in a model of cardinality n,
TTimes(x, y, z1, z2) holds precisely when xy = nz1 + z2 (we omit the axioms
for conciseness).

Let A be a Boolean lextensive category. A totally ordered object of A is an
object T together with a subobject of T2 satisfying the axioms of total orders
(i.e., those of Ord) in the internal language of A. The following algebras
allow to add chain structure and numeric predicates on top of totally ordered
objects:

13

Definition 15 (numeric and arithmetic algebra) Let A be a Boolean lextensive
category, let {Ti}1≤i≤n be totally ordered objects of A and let T be any presentation
of A containing sorts Ai corresponding to Ti. An A-algebra equivalent to A[X] is:

• numeric if is it propositional and X contains finitely many relation symbols of
the form R ↣ Ak

i (i and k arbitrary) and arbitrarily many axioms, and such
that the function Mod(T + X) → Mod(T) which forgets the extra structure
of models of T + X is invertible;

• arithmetic if it is numeric but relation symbols are limited to those in
Rel(Chain) ∪ {Plus, TTimes} and whose axioms are limited to those defin-
ing such symbols (as in Chain and above) plus finitely many additional axioms
{αj}j∈J which are true in all finite models of T + X \ {αj}j∈J .

The extra axioms of arithmetic algebras are included to increase expres-
siveness: in a logical functor B → A[X] the image of the axioms of any pre-
sentation of B must be provable in T + X, so more axioms in X means more
such functors.

3 Data Specifications

3.1 Data Specifications and the Gamma Functor

Definition 16 (data specification) The (2,1)-category of data specifications is de-
fined as Data := BoolLextop. When seeing a Boolean lextensive category B as a data
specification, that is, as an object of Data rather than BoolLext, we write SpecB.
By definition, a morphism of data specifications SpecB → Spec C is just a logical
functor C → B, and composition in Data is just composition in BoolLext, but in re-
verse order. A 2-morphism in Data is a natural isomorphism between the underlying
logical functors (the direction is irrelevant as these are all invertible).

Let S be a data specification. A data specification over S is a data specification
X equipped with a morphism X → S, called structure map, whereas S is called the
base. A morphism X → Y of data specifications over S is a morphism h : X → Y
of Data such that the structure map of X is isomorphic to the structure map of Y
precomposed with h (in other words, the (2,1)-category of data specifications over S is
the overcategory Data/S).

The (2, 1)-category Data is 2-complete and 2-lextensive (as in Definition 2,
but in which equalities are replaced by coherent isomorphisms). As such, for
what concerns limits and finite coproducts it behaves as a category of “spaces”
and “continuous maps”, with 2-cells being “homotopy equivalences”. De-
scribing these as bona fide topological spaces is beyond the scope of this paper.
However, it is intuitively useful to think of S = SpecF [T] as a space whose
points are models of T. In particular, the terminal object ∗ := SpecF is
like a “singleton space” (remember that F = F [E], and E has exactly one
model). However, arrows ∗ → S do not exhaust all points of S: they are ar-
rows F [T] → F in BoolLext, so they are finite models of T. We call them
finite points.

14

Mapping a data specification to its set of finite points is actually a 2-functor

Γ : Data −→ Grpd,

defined by Γ := Data(∗,−), where Grpd is the (2, 1)-category of groupoids.
As a hom-functor, Γ preserves limits. It also preserves finite coproducts. If
S = SpecB and if S is any theory presenting B, then ΓS is equivalent to the
groupoid whose set of objects is Mod(S) and whose arrows are isomorphisms
of models. For example, if we let Str := SpecF [Str], then the objects of ΓStr
are representations of binary strings, and two representations are related by
an arrow iff they represent the same string. Given a morphism f : S → T
of Data, where T = Spec C and C is presented by T, then, on objects, Γ f :
ΓS → ΓT is a quantifier-free query Mod(S) → Mod(T). This is because Γ
acts by postcomposition: given a finite point x : ∗ → S, it yields f ◦ x :
∗ → T, and, reversing arrows, we saw that in BoolLext this corresponds to
applying a quantifier-free query. Functoriality of Γ f is guaranteed by the fact
that quantifier-free queries preserve isomorphism of models.

The algebraic perspective is interesting here. If T is as above and p :
Spec C[X] → T corresponds to the inclusion C → C[X] for some X, then Γp is
the canonical projection mapping a finite model x of T + X to the model of T

obtained from x by forgetting the extra stuff, structure and properties given
by X: in BoolLext, given a model x : F [T + X] → F , precomposition with
the inclusion F [T] → F [T + X] gives a model which is identical to x except
that it is defined only on F [T], i.e., it ignores the extra stuff, structure and
properties.

Now, a morphism f : S → T as above exhibits B as a C-algebra, but
we know that B is always equivalent, as a C-algebra, to C[X f] for some X f .
So, modulo equivalence, every quantifier-free query is a projection! This is
the explanation: given the quantifier-free query Γ f : Mod(S) → Mod(T), if
GΓ f := {(x, Γ f (x)) | x ∈ Mod(S)} is the graph of Γ f , there is a bijection
b : Mod(S) → GΓ f mapping x to (x, Γ f (x)), and Γ f = Γp ◦ b, where Γp :
GΓ f → Mod(T) projects (x, y) to y. It turns out that X f is precisely such that
Mod(T + X f) = GΓ f , and that b too is a quantifier-free query, i.e., b = Γq for
an equivalence q : S → Spec C[X f] verifying f ∼= p ◦ q.

3.2 Decision Problems

In the following, if S is a data specification, we write U ⊆ ΓS to mean that
U an isomorphism-closed set of objects of the groupoid ΓS (i.e., if x ∈ U and
x′ ∼= x in ΓS, then x′ ∈ U). Also, if f : X → S is a morphism of Data
and U ⊆ ΓS, we write (Γ f)−1(U) for the inverse image of Γ f on objects,
which is an isomorphism-closed set of objects of ΓX. In this way, we may
rephrase familiar computability concepts in terms of data specifications and
the Γ functor:

• a data type is a data specification SpecB with B of finite presentation
(over F);

• a decision problem on a data type S is a set U ⊆ ΓS;

15

• given decision problems U on S and V on T, a reduction from U to V is
a morphism r : S → T such that (Γr)−1(V) = U.

The definition of data type adheres to the idea that data manipulated by a
program must be finite (our theories being potentially infinite, models based
on finite sets may still contain infinite data). Decision problems as we defined
them are known in descriptive complexity as Boolean queries, and reductions as
quantifier-free reductions, a kind of low-complexity reductions (below logspace)
which are general enough that all “natural” complete problems for all “natu-
ral” complexity classes are still complete with respect to them [Imm99].

Consider now a data specification X over a data type S. If p is its structure
map, we may consider the set

im X := {x : ∗ → S | ∃ v : ∗ → X s.t. x ∼= p ◦ v}.

By definition, im Γp is a decision problem on S. The idea is that the finite
points of S, which are truly finite objects, are instances of the problem and
that the finite points of X are solutions, or witnesses of “yes” instances. The
structure map sends each witness to its corresponding instance. The remark
at the end of the previous section says that we may think of witnesses as pairs
(x, w) where x is the instance, w the actual witness, and Γp the projection.

Definition 17 (expressing problems) Let L be a decision problem on S. We say
that a data specification X over S expresses L if L = im X.

The point of descriptive complexity is that it is possible to isolate, by purely
logical means (or, in our approach, algebraic means), data specifications ex-
pressing problems of a given complexity.

Definition 18 Let f : SpecB → SpecA. Seen as a morphism of BoolLext,
f exhibits B as an A-algebra. We say that f is of finite presentation (or fp),
propositional, etc. if B is of the same kind (following the terminology of Defini-
tions 14 and 15). Furthermore, we say that a morphism f is

• pfp (resp. CNFfp) if it is propositional (resp. CNF) of finite presentation;

• aHfp (resp. aKfp) if f = a ◦ g with a arithmetic and g Horn (resp. Krom) of
finite presentation;

• nuHfp if f = a ◦ g with a numeric and g Horn of finite presentation.

A data specification over another data specification is said to be fp, pfp, etc. if its
structure map is. A data specification is fp, pfp, etc. if its terminal arrow is (i.e., we
see it as a data specification over ∗).

Observe that a CNFfp data specification Φ = SpecB is presented by a
CNF: we have B ≃ F [X] with X finite and with no sorts, so the relational
symbols must be of the form R ↣ 1, which are propositional atoms, and the
axioms are disjunctive clauses, the conjunction of which is a CNF ϕ. Moreover,
a finite point ∗ → Φ is exactly a satisfying assignment for ϕ: in BoolLext, it
is a logical functor F [X] → F assigning subobjects of the singleton (that is,

16

truth values) to the relation symbols of X, in such a way that the axioms
are provable in F . But the axioms are the clauses of ϕ, and provable in F
simply means true. Similarly, Horn (resp. Krom) fp data specifications are
presented by Horn CNFs (resp. 2-CNFs) and their finite points are satisfying
assignments.

Lemma 19 1. All classes of morphisms of Definition 18 are pullback-stable: if
p : X → S is of a given kind and f : T → S is arbitrary, f ∗p : X ×S T → T
is of the same kind as p;

2. Fp, pfp, aHfp, aKfp and nuHfp morphisms are stable under post-composition
with arithmetic morphisms.

Proof. (1) First, let p : X → S be of one of the kinds corresponding to Defini-
tion 14 or Definition 15 and let f : T → S be arbitrary, with S = SpecB and
T = Spec C. We know that the category underlying X is equivalent, as a B-
algebra, to B[X] for some X whose form depends on the kind of p. By duality
(pullbacks in Data are pushouts in BoolLext) and Lemma 13, f ∗p is the struc-
ture map of the C-algebra B[X]⊗B C ≃ C[f (X)]. We show that f ∗p is of the
same kind as p by checking, in each case, that f (X) has the same structure as
X, because the former is defined (cf. paragraph before Lemma 13) by having
f act homomorphically on X and adding Horn/Krom axioms. This suffices
for fp and pfp morphisms, and for the rest we conclude by observing that the
pullback of a composition is isomorphic to the composition of pullbacks.

(2) It is an easy consequence of the definition that fp, propositional and
arithmetic morphisms are stable under composition. Also, arithmetic mor-
phisms are pfp and numeric by definition. The result then follows immedi-
ately. □

Pullback-stability is important for so-called change of base: if X is a data
specification over S and we have a morphism T → S, then we may consider
the pullback Y := X ×S T, which is a data specification over T. The idea is that
Y expresses a reformulation of the problem expressed by X, over different in-
stances. For example, if Grph≤ is the data specification of directed graphs over
a totally ordered set of nodes, and if Grph≤ → Str is the encoding of graphs
as adjacency matrices (cf. below), change of base allows any graph problem
expressed over graphs-as-strings to be expressed directly over graphs.

Base change may be performed along a single instance x : ∗ → S, yielding
a data specification Xx over ∗ (so the structure map gives no information).
Now, standard categorical arguments show that the finite points of Xx are
in bijection with the solutions of x, i.e., those v : ∗ → X yielding x when
post-composed with the structure map of X. Therefore, if X is CNF (resp.
Horn, Krom) fp over S, by pullback-stability and the observations preceding
Lemma 19, the solutions of x correspond to solutions of a CNF (resp. Horn
CNF, 2-CNF). We start seeing how algebraic restrictions influence the com-
plexity of expressible problems.

Traditionally, computational complexity is based on Turing machines
[Pap94, Gol08, AB09], which only take strings as input. Hence, complexity
is “officially” defined only for decision problems on Str, and problems on

17

different data specifications are handled via encodings. These are often left
implicit, but we may formalize them, as is done in descriptive complexity.

Encoding a finite structure as a binary string is only possible if the struc-
ture is totally ordered (this is well-known in descriptive complexity [Imm99]).
We define an ordered data type as a data type SpecB in which every object of
B is totally ordered (as defined before Definition 15). We saw in Lemma 7
that total orders are stable under products and coproducts. They are sta-
ble under subobjects too: if φ ↣ N and ≤N is a total order on N, then
x ≤N y ∧ φ(x) ∧ φ(y) defines a total order on φ (by contrast, chains are not
stable under subobject: zero, max and successor are not definable in general).
Therefore, any finite theory T whose sorts are totally ordered gives rise to an
ordered data type SpecF [T].

Let S≤ = SpecB≤ be an ordered data type. By definition, B≤ may be
presented by a finite theory with m relation symbols Ri ↣ A⃗i. Given such a
presentation, we define an encoding morphism eS≤ : S≤ → Str via the logical
functor F [Str] → B≤ mapping N to ∑m

i=1 A⃗i, ≤ to the order on ∑m
i=1 A⃗i and X

to ∑m
i=1 Ri. For example, if Grph≤ is the theory of graphs with a total order

on their nodes, which has one sort G, two relation symbols ≤, E ↣ G2 with
≤ axiomatized as a total order, and if Grph≤ := SpecF [Grph≤], then the
encoding is such that ΓeGrph≤ maps a graph g with n nodes to the string of
length n2 representing the adjacency matrix of g. The order on the nodes of g
is used to order the bits in the string.

For decoding, we would like to send G to
√

N, and this is where arith-
metic is useful. Let Str+ be Str augmented with arithmetic. In any model of
cardinality n of Str+, the formula

∃z.∃o.Z(z) ∧ S(z, o) ∧ TTimes(x, x, o, z)

defines the empty set if n is not a perfect square, or the set {
√

n} otherwise.
This allows us to define a decoding morphism dGrph≤ : Str+ → Grph≤, where
Str+ := SpecF [Str+] is arithmetic over Str. The idea may be generalized to
all ordered data types (we omit the details).

We call robust a class of morphisms of Data which is stable under pullback
and post-composition by arithmetic morphisms. By Lemma 19, fp, pfp, aHfp,
aKfp and nuHfp are robust. If K is robust, then results over Str may be trans-
fered to any other ordered data type S≤. Indeed, change of base along eS≤
yields a data specification X′ in K over S≤ from a data specification X in K
over Str, and X′ expresses the same problem as X, but over S≤. Conversely, a
data specification X in K over S≤ induces, by change of base along dS≤ , a data
specification in K over Str+, where a : Str+ → Str is some arithmetic mor-
phism, so post-composing with a yields a data specification X′ in K over Str.
Notice that, since Γa is invertible on objects, X′ expresses the same problem
as X on strings.

3.3 Recursively enumerable problems

Lemma 20 For any non-deterministic Turing machine M with read-only input tape
on a binary alphabet and one read/write work tape on an arbitrary alphabet, there

18

exists a finite extension TMM of Str such that:

• TMM has two additional sorts S and T;

• the finite models of TMM are accepting runs of M taking time |T| and space
|S| (in the sense that the time and space are the size of the sets interpreting the
sorts T and S, respectively);

• the projection of a finite model of TMM on Str is the input of M for the run
represented by that model.

Proof. Recall that Sort(Str) = {N}. As per the statement of the lemma, we set
Sort(TMM) := {N, S, T}, and we proceed to describe the additional relation
symbols and axioms of TMM (with respect to Str).

First of all, we equip N, S and T with the structure of chain sorts (Defini-
tion 6). Recall that Str already has a total order relation symbol ≤ ↣ N2; in
the following, we will sometimes denote it by ≤N , to distinguish it from the
other total orders on S and T. Then, we add the following relation symbols,
where σ ranges over the set Σ of symbols of the work tape of M and q over its
set of states Q:

Stateq ↣ T Symbσ, wHead ↣ T × S iHead ↣ T × N

The additional axioms of TMM (with respect to those already added) are as
follows:

1. Axioms stating that the family of relations (Symbσ)σ∈Σ is a partial func-
tion T × S → Σ:

Symbσ(t, i) ∧ Symbσ′(t, i) ⇒ ⊥

where σ and σ′ range over Σ with σ′ ̸= σ.

2. Similar axioms stating that the family of relations (Stateq) is a partial
function T → Q.

3. An axiom stating that iHead is a partial function T → N:

iHead(t, i) ∧ iHead(t, i′) ⇒ i′ =N i

4. A similar axiom stating that wHead is a partial function T → S.

5. An axiom stating that, at time zero, the machine is in the initial state q0,
the work tape is filled with blank symbols □ ∈ Σ and the heads are at
the leftmost position of the respective tapes:

ZT(t0) ∧ ZN(i0) ∧ ZS(j0) ⇒
Stateq0(t0) ∧ Symb□(t0, j) ∧ iHead(t0, i0) ∧ wHead(t0, j0)

6. Axioms encoding the transition function of M. In general, these are
implications of the shape

Stateq(t) ∧ iHead(t, i) ∧ ϵX(i) ∧ wHead(t, j) ∧ Symbσ(t, j) ⇒
∨
i∈I

φi

19

with ϵ standing for ¬ or nothing. The antecedent says that the machine
is in state q (which we may suppose to be non-final, otherwise there
would be no transition), the input head reads a 0 (if ϵ = ¬) or a 1 (if
ϵ is nothing) and the work head reads σ. The consequent describes the
non-deterministic choices that the machine takes in that situation: each
φi corresponds to one such choice.

For example, suppose that the machine, when in state q, upon reading
the simbol 0 on the input tape and the symbol σ on the work tape, non-
deterministically transitions to state q1, writes σ1 and moves both the
input and work head right, or transitions to state q2, writes σ2, moves
the input tape left and keeps the work tape were it is. Then, the above
axiom will be instantiated with ϵ := ¬, I := {1, 2} and

φ1 := ST(t, t+1) ∧ SN(i, i+1) ∧ SS(j, j+1) ⇒
Stateq1(t+1) ∧ Symbσ1

(t+1, j) ∧ iHead(t+1, i+1) ∧ wHead(t+1, j+1),

φ2 := ST(t, t+1) ∧ SN(i−1, i) ⇒
Stateq2(t+1) ∧ Symbσ2

(t+1, j) ∧ iHead(t+1, i−1) ∧ wHead(t+1, j).

Notice that the general shape above may be amended for the “corner
cases” in which the input head is at one of the extremities of the input
string (the symbols ZN and MaxN may be used to handle this) or the
work head is at its leftmost position (the symbol ZS may be used to
handle this).

7. Axioms stating that the work tape is unchanged at positions where the
head is not found:

Symbσ(t, j) ∧ wHead(t, j′) ∧ j ̸=S j′ ∧ ST(t, t+1) ⇒ Symbσ(t+1, j)

for every σ ∈ Σ.

8. Axioms stating that the final configuration is in the accepting state qaccept
(which we may assume to be unique) and that all previous configura-
tions are not in a final state:

MaxT(t) ⇒ Stateqaccept(t) ST(t, t+1) ∧ Stateqfin(t) ⇒ ⊥

where qfin ranges over all final states of M (including qaccept).

Point (1) of the lemma holds by definition. For what concerns points (2) and
(3), a finite model of TMM consists of a binary string x (the projection on
Str) whose set of positions is N (for brevity, in the rest of the proof we will
identify the sorts with the sets interpreting them), plus additional structure on
it (a first and last element of N, and a successor on N), plus two non-empty
finite chains S and T, and four functions

State : T → Q iHead : T → N

Symb : T × S → Σ wHead : T → S

20

Actually, axioms 1 through 4 only guarantee these functions to be partial, but
totality may be proved by induction on the size of T: if T = {t0}, then we
conclude by axiom 5; if T = {t0, . . . , tn−1, tn}, then by induction State, iHead
and wHead are defined on tn−1 and Symb(tn−1, j) is defined for all j ∈ S.
Now, by axioms 8, State(tn−1) cannot be final, so some transition of M applies
at time tn−1, and axioms 6 ensure that State, iHead and wHead are defined
at tn. For the same reason, if j is the position of the work head at time tn−1,
Symb(tn, j) is defined. The fact that it is defined for every other j′ ̸= j is a
consequence of axioms 7.

By definition, the function Symb is the “space-time” of M when run on x,
in the sense that Symb(t, j) is the content of the j-th cell of the work tape at
time t. Similarly, State(t), iHead(t) and wHead(t) are the state, position of
the input head and position of the work head at time t. This is exactly the
definition of a run of M on input x, of length |T| and taking at most space |S|.
Axioms 8 ensure that such a run is accepting. □

Theorem 21 A decision problem on Str is recursively enumerable iff it is expressible
by an fp data specification over Str.

Proof. The implication from left to right is given by Lemma 20: since L is
recursively enumerable, there exists a Turing machine M accepting it, so we
may take SpecF [TMM], which is of finite presentation over Str because TMM
is a finite extension of Str.

For the converse, if X is of finite presentation over Str, then by definition
X ≃ SpecF [Str + X] with X finite and L := im X is equal to the image of
the canonical projection Mod(Str + X) → Mod(Str). So x ∈ L iff there exists
finite additional stuff and structure v such that (x, v) verifies the finitely many
axioms of Str+X. This is obviously decidable, so L is recursively enumerable.
□

3.4 The Class NP

Let us start with an example of pfp data specification. Let CNF :=
SpecF [CNF], where CNF is the theory with two sorts V, C and two rela-
tion symbols Pos, Neg ↣ V × C. A finite model of CNF represents a CNF:
the sets interpreting V and C are the set of variables and clauses of the CNF,
respectively; the relation Pos(x, c) (resp. Neg(x, c)) holds when the variable x
occurs positively (resp. negatively) in the clause c.

The famous satisfiability problem (Sat) asks, given a CNF, whether there
exists an assignment to its variables making it true. We may express it by
defining Asgn as the extension of CNF adding two relation symbols True ↣
V and Wit ↣ C × V, plus one axiom saying that Wit is a functional relation
and the axiom

∃x.Wit(c, x) ∧ ((Pos(x, c) ∧ True(x)) ∨ (Neg(c, x) ∧ ¬True(x))).

The True predicate should be seen as a selection of which variables are true.
The axioms state that Wit is a function assigning a variable x to each clause
c, such that either x occurs positively in c, in which case it must be true, or it

21

occurs negatively in c, in which case it must be false. In other words, x is a
witness that the clause c is satisfied. By definition, SpecF [Asgn] is pfp over
CNF, and it obviously expresses satisfiability.

Theorem 22 A decision problem on Str is in NP iff it is expressible by a pfp data
specification over Str.

Proof. Let L ∈ NP and let M be the non-deterministic Turing machine decid-
ing L. Lemma 20 gives us a data specification X := SpecF [TMM] of finite
presentation over Str expressing L, but it is not propositional because TMM
adds two sorts to Str. However, this time we know that the running time of M
is bounded by a polynomial P, which we may suppose to have non-negative
integer coefficients. Hence, still by Lemma 20, it is enough to look for finite
models of TMM such that T and S are equal to P(N) (remember that the size
of N is the input size). But P(N) is expressible within Str itself, so S and T
are not needed! Let us formalize this.

Let T be the extension of Str adding only the chain sorts S, T, and let
U := SpecF [T]. Notice that the finite models of T encode triples (x, S, T)
where x ∈ {0, 1}∗ and S, T are finite chains. We have inclusions F [Str] →
F [T] → F [TMM], so, reversing arrows, the structure map X → Str factors
through U, and p : X → U (corresponding to the second inclusion) is pfp.
Observe that Γp maps a finite model of TMM, that is, an accepting run of M,
to the triple (x, S, T), where x is the input of the run and S, T are chains of
length corresponding to the space and time of the run.

Let now f : F [T] → F [Str] be the logical functor mapping N, ≤N and X to
“themselves” in F [Str], and mapping S and T to P(N). By Lemma 7, P(N) is
still a chain object, so f may map the chain structures of S and T to the chain
structure of P(N). Notice that Γ f maps a binary string x to (x, CP(|x|), CP(|x|)),
where Cn is the chain of length n.

Now, by Lemma 19, base change along the above-defined f : Str → U
yields Y := X ×U Str which is pfp over Str. We contend that im Y = L. Since
Γ preserves pullbacks, we know that an object of ΓY is a pair (v, x) such that
v ∈ ΓX, x ∈ ΓStr and Γ(p)(v) = Γ(f)(x), and that Γ(f ∗p) projects (v, x) to
x. But then x ∈ im ΓY iff there exists an accepting run of M on input x using
time and space P(|x|), which holds exactly when x ∈ L.

For the converse implication, if X is pfp over Str, then by definition
X ≃ SpecF [Str + X] with X finite and adding no sorts, and L := im X is
equal to the image of the canonical projection Mod(Str + X) → Mod(Str). A
finite model of Str + X, which has a unique sort N, consists of a binary string
of length n plus a constant number, say m, of relations of size nk1 , . . . , nkm

(where ki are the arities of the relations), verifying a finite number of prop-
erties expressible by first-order formulas. Each of these may be deterministi-
cally checked in linear time in the size of the model. So x ∈ L iff there exists
a certificate of size polynomial in the length of x which may be verified in
deterministic polynomial time, whence L ∈ NP. □

Corollary 23 A decision problem on Str is in NP iff it is expressible by a CNFfp data
specification over Str.

22

Proof. From left to right, it is enough to scan the proof of Lemma 20 and
observe that, once the sorts S and T are replaced by a polynomial in N, ev-
ery axiom is equivalent to a formula of the required shape. The converse is
immediate: CNFfp implies pfp. □

Theorem 24 (Cook [Coo71], Levin [Lev73]) Satis NP-complete.

Proof. By Theorem 22, SpecF [Asgn] shows that Sat ∈ NP, so we need to
prove that every problem in NP reduces to Sat. For this, we start by observing
that every CNFfp data specification X over S induces a morphism φX : S →
CNF, defined as follows.

Let S = SpecB and pick any X such that X ∼= SpecB[X]. Let {Ri ↣ A⃗i}i∈I
and {ψj}j∈J (with I and J finite) be the relation symbols and axioms of X,
respectively, with x⃗j : B⃗j the free variables of ψj. Defining a morphism S →
CNF means defining a logical functor g : F [CNF] → B, which amounts to
choosing two objects gV, gC of B and two subobjects gPos, gNeg ↣ f V × f C.
We first set

gV := ∑
i∈I

A⃗i gC := ∑
j∈J

B⃗j.

Now, every occurrence of Ri in ψj determines a function from the variable
positions of Ri to x⃗j. For example, if Ri = R occurs as R(x, x, y) and x⃗j =

xA, yB, zC, then the function maps the first and second positions to x and the
third position to y. Reading this function backwards, we get a morphism
t : B⃗j → A⃗i composed of diagonal, terminal and identity maps. In the above
example, the diagonal on A, the identity on B and the terminal map on C.
Then, the pairing ⟨t, idBj⟩ : B⃗j ↣ A⃗i × B⃗j is always a monomorphism, because
it is composed of diagonal and identity maps (the terminal map on C paired
with idC gives idC). Let now Posij (resp. Negij) be the subobject of A⃗i × B⃗j
obtained by taking the copairing of all the subobjects defined above for every
positive (resp. negatively) occurrence of Ri in ψj (hence absence of occurrences
gives empty subobject). By taking the coproduct of all Posij, we get

gPos := ∑
(i,j)∈I×J

Posij ↣ ∑
(i,j)∈I×J

A⃗i × B⃗j = gV × gC,

(by distributivity) and similarly for gNeg, using the Negij.
We are left with proving that (ΓφX)

−1(Sat) = im X, i.e., that, for all x ∈ ΓS,
x ∈ im X iff the CNF ϕx := φX ◦ x is satisfiable. Given x : ∗ → S, base change
of X along x gives a CNFfp data specification Φx over ∗. The key fact at
this point, which may be shown by a direct calculation, is that ϕx is a CNF
presenting Φx in the sense described before Lemma 19. Then, x ∈ im X iff x
factors through the structure map of X via an arrow ∗ → X (by definition) iff
there is an arrow ∗ → Φx (by definition of pullback) iff ϕx is satisfiable (by the
remark before Lemma 19). This suffices because, by Corollary 23, CNFfp data
specifications cover all of NP. □

23

3.5 The Classes P and NL

Theorem 25 A decision problem on Str is in P iff it is expressible by an aHfp data
specification over Str.

Proof. For the implication from left to right, we proceed exactly as in the
proof of Theorem 22 and observe that, once the sorts S and T are replaced
by P(N), all the additional axioms are Horn. In fact, by inspecting the proof
of Lemma 20, we see that the only non-Horn axioms are the totality axioms
of the orders on S and T (not explicitly written in the proof) and axioms 6.
The first ones disappear because the order on P(N) is defined in terms of
the order on N, and the second are Horn in this case because the machine is
deterministic, and therefore all disjunctions are unary.

For the converse implication, let F [X1, . . . , Xn] be the syntactic category of
the theory consisting of n propositional atoms Xi ↣ 1, with no axiom, and let
An := SpecF [X1, . . . , Xn]. Observe that ΓAn ∼= {0, 1}n, the discrete category
whose objects are binary strings of length n: a finite point ∗ → An is, dually,
a choice of subobject of the singleton (a truth value) for each Xi, so we may
regard Xi to be the i-th bit of a string. Now, for any chosen total order ⪯ on
the object [n] := 1 + · · ·+ 1 in F [X1, . . . , Xn], we may define a logical functor
F [Str] → F [X1, . . . , Xn] by sending N to [n], ≤ to ⪯ and X to (X1 . . . Xn). This
corresponds to a morphism ιn : An → Str such that Γιn sends x ∈ {0, 1}n to
the model of Str representing x with bit positions totally ordered by ⪯.

Let now X be aHfp over Str, and let Φn := X ×Str An be the base change
along ιn. By definition, Lemma 19 and because pullback commutes with com-
position, Y is Horn fp over some arithmetic data specification An over An.
Since the only totally ordered objects of F [X1, . . . , Xn] are finite sets, An can-
not add anything to An, so Φn is equivalent to a Horn fp data specification
over An. Then, by the remarks preceding Lemma 19, Φn is presented by
a Horn CNF among whose variables we have X1, . . . , Xn, and, given x of
length n, x ∈ im X iff Φn is satisfiable. How large is Φn? As a data spec-
ification over Str, X is equivalent to SpecF [Str][X] for some X. By duality,
Φn = Spec(F [Str][X]⊗F [Str] F [X1, . . . , Xn]) which, by Lemma 13, is equiva-
lent to SpecF [ιn(X)]. Now, apart from arithmetic predicates and their axioms,
X contains finitely many relation symbols Rj ↣ Nkj and axioms of the form

χh := φh ∨
∨

i∈Ih

αh
i

where φh is a formula of Str plus arithmetic and αh
i vary over the Rj, all of

them negated, except possibly one. Under ιn, each Rj yields nkj propositional
variables Ra⃗

j with a⃗ ∈ [n]kj , representing whether the interpretation of Rj in
the model x holds or not on a⃗, and each χh yields a formula equivalent to

χ̂h :=
∧

a⃗∈Dh

∨
i∈Ih

αh
i (⃗a),

where Dh is the set of those a⃗ not belonging to the interpretation of φh in the
model x, and αh

i (⃗a) denotes Ra⃗
j (or ¬Ra⃗

j) if αh
i = Rj (or ¬Rj). Notice that, as

24

expected, each χ̂h is a Horn CNF, and their conjunction, which presents Φn,
is still a Horn CNF of size polynomial in n.

Since computing Φn may be done in deterministic polynomial time (in fact,
even in deterministic logarithmic space) in n, and since solving a Horn CNF
may be done in time linear in the size of the CNF [DG84], we have im X ∈ P.
□

The acquainted reader will have recognized in the above proof a rephras-
ing, using categorical language, of Grädel’s argument for his descriptive char-
acterization of P in terms of second-order Horn formulas [Grä92]. In light of
this, the following is not surprising:

Theorem 26 A decision problem on Str is in coNL iff it is expressible by an aKfp
data specification over Str.

Proof. The implication from left to right is quite technical and we omit it for
conciseness. Instead, we show how to express the archetypal coNL-complete
problem, namely the complement of reachability for directed graphs. This
asks, given a non-empty directed graph and two nodes s and t, whether
there is no path from s to t. Directed graphs with two singled-out nodes
may be expressed by the theory stGrph extending Grph with two relation
symbols S, T ↣ N which are axiomatized to be singletons. Let stGrph :=
SpecF [stGrph] and let stFlow be the theory extending stGrph with one rela-
tion symbol C ↣ N and axioms

¬S(s) ∨ C(s) ¬E(x, x′) ∨ ¬C(x) ∨ C(x′) ¬T(t) ∨ ¬C(t).

SpecF [stFlow] is obviously Krom over stGrph. The finite models of stFlow
are 2-colored graphs, with C specifying the color. The axioms force the color-
ing to have the following properties: node s is colored; if a node x is colored
and there is an edge x → x′, then x′ too is colored; node t is not colored. It
follows that a graph is colorable iff there is no path from s to t.

For the converse, we apply the same argument as in the proof of the right-
to-left implication of Theorem 25, but this time the CNF Φn obtained (in deter-
ministic logarithmic space) by change of base along ιn : An → Str is a 2-CNF,
the satisfiability of which is well-known to be in coNL [Pap94]. □

3.6 Non-Uniform Complexity Classes

Lemma 27 Let Ord := SpecF [Ord]. Every numeric morphism S′ → S is the
pullback of some numeric morphism X → Ordk along some morphism S → Ordk.

Proof. Let us first describe Ordk. Let O := F [Ord]. By duality, the product
of k copies of Ord in Data is the coproduct of k copies of O in BoolLext, i.e.,
O ⊗F · · · ⊗F O. By definition, this is F [T] where T is the theory containing
k totally ordered sorts N1, . . . , Nk and nothing else.

Let S′ be numeric over S, with S = SpecB and S′ = SpecB[X]. By def-
inition, X adds relations on powers of finitely many totally ordered objects
A1, . . . , Ak of B. We may therefore define a morphism S → Ordk as the dual
of the logical functor f : F [T] → B mapping Ni and its order to Ai and its

25

order. We then define Y to have the same relations as X but over Ni instead
of Ai, and the same axioms, inducing a numeric F [T]-algebra F [T][Y]. By
construction, Y = f (X), so we conclude by Lemma 13. □

Theorem 28 A decision problem on Str is in P/poly iff it is expressible by a nuHfp
data specification over Str.

Proof. Let M be a deterministic polynomial-time Turing machine with ad-
vice deciding a language in P/poly. We may see M as a machine with two
input tapes, one for the actual input and one for the advice. We already know
from Theorem 25 how to build an Hfp morphism encoding a deterministic
polynomial-time Turing machine with a single input tape. Extending this to
two input tapes is straightforward, so we only need to encode the advice.
Suppose that this is of size nk where n is the input size. We define Str′ ex-
tending Str with one relation symbol Adv ↣ Nk, axiomatized as follows. Let
γn(x1, . . . , xn) := Z(x1) ∧ S(x1, x2) ∧ · · · ∧ S(xn−1, xn) ∧ Max(xn). Then, for
each n ∈ N we include in Str′ the following axiom:

(∃⃗z.γn (⃗z)) ⇒
∧

y⃗∈{x1,...,xn}k

(γn(x⃗) ⇒ ϵy⃗Adv(⃗y)),

with ϵy⃗ standing for either ¬ or nothing, according to whether the bit of
the advice at position y⃗ is 0 or 1. For example, if we want to encode the
fact that the advice for length n starts with 1, we use the clause γn(x⃗) ⇒
Adv(x1, . . . , x1).

A finite model of Str′ represents a pair of binary strings (x, a), with x
of arbitrary length n and a of length nk: the bits of x are specified by X,
those of a by Adv. Observe that ∃x⃗.γm holds exactly when m = n, and the
consequent of the m-th axiom specifies the bits of a for length m. By definition,
Str′ := SpecF [Str′] is numeric over Str. We precompose its structure map
with the Hfp morphism X → Str′ encoding M and we are done.

Let now X be nuHfp over Str. By definition, the structure map of X de-
composes as b ◦ h with h : X → S Hfp and b : S → Str numeric. Let L be
the problem on S expressed by h. Given x : ∗ → Str of length n, x ∈ im X
iff x = b ◦ v for some v : ∗ → S such that v ∈ L. We claim that v = (x, a)
with a of size polynomial in n and depending only on n (not on x). This is
enough to conclude that im X ∈ P/poly, because we already have L ∈ P from
Theorem 25.

By Lemma 27, b is the pullback of some numeric b0 : Y → Ordk along
some f : Str → Ordk. Let us write Ordk = SpecOk, so that Y ≃ SpecOk[X] for
some X as required by numeric morphisms. Since Γ preserves pullbacks, the
objects of ΓX (which are the morphisms like v above) are pairs (x, a) with x
an object of ΓStr and a an object of ΓY, such that Γ f (x) ∼= Γb0(a). Now, Γ f (x)
is a tuple of totally ordered sets (A1, . . . , Ak), and the isomorphism says that
these are in bijection with the totally ordered sets on which the relations of
X are defined. The Ai are definable in Str, so, if n is the length of x, they
are sets of tuples of positions of x of size bounded by nm, for some fixed m
depending on f . On the other hand, a consists of a finite number of subsets
R ⊆ AqR

iR
, one for each relation symbol of X. The fact that Γb0 is invertible,

26

as required by numeric morphisms, means that these R depend only on the
sets Ai, not on x, because a must be reconstructed from (A1, . . . , Ak). So a
consists of a finite number of subsets of tuples of positions of x whose size is
bounded by nmq, where q is the maximum arity of the relation symbols of X.
This information may be encoded in a binary string of length polynomial in
n, and, as we observed, it depends only on n and not on x, as claimed. □

It is not hard to see that the same argument works with propositional and
Krom morphisms in place of Horn morphisms, yielding characterizations of
NP/poly and NL/poly.

4 Perspectives

Characterizing complexity classes is an important first step but we should
go further. Descriptive complexity has well-known tools, taking the form of
various pebble games [Imm99], allowing one to establish lower bound results.
These have been reformulated categorically [ADW17, DJR21, AR23]. Knowing
if and how these reformulations interface with our work is an interesting
question for the future.

The most intriguing aspect of our work, however, is that Data is defined
as the dual of a category of “algebraic” objects. Dualities of the form alge-
bra/geometry or logic/topology permeate mathematics, from Stone duality
to the duality underlying algebraic geometry [Awo21, AJ21]. The latter is sur-
prisingly related to our approach. Indeed, acquainted readers may have no-
ticed that our terminology purposefully hints to the idea that we are doing al-
gebraic geometry with Boolean lextensive categories in place of commutative
rings. Ongoing work is showing that this is not just an analogy: we found a
wider class of categories, which we call ultrarings, in which both commutative
rings and Boolean lextensive categories appear as special cases. Remarkably,
the (embedding of the) category F is the initial ultraring and corresponds to
Durov’s definition of the “field with one element” F1 [Dur07]. In light of this,
this paper may be said to be working in the context of “idempotent affine
geometry over F1”. . . but this is a story to be developed in another paper.

Acknowledgments

The second author would like to thank Tom Hirschowitz, Morgan Rogers
and Carlos Simpson for stimulating and insightful discussions concerning this
work.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern
Approach. Cambridge University Press, 2009.

[Abr22] Samson Abramsky. Structure and power: an emerging landscape.
Fundam. Informaticae, 186(1-4):1–26, 2022.

27

[ADW17] Samson Abramsky, Anuj Dawar, and Pengming Wang. The peb-
bling comonad in finite model theory. In Proceedings of LICS, pages
1–12. IEEE Computer Society, 2017.

[AJ21] Mathieu Anel and André Joyal. Topo-logie. In New Spaces for Math-
ematics and Physics, pages 155–257. Cambridge University Press,
2021.

[AR23] Samson Abramsky and Luca Reggio. Arboreal categories: An ax-
iomatic theory of resources. Log. Methods Comput. Sci., 19(3), 2023.

[AS21] Samson Abramsky and Nihil Shah. Relating structure and power:
Comonadic semantics for computational resources. J. Log. Comput.,
31(6):1390–1428, 2021.

[Awo21] Steven Awodey. Sheaf representations and duality in logic. In
Joachim Lambek: The Interplay of Mathematics, Logic, and Linguistics,
pages 39–57. Springer, 2021.

[CLW93] Aurelio Carboni, Stephen Lack, and R.F.C. Walters. Introduction
to extensive and distributive categories. Journal of Pure and Applied
Algebra, 84(2):145–198, 1993.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In Proceedings of the 3rd Annual ACM Symposium on Theory of Com-
puting (STOC), pages 151–158. ACM, 1971.

[CP20] Thomas Colcombet and Daniela Petrisan. Automata minimization:
a functorial approach. Log. Methods Comput. Sci., 16(1), 2020.

[DG84] William F. Dowling and Jean H. Gallier. Linear-time algorithms
for testing the satisfiability of propositional horn formulae. J. Log.
Program., 1(3):267–284, 1984.

[DJR21] Anuj Dawar, Tomás Jakl, and Luca Reggio. Lovász-type theorems
and game comonads. In Proceedings of LICS, pages 1–13. IEEE, 2021.

[Dur07] Nikolai Durov. New approach to arakelov geometry, 2007.

[Fag74] Ronald Fagin. Generalized first-order spectra and polynomial-time
recognizable sets. In Complexity of Computation, SIAM–AMS Pro-
ceedings, volume 7, pages 43–73, 1974.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective.
Cambridge University Press, 2008.

[GPR20] Mai Gehrke, Daniela Petrisan, and Luca Reggio. Quantifiers
on languages and codensity monads. Math. Struct. Comput. Sci.,
30(10):1054–1088, 2020.

[Grä92] Erich Grädel. Capturing complexity classes by fragments of second-
order logic. Theor. Comput. Sci., 101(1):35–57, 1992.

28

[Imm99] Neil Immerman. Descriptive complexity. Graduate texts in computer
science. Springer, 1999.

[Jak99] Bart Jakobs. Categorical Logic and Type Theory. Elsevier, 1999.

[Joh02] Peter T. Johnstone. Sketches of en Elephant. A Topos Theory Com-
pendium. Volume 2. Oxford University Press, 2002.

[Law63] William Lawvere. Functorial Semantics of Algebraic Theories. Ph.d.
thesis, Columbia University, 1963.

[Law70] William Lawvere. Quantifiers and sheaves. In Actes du Congres
International Des Mathématiciens, Tome 1, pages 329–334, 1970.

[Lev73] Leonid Levin. Universal search problems. Problems of Information
Transmission, 9(3):115–116, 1973. (In Russian).

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-
Wesley, 1994.

29

