
Church Meets Cook and Levin

Damiano Mazza
CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité

Damiano.Mazza@lipn.univ-paris13.fr

Abstract
The Cook-Levin theorem (the statement that SAT is NP-complete)
is a central result in structural complexity theory. Is it possible to
prove it using the lambda-calculus instead of Turing machines? We
address this question via the notion of affine approximation, which
offers the possibility of using order-theoretic arguments, in con-
trast to the machine-level arguments employed in standard proofs.
However, due to the size explosion problem in the lambda-calculus
(a linear number of reduction steps may generate exponentially
big terms), a naive transliteration of the proof of the Cook-Levin
theorem fails. We propose to fix this mismatch using the author’s
recently introduced parsimonious lambda-calculus, reproving the
Cook-Levin theorem and several related results in this higher-order
framework. We also present an interesting relationship between ap-
proximations and intersection types, and discuss potential applica-
tions.

Categories and Subject Descriptors F.4.1 [Mathematical logic
and formal languages]: Mathematical logic—Lambda calculus and
related systems; F.1.3 [Computation by abstract devices]: Com-
plexity measures and classes—Reducibility and completeness

1. Introduction
The Cook-Levin theorem and its avatars. The Cook-Levin theo-
rem is the statement that SAT (the satisfiability problem for propo-
sitional formulas) is NP-complete. The key to its proof is a sim-
ple and yet deep observation which complexity theorists usually
describe with the slogan “computation is local” (Arora and Barak
2009). In fact, the core of the proof of the Cook-Levin theorem may
be reused almost identically to show that:
1. CIRCUIT SAT is NP-complete;1

2. CIRCUIT VALUE is P-complete;2

3. P has polysize circuits.3

1 CIRCUIT SAT is the following problem: given a Boolean circuit C with k
inputs, does there exist x ∈ {0, 1}k such that C(x) = 1? The complexity
parameter is the size of C.
2 CIRCUIT VALUE is the following problem: given a Boolean circuit C
whose inputs are all fixed, is its output 1?
3 Formally: for every L ∈ P, there exists a family (Cn)n∈N of Boolean
circuits and a polynomial p s.t. the size of Cn is O(p(n)) and Cn(x) = 1
iff x ∈ L, for all x ∈ {0, 1}n, n ∈ N (i.e., the family decides L).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

LICS ’16, July 05 - 08, 2016, New York, NY, USA
Copyright c© 2016 ACM ISBN 978-1-4503-4391-6/16/07. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2933575.2934541

If we take the locality of computation to be the essence of the NP-
completeness of SAT, then any one of the above results could be
called “the Cook-Levin theorem”.

Let us look more closely at the proof of these results. A de-
terministic Turing machine whose runtime is bounded by p(n) in-
duces, on inputs of size n, a square array ai,j of size p(n)2 con-
sisting of the “space-time” of the execution of the machine, the i-th
line representing the contents of the tape at step i, plus information
about the position of the head and the state. The key observation
now is that line i+ 1 is induced by line i by means of purely local
rules: ai+1,j is entirely determined by ai,j−1, ai,j and ai,j+1. This
dependency is implementable by a constant-size Boolean circuit
(depending on the machine). Therefore, each n ∈ N induces a cir-
cuit C of size O(p(n)2) with n inputs and 1 output (which isolates
the answer of the machine), such that, given x ∈ {0, 1}n, comput-
ing the value of C with its inputs set to the bits of x is tantamount
to deciding acceptance/rejection of x.

Now, if p is a polynomial, the size of C is also polynomial,
hence P has polysize circuits. Furthermore, the description of C
may be given in logarithmic space (or even less), which shows the
P-hardness of CIRCUIT VALUE. From here, it is not difficult to infer
the NP-hardness of CIRCUIT SAT. Finally, the NP-hardness of SAT
follows from a simple reduction from CIRCUIT SAT.

Church meets Cook and Levin (and they don’t get along). Let us
try to look at the Cook-Levin theorem from a higher-order perspec-
tive. The first thing we need to do is to find an adequate notion of
“higher-order Boolean circuit”. We believe that this should be taken
to coincide with linear λ-terms (multiplicative proof nets would be
even better, but let us stick to λ-calculus). There are several reasons
for this choice: like Boolean circuits, linear λ-terms may only com-
pute finite functions; like Boolean circuits, the (sequential) runtime
of a linear λ-term coincides with its size; finally, Boolean circuits
may be seen as morphisms of a free symmetric monoidal category
(in fact, a PROP), while (normal) linear λ-terms are morphisms in
a free closed symmetric monoidal category.

In fact, for technical reasons it is better to consider affine
λ-terms (erasing is permitted, not duplication), which are a mi-
nor variant still adhering to the above picture. Let us therefore take
the following “equation” as our starting point:

affine λ-terms
λ-terms

=
Boolean circuits
Turing machines

The relationship between affine λ-terms and general λ-terms
may be refined by formalizing the intuition (already present in
(Girard 1987)) that the affine λ-calculus is “dense” in the full
λ-calculus. This is the object of (Mazza 2012), which may be
informally summarized as follows:
• there is a notion of affine approximation t @M of a λ-term by

affine terms t, such that M may be seen as the limit of its affine
approximations;
• reduction is continuous: if M →∗ N , then for all u @ N there

exists t @M such that t→∗ u.

Therefore, in perfect analogy with the fact that a Turing machine
induces a family of circuits, we have that a higher-order program
induces a family of higher-order circuits. The upshot is that this
family is the result of a formal notion of continuous approximation,
replacing the intuitive notion available with Turing machines.

Can we go further? Can we prove the Cook-Levin theorem or
one of its avatars? First of all, it is fair to replace CIRCUIT VALUE
with its higher-order version, let us call it AFFINE NORMAL FORM:
given an affine λ-term, does it reduce to the Church Boolean 1? We
could obtain a higher-order version of CIRCUIT SAT in a similar
way, but let us stop and state already two higher-order avatars of
the Cook-Levin theorem which we would like to prove:
1. AFFINE NORMAL FORM is P-complete;
2. polystep λ-terms induce polysize higher-order circuits.

Here is where we run into trouble. Indeed, (2) is just false in
general: approximating λ-calculus computations of linear length
may require exponentially big terms. Retrospectively, this was to
be expected: computation in the λ-calculus is not local, the size
of terms may grow exponentially with reduction, as in the reducts
of DDA where D := λd.λa.dd(aa). For what concerns (1), it
is formally true: AFFINE NORMAL FORM is obviously in P and
(Mairson 2004) showed how to logspace-reduce CIRCUIT VALUE
to AFFINE NORMAL FORM (morally, this is because higher-order
circuits subsume usual, first-order circuits). However, the failure of
(2) makes it impossible to prove a P-hardness result in the style
of the Cook-Levin theorem, i.e., we do not know how to prove the
P-completeness of AFFINE NORMAL FORM without knowing the
existence of another non-trivial P-complete problem.

Enter parsimony. As stated above, λ-terms are limits of affine
terms. In (Mazza 2014), we found a condition on such limits ensur-
ing their good behavior with respect to approximating reductions.
This led to the parsimonious λ-calculus, or pΛ, recently developed
in (Mazza and Terui 2015; Mazza 2015). In logical terms, pΛ corre-
sponds to a variant of (affine) linear logic in which the exponential
modality verifies the isomorphism !A ∼= A ⊗ !A. Its untyped ver-
sion is Turing-complete and may be taken as the ground model in
our higher-order analysis of the Cook-Levin theorem.

The main achievement of this paper is to reconcile, so to speak,
Church with Cook and Levin. Indeed, we reprove the Cook-Levin
theorem and all of its avatars mentioned above within the higher-
order framework provided by pΛ. With respect to Turing machines,
λ-calculi have a superior algebraic structure and our proofs fully
exploit it, relying on standard order-theoretic properties such as
bounded completeness and Scott-continuity.

For example, let us sketch the proof that P has polysize higher-
order circuits (i.e., item (2) above, corresponding to Theorem 13
below). We denote by (`Λ,v) the poset of affine λ-terms under
the approximation ordering, which extends to the approximation
relation @ on `Λ × pΛ (remember that the terms of pΛ may
be regarded as suprema of certain directed sets of `Λ). The key
elements are:
1. monotonicity of reduction in `Λ (Lemma 3.1): given t ∈ `Λ s.t.
t→∗ u, for all t′ ∈ `Λ s.t. t v t′, we have t′ →∗ u′ s.t. u v u′
(i.e., over-approximations do not lose information);

2. bounded completeness (Lemma 10): if t, t′ @ M , then their
supremum t t t′ exists;

3. rank and size bounds: there is a structural parameter of terms of
`Λ, called rank, which verifies the following:
• rk(t t t′) = max(rk(t), rk(t′)) (Lemma 1);
• for fixed M , the size |t| of t @ M is polynomial in rk(t)

(Lemma 8);
4. (quantitative) Scott-continuity of reduction in pΛ (Proposi-

tion 7): given M ∈ pΛ s.t. M → N , for all u @ N there
exists t @ M s.t. t → u and rk(t) ≤ rk(u) + 1 (i.e., to know

an affine approximation of the result, an affine approximation
of the initial term suffices, whose rank increases by a constant);

5. discreteness of data: Church encodings of binary strings and
Booleans in pΛ are actually terms of `Λ and admit themselves
as their only approximation. Moreover, their rank is 0.
Let now M ∈ pΛ decide a language in polynomially many

reduction steps, that is, for all w ∈ {0, 1}∗, Mw →l bw with
l = O(|w|c) for some constant c (w is the Church encoding of w
and bw is a Church Boolean). By continuity (4) and discreteness
(5), there exists vw @ Mw s.t. vw →l bw and rk(vw) = O(|w|c).
The definition of approximation (Fig. 5) implies that vw = tww
with tw @M ; the definition of rank (Definition 1) and discreteness
(5) give us rk(tw) = rk(vw). For n ∈ N, let tn :=

⊔
|w|=2n tw,

which exists by bounded completeness (2). Moreover, by the rank
bound (3), rk(tn) = O(nc). Observe now that, since tn is a least
upper bound, we have tw v tn @ M for all w ∈ {0, 1}n. The
first relation, by monotonicity (1), assures us that tnw →∗ bw
for all w ∈ {0, 1}n, i.e., tn decides the same language as M on
strings of length n; the second relation combined with the size
bound (3) gives us that |tn| = O(nk) for some constant k. Hence,
a language decided by a polystep parsimonious term is also decided
by a family of affine terms of polynomial size, as desired.

We hope that the above proof conveys the conceptual improve-
ment offered by the λ-calculus approach: the low-level simulation
of a Turing machine by a Boolean circuit is replaced by a high-
level argument based on continuity and compatible suprema. Fur-
thermore, it turns out that approximations are related to a certain
system of intersection types, where Scott-continuity corresponds to
subject expansion. This is an interesting perspective that we men-
tion at the end of the paper (Sect. 6).

Why the Cook-Levin theorem? The present work is motivated
by research in implicit computational complexity (ICC), which
is about replacing clocks with certificates: instead of defining a
complexity class C by means of explicit resource bounds, one
seeks a (decidable) property ΦC of programs such that ΦC(P)
certifies that the program P decides a language in C (soundness)
and, conversely, given L ∈ C there exists at least one P deciding
L such that ΦC(P) holds (completeness, which makes ICC non-
trivial). Seminal examples of this methodology are (Bellantoni and
Cook 1992; Leivant and Marion 1993; Girard 1998; Jones 1999).

Note that the soundness and completeness of ΦC with respect
to C morally correspond to membership to C and C-hardness of a
C-complete problem, so ICC may also be understood as offering an
alternative to the notion of complete problem, which is one of the
hinges of traditional structural complexity theory. However, in this
respect ICC has not been nearly as successful as complete prob-
lems: despite its fruitful applications to static analysis, from the
standpoint of computational complexity ICC is virtually useless.
This paper may be seen as a first attempt at uplifting the proof-
theoretic roots of ICC beyond the mere characterization of com-
plexity classes, towards an understanding of fundamental complex-
ity phenomena which is complementary (and, hopefully, equally in-
teresting) to that offered by traditional structural complexity. Given
the connection between implicit characterizations and complete
problems, it seemed natural to turn our attention to the primordial
completeness result.

Outline. The rest of the paper is articulated as follows. In Sect. 2
we introduce the calculus `Λ of affine terms, as well as the notion of
approximation for usual λ-terms, concluding that the Cook-Levin
theorem cannot be reformulated in this context. Sect. 3 is where we
introduce the parsimonious λ-calculus and prove the main approx-
imation properties, which are used in Sect. 4 to prove the higher-
order version of all the avatars of the Cook-Levin theorem men-
tioned above. In Sect. 5 we go back to the first-order world and

prove the actual Cook-Levin theorem, i.e., we show how the results
of Sect. 4 may be used to infer that CIRCUIT SAT is NP-complete.
It is known since the work of Terui (Terui 2004) that proof nets
offer a convenient bridge between Boolean circuits and the higher-
order setting, so we follow the same path. The heart of Sect. 5 is
a compilation of higher-order circuits, under the guise of Boolean
proof nets, into usual circuits, which serves as the reduction needed
to show NP-hardness of CIRCUIT SAT. This compilation is of in-
dependent interest because it avoids the non-standard reachability
gate employed by Terui (although his results provide a finer analy-
sis of parallelism). Unsurprisingly, it is a “machine-level” construc-
tion, employing no order-theoretic property. Therefore, to be fair,
our λ-calculus-based proof of the Cook-Levin theorem still con-
tains low-level arguments; however, they are only used in building
a reduction, i.e., the conceptual part of the theorem (the existence
of a non-trivial NP-complete problem) is entirely abstract.

2. The Polyadic Affine Calculus
Terms. We fix two disjoint, countably infinite sets of affine vari-
ables, ranged over by a, b, c, and exponential variables, ranged over
by x, y, z. The terms of the polyadic affine calculus belong to the
following grammar:

t, u ::= a | λa.t | tu | xi | !⊥ | t :: u | t[!x := u]

There are two binders: the usual λa and t[!x := u], which binds x
in t. This is indeed a compact form of the more traditional notation
let !x = u in t. The set of free variables of t is denoted by fv(t). The
notion of α-equivalence is defined as usual and terms are always
considered up to it. We also sometimes appeal to Barendregt’s
convention, under which fv(t) and the set of bound variables of
t are disjoint and distinct binders of t bind distinct variables.

A proper term must meet the following linearity restriction:
modulo Barendregt’s convention, every affine variable appears at
most once and each occurrence of exponential variable appears
with a distinct index. We will only ever consider proper terms, the
set of which we denote by `Λ. When putting together two proper
terms t, u, forming e.g. tu, we will always tacitly assume the result
to be proper.

The affine part of `Λ is standard: it is a term language for the
proofs of intuitionistic multiplicative affine logic with the connec-
tive(only (i.e., without ⊗). The exponential part essentially cor-
responds to adding a⊗ connective of arbitrary arity. We use the no-
tation 〈u1, . . . , un〉 for the term u1 :: (u2 :: · · · :: (un :: !⊥) · · ·),
which we call a sequence of length n.

DEFINITION 1 (Size, depth, rank, homogeneity). The size of t ∈
`Λ, denoted by |t|, is the number of nodes in its syntactic tree,
counting leaves of the form xi as of size i+ 1.

The depth of t, denoted by d(t), is the maximum nesting level of
the sequences it contains, e.g. d(〈x1, 〈y0〉〉) = 2.

The rank of t, denoted by rk(t), is the length of the longest
sequence appearing in t. We say that t is homogeneous if all of
its sequences have the same length. If t contains no sequence, it is
homogeneous of every rank.

Reduction. A context, generically denoted by C, is a term with
exactly one occurrence of a special constant called hole, denoted
by 〈·〉. We write C〈t〉 for the term obtained by replacing 〈·〉 with t
in C. We will also employ a kind of generalized context, in which
the hole appears at most once (instead of exactly once). We call
such contexts affine and denote them by A. Thus, when we write
t = A〈x0〉, we mean that x0 may or may not appear (once) in t.

A special class of contexts is that of substitution contexts,
ranged over by the symbol [−] and generated as follows:

[−] ::= 〈·〉 | [−][!x := t]

Because of their particular shape, for substitution contexts we use
the notation t[−] instead of [−]〈t〉.

Given k ∈ Z, we write tx+k to denote the term obtained from t
by replacing every free occurrence xi with xi+k. When k = 1 or
k = −1, we write tx++ and tx−−, respectively. The notations t±k,
t++ and t−− are defined similarly, except that all free occurrences
of exponential variables are re-indexed. The same notations also
apply to contexts.

The (one step) reduction relation on `Λ is defined in Fig. 1,
where Barendregt’s convention is assumed. Reduction in `Λ triv-
ially confluent, because of affinity: the absence of duplication im-
mediately implies that→= (the reflexive closure of reduction) has
the diamond property, from which confluence of→∗ (the reflexive-
transitive closure of reduction) follows by standard diagram chas-
ing. Also observe that the size of terms strictly decreases by reduc-
tion, so every term of `Λ (strongly) normalizes in a number of steps
bounded by its size.

Ordering. We introduce a binary relation v on `Λ by means of
the derivation system of Fig. 2. Intuitively, t v t′ iff t is obtained
from t′ by replacing some subterms of the form u :: v with !⊥.

LEMMA 1. (`Λ,v) is a finitely bounded-complete poset, i.e., if
F ⊆ `Λ is finite, non-empty and has an upper bound, then its
supremum

⊔
F exists. Moreover, rk(

⊔
F) = maxt∈F rk(t).

PROOF. Reflexivity, transitivity and antisymmetry of v are readily
proved by induction on derivations. The bounded completeness
property follows from the case in which which F has cardinality
2, so let t, t′ ∈ `Λ. We define t t t′ by induction on t:
• t = a or t = xi: then t t t′ := t if t′ = t, otherwise it is

undefined;
• t = λa.t1: then t t t′ = λa.(t1 t t′1) if t′ = λa.t′1, otherwise

it is undefined;
• t = t1t2: then t t t′ := (t1 t t′1)(t2 t t′2) if t′ = t′1t

′
2, or

undefined otherwise;
• t = !⊥: then ttt′ := t′ if t′ = !⊥ or t′ = t′1 :: t′2, or undefined

otherwise;
• t = t1 :: t2: then t t t′ = t if t′ = !⊥, or t t t′ = (t1 t t′1) ::

(t2 t t′2) if t′ = t′1 :: t′2, or undefined otherwise;
• t = t1[!x := t2]: then t t t′ := t1 t t′1[!x := t2 t t′2] if
t′ = t′1[!x := t′2], or undefined otherwise.

An easy induction on t establishes that, if t t t′ is defined, then
rk(tt t′) = max{rk(t), rk(t′)}. It is also straightforward to show,
by induction on u, that whenever t, t′ v u, tt t′ and t′t t are both
defined and equal and t, t′ v t t t′ v u, proving that it is indeed
the supremum. �

The ordering relation may be extended to contexts by adding to
Fig. 2 a nullary rule deriving 〈·〉 v 〈·〉. In the following, we use
ξ, ξ′ to denote objects which may be either terms or contexts of `Λ.

LEMMA 2. 1. ξ v ξ′ implies fv(ξ) = fv(ξ′);
2. ξ v ξ′ iff ξx+i v (ξ′)x+i for every x and i ∈ N;
3. t v C′〈u′〉 iff t = C〈u〉 for some u v u′ and C v C′;
4. C〈u〉 v t′ iff t′ = C′〈u′〉 for some u v u′ and C v C′.

PROOF. A straightforward induction on derivations (points 1 and
2), on C′ (point 3) and on C (point 4). �

LEMMA 3 (Monotonicity and continuity). Let t ∈ `Λ and t→ u.
1. for all t′ s.t. t v t′, there exists u′ s.t. u v u′ and t′ → u′;
2. for all u′ s.t. u′ v u, there exists t′ s.t. t′ v t and t′ → u′.

PROOF. By definition, t = C〈t0〉 and u = C〈u0〉 with t0 and u0

matching the left and right hand side of one of the rules of Fig. 1.
Both points are proved by induction on C. The only interesting case

(λa.A〈a〉)[−]u→b A〈u〉[−]

A〈x0〉[!x := (u :: v)[−]]→! A
x−−〈u〉[!x := v][−]

t[!x := (!⊥)[−]]→w t[−] if x 6∈ fv(t)

Figure 1. Reduction rules for the polyadic affine calculus. Reduction is the closure of these rules under arbitrary contexts.

a v a
t v t′

λa.t v λa.t′
t v t′ u v u′

tu v t′u′ xi v xi !⊥ v !⊥ !⊥ v t :: u

t v t′ u v u′

t :: u v t′ :: u′
t v t′ u v u′

t[!x := u] v t′[!x := u′]

Figure 2. The ordering on `Λ. In the nullary rule deriving !⊥ v t :: u, t and u are arbitrary.

is C = 〈·〉, the rest is straightforward (using Lemma 2). Moreover,
we only prove point 1, because we never need point 2 and, actually,
we prove a very similar result with essentially the same proof in the
context of the parsimonious λ-calculus (Proposition 7).

The first case is t0 = (λa.A〈a〉)[−]v and u0 = A〈v〉[−].
Then, Lemma 2.4 gives us t′ = (λa.A′〈a〉)[−]′v′ with A v A′,
[−] v [−]′ and v v v′, so we conclude by setting u′ := A′〈v′〉[−]′

(using again Lemma 2.4).
The second case is t0 = A〈x0〉[!x := (v :: w)[−]] and u0 =

Ax−−〈v〉[!x := w][−]. Lemma 2.4 gives us t′ = A′〈x0〉[!x :=
(v′ :: w′)[−]′] with v v v′, w v w′, [−] v [−]′ and A v
A′. From this, we get Ax++ v (A′)x++ (Lemma 2.2) whence
Ax++〈v〉 v (A′)x++〈v′〉 (Lemma 2.4 again), so we concluding
by letting u′ := (A′)x−−〈v′〉[!x := w′][−]′.

The third (and last) case is t0 = v[!x := (!⊥)[−]] with x 6∈
fv(v) and u0 = v[−]. Lemma 2.4 gives us t′ = v′[!x := (!⊥)[−]′]
with [−] v [−]′, v v v′ and x 6∈ fv(v′) by Lemma 2.1, so it is
enough to set u′ := v′[−]′ to conclude. �

The proofs of the two parts of Lemma 3 look a lot like those
of the subject reduction (point 1) and subject expansion (point 2)
property of a type system. In fact, approximations and type systems
are related, as we will see in Sect. 6.

Approximating lambda-terms. Observe that the poset (`Λ,v)
is not a dcpo: typically, the chain !⊥ v 〈x0〉 v 〈x0, x1〉 v
〈x0, x1, x2〉 v · · · has no supremum. Suprema of directed sets of
polyadic affine terms may be presented as infinitary affine λ-terms,
in which usual (non-affine) λ-terms may be faithfully embedded.
This idea was developed in (Mazza 2012); here, we avoid infinitary
calculi and define approximations directly.

Let us denote by Λ the set of usual λ-terms.

DEFINITION 2 (Approximations in the λ-calculus). Given t ∈ `Λ
and M ∈ Λ, we say that t approximates M if the judgment t @M
may be derived from the rules of Fig. 3 (which also define an
auxiliary relation denoted by @!).

The proof of the following result, which we omit because it is
essentially a rephrasing of a result of (Mazza 2012), may also be
seen as a subject expansion property, in analogy with Lemma 3.2.

PROPOSITION 4 (Continuity of β-reduction). Let M ∈ Λ and let
M →β N . Then, for all u @ N , there exists t @ M such that
t→+ u.

So, if M →n
β N (reduction in n steps) with N containing no

applications (for instance, N is a Church Boolean) and u is the
unique approximation of N , we have that there exists t @ M such
that t →m u. Reduction in `Λ strictly reduces the size of terms,
so m ≤ |t|. But how big may |t| be, as a function of n? The
next definition, which is intentionally vague as to the meaning of

“calculus”, is meant to give a general setting to deal with the above
question.

DEFINITION 3. We say that a calculus (C,→) has affine approxi-
mations if there is an approximation relation @ with `Λ such that:
1. reduction is continuous (i.e., Proposition 4 holds);
2. each M ∈ C admits a homogeneous rank 1 approximation,

denoted by bMc1, of size linear in |M |;
3. for each M ∈ C, there is d ∈ N such that t @ M implies

d(t) ≤ d; the least such d is said to be the depth of M .
In the following, calculi will be assumed to have affine approxima-
tions.

We say that a calculus (C,→) enjoys polysize reduction if,
for every family of terms Mn ∈ C of depth O(1), there exists
k ∈ N such that, whenever Mn →l(n) Nn, we have |Nn| =
O(|Mn|l(n)k).

We say that a calculus (C,→) has polynomial approximations
if, for every family of terms Mn ∈ C of depth O(1), there exists
k ∈ N such that, whenever Mn →l(n) Nn, there exist tn @ Mn

such that tn →∗ bNnc1 and |tn| = O(|Mn|l(n)k).

Observe that the λ-calculus has affine approximations: the only
non-obvious point is (3), which is however not hard to verify (the
depth of M turns out to be equal to its applicative depth, e.g., the
depth of I(II) is 2).

PROPOSITION 5. If a calculus (C,→) has polynomial approxima-
tions then it enjoys polysize reduction.

PROOF. We assume that C has affine approximations (otherwise
the result is vacuously true) and prove the contrapositive. Suppose
that there is a sequence of terms Mn of depth O(1) such that,
for all k ∈ N, there are reductions Mn →l(n) Nn such that
|Nn| = ω(|Mn|l(n)k). Now, take any family tn @ Mn such that
tn →∗ bNnc1. Since reduction in `Λ shrinks the size, we have
|tn| ≥ |bNnc1| = Θ(|Nn|) = ω(|Mn|l(n)k). �

The λ-calculus does not enjoy polysize reduction: if we set
M = DDI with D := λd.λa.dd(aa), we have a constant family
M such that M →n

β Nn with |Nn| = Θ(2n) (Nn contains 2n

copies of I). Therefore, as anticipated above, the λ-calculus does
not have polynomial approximations.

Enjoying polysize reduction is interesting because, modulo
some mild assumptions on the calculus (such as the fact that one
reduction step M → N is itself implementable in time polynomial
in |M |), it immediately implies that reduction in the calculus may
be simulated by Turing machines with a polynomial slowdown.

However, we stress that the polysize reduction property, albeit
sufficient, is not necessary for the unitary cost model to be polyno-
mially related to Turing machines: the λ-calculus itself is a promi-
nent example, as shown by (Accattoli and Dal Lago 2014).

xi @ x
t @M

λa.t[!x := a] @ λx.M
t @M u @! N
tu @MN !⊥ @! M

t @M u @! M

t :: u @! M

Figure 3. The approximation relation for the λ-calculus. In the top left rule, i ∈ N is arbitrary.

3. The Parsimonious Lambda-Calculus
Terms. We consider the same sets of affine and exponential vari-
ables as for the polyadic affine calculus. The terms of the parsimo-
nious λ-calculus belong to the following grammar:4

M,N ::= a | λa.M |MN | xi | !M |M [!x := N].

The only difference with respect to `Λ is the ! operator, which
degenerates to the constant !⊥ in `Λ. A parsimonious term is one
verifying the following constraints:
• affinity: modulo Barendregt’s convention, every affine variable

appears at most once and each occurrence of exponential vari-
able appears with a distinct index;
• boxes: in each subterm !M (called a box), all variables of

fv(M), which are said to be locally free, are exponential;
• parsimony: each exponential variable appears locally free in

at most one box (counting nesting) and at most once therein;
moreover, if xi is such an occurrence and xj is any other
occurrence, then i > j.

We denote by pΛ the set of parsimonious terms.
For example, ∆ := λa.x0!x1[!x := a] and ∆!∆ are parsimo-

nious. On the other hand, the following are not parsimonious: λa.!a
(the affine variable a appears locally free inside a box); a!x7!x2 or
(!!x3)[!x := a] (the exponential variable x appears locally free in
two boxes, nested in the second case; by contrast !(!x3[!x := y2])
is parsimonious); !(x0x1) (a box containing two locally free occur-
rences of the same exponential variable); x3!x1 (the index of the
occurrence of x in the box is not maximal in the term).

Using the syntax and the reindexing notations introduced for
`Λ, the intuition is that !M is equivalent to M :: !M++ and
therefore to the infinite stream M :: M+1 :: M+2 :: · · · . This
justifies the restriction on the locally free variables of boxes: if
a ∈ fv(M), M :: !M++ would not be affine. It also explains the
parsimony constraints: if any of them is violated, one may obtain a
term breaking the affinity condition by sufficiently expanding !M .

The size of M ∈ pΛ, denoted by |M |, is defined as in Defini-
tion 1. The exponential depth of M is defined to be the maximum
nesting level of its boxes and denoted by d(M).

Reduction. Substitution contexts are defined exactly as in `Λ. In
pΛ, we use the terminology affine context, still denoted by A, to
mean a context with at most one occurrence of 〈·〉 which does not
appear in a box. If the hole does appear, the context is called linear
(this definition is vacuous in `Λ because all non-affine contexts
there are linear). Thus, writing M = A〈x0〉 is a succinct way of
expressing that, if x0 appears in M , then it is not locally free in a
box.

The reduction rules for the parsimonious λ-calculus are defined
in Fig. 4. These are closed under linear contexts only.

Polynomial approximations. pΛ has affine approximations.

DEFINITION 4 (Approximations in pΛ). If t ∈ `Λ and M ∈ pΛ,
we say that t approximates M if the judgment t @ M may be
derived from the rules of Fig. 5. The approximation relation is
extended to contexts by adding 〈·〉 @ 〈·〉 as a nullary rule.

4 The one presented here is actually a subset of the parsimonious λ-calculus
as introduced in (Mazza and Terui 2015; Mazza 2015). This fragment
suffices for our present purposes and we adopt it for simplicity.

We observe that point (3) of Definition 3 is verified: the depth
of M ∈ pΛ coincides with its exponential depth. Point (2) is
obviously verified. We will now check point (1).

LEMMA 6. Let M , C and Ξ be a term, a linear context and either
a term or a linear context of pΛ, respectively, and let ξ be either a
term or a context of `Λ.
1. ξ @ Ξ implies fv(ξ) = fv(Ξ);
2. ξ @ Ξ iff ξx+i @ Ξx+i for every x and i ∈ N;
3. t @ C〈M〉 iff t = C0〈u〉 for some u @M and C0 @ C;

PROOF. Essentially identical to Lemma 2. �

PROPOSITION 7 (Quantitative continuity). Let M ∈ pΛ and let
M → N . Then, for all u @ N there exists t @M such that t→ u.
Moreover, rk(t) ≤ rk(u) + 1.

PROOF. By definition, we have M = C〈M0〉 and N = C〈N0〉,
with C a linear context and M0, N0 matching the left and right
hand side, respectively, of one of the rewriting rules of Fig. 4. The
proof is by induction on C. The only interesting case is C = 〈·〉,
the rest is straightforward, using Lemma 6.3.

Let M0 →b N0, which implies that M0 = (λa.P)[−]Q
and u @ P{Q/a}[−]. Actually, since there is at most one free
occurrence of a in P , we may write P = A〈a〉 and P{Q/a} =
A〈Q〉. Hence, by Lemma 6.3, u = A′〈q〉[−]′ with q @ Q, A′ @ A
and [−]′ @ [−]. Then, if we let t := (λa.A′〈a〉)[−]′q, we have
t @M0 (Lemma 6.3 again), t→b u, and rk(t) = rk(u).

Let M0 →! N0, which implies M0 = A〈x0〉[!x := (!P)[−]]
and u @ Ax−−〈P 〉[!x := !P++][−]. By definition of approxima-
tion and Lemma 6.3, we have u = A′〈v〉[!x := w][−]′ with A′ @
Ax−−, v @ P , w @ !P++ and [−]′ @ [−]. Now, by Lemma 6.2,
(A′)x++ @ A, so (A′)x++〈x0〉 @ A〈x0〉 by Lemma 6.3. Then, if
we let t := (A′)x++〈x0〉[!x := (v0 :: w)[−]′], we have t @ M0,
t→! u and rk(t) = rk(u) + 1.

Let M0 →w N0, which means that M0 = P [!x := (!Q)[−]]
with x 6∈ fv(P) and u @ P [−]. By Lemma 6.3, u = p[−]′ with
p @ P and [−]′ @ [−]. In this case, it is enough to consider
t := p[!x := (!⊥)[−]′], which obviously satisfies t @ M0 and,
by Lemma 6.1, t→w u, with rk(t) = rk(u). �

Proposition 7 implies that pΛ actually has polynomial approxi-
mations, via the following lemma:

LEMMA 8 (Size bound). For all M ∈ pΛ and t ∈ `Λ, t @ M
implies |t| ≤ |M |(rk(t) + 1)d(M).

PROOF. By induction on M . We only check the case M = !N ,
the rest is straightforward. We claim that t @ !N implies t =
〈u0, . . . , un−1〉 with ui @ N+i for all 0 ≤ i < n, which is itself
easily shown by induction (on the derivation of t @ !N). Using
the induction hypothesis, the fact that rk(t) bounds n as well as all
rk(ui), and that |M | = |N |+ 1 and d(M) = d(N) + 1, we have

|t| = 1 +

n−1∑
i=0

|ui| ≤ 1 +

n−1∑
i=0

|N |(rk(ui) + 1)d(N)

≤ 1 + |N |(rk(t) + 1)d(N)+1 ≤ |M |(rk(t) + 1)d(M),

as desired. �

(λa.A〈a〉)[−]N →b A〈N〉[−]

A〈x0〉[!x := (!N)[−]]→! A
x−−〈N〉[!x := !N++][−]

M [!x := (!N)[−]]→w M [−] x 6∈ fv(M)

Figure 4. Reduction rules for the parsimonious λ-calculus. Reduction is the closure of these rules under linear contexts.

a @ a
t @M

λa.t @ λa.M
t @M u @ N
tu @MN xi @ xi !⊥ @ !M

t @M u @ !M++

t :: u @ !M

t @M u @ N
t[!x := u] @M [!x := N]

Figure 5. The approximation relation for the parsimonious λ-calculus.

COROLLARY 9. The parsimonious λ-calculus has polynomial ap-
proximations.

PROOF. Let Mn ∈ pΛ be a family of terms whose depths are
bounded by d and let Mn →l(n) Nn be reductions. If l(n) is
identically null, we may trivially conclude so let us assume that
l(n) = Ω(1). By Proposition 7, we have tn @ Mn such that
tn →l(n) bNnc1 and rk(tn)+1 ≤ l(n)+2 = Θ(l(n)). Therefore,
using Lemma 8, we have |tn| = O(|Mn|l(n)d). �

Parsimonious terms may be seen as particular elements of the
ideal completion of (`Λ,v) (this is a rephrasing of the the topo-
logical approach of (Mazza 2012)), which is a bounded complete
dcpo. The following result is therefore not surprising:

LEMMA 10 (Bounded completeness). Let M ∈ pΛ, n > 0 and
t1, . . . , tn @M . Then,

⊔
i ti exists and

⊔
i ti @M .

PROOF. Analogous to Lemma 1 (M plays the role of u). �
Although the set of approximations of M ∈ pΛ does not

have a supremum in `Λ (the supremum being M itself), there is a
greatest element if we only consider approximations up to a given
rank k, namely the homogeneous approximation of M of rank
k, denoted by bMck. It may be defined inductively as follows:
back := a; bλa.Nck := λa.bNck; bNP ck := bNckbP ck;
bxick := xi; b!Nck := 〈bNck, . . . , bN+(k−1)ck〉; bN [!x :=
P]ck := bNck[!x := bP ck].

LEMMA 11. Given M ∈ pΛ and k ∈ N, bMck is the greatest
element of the set {t ∈ `Λ | t @M, rk(t) ≤ k}.
PROOF. A straightforward induction on M . �

4. Reconciling Church with Cook and Levin
The parsimonious λ-calculus is a general model of computation: it
is Turing-complete. This is not obvious a priori because, as far as
we know, there is no direct encoding of the λ-calculus in pΛ. For
instance, pΛ apparently lacks a general fixpoint combinator. How-
ever, it does have a linear fixpoint combinator, given by Y` := X!X,
where X := λa.λf.y0(x0!x1!y1)[!x := a][!y := f]. Intuitively, a
recursive definition is linear when it is of the form (in Caml syntax)
let rec f(x1, . . . , xn) = Φ with f occurring once in Φ. The chief
example of linear (tail) recursive definitions are while loops, which
are enough to achieve Turing-completeness.

The encoding of binary strings in pΛ is also a variant of the
usual Church encoding: the string w = b0 · · · bn−1 ∈ {0, 1}n is
encoded by

w := λs0.λs1.λz.xb00 (. . . x
bn−1
n−1 z . . .)[!x

0 := s0][!x1 := s1].

The Church Booleans are 0 := λa.λb.b and 1 := λa.λb.a, as
usual.

DEFINITION 5. We let pλTIME(f) be the class of languages L ⊆
{0, 1}∗ such that there exists a closed M ∈ pΛ such that, for all
n ∈ N and w ∈ {0, 1}n, Mw →l b with b ∈ {0, 1} (a Church
Boolean), l ≤ f(n) and w ∈ L iff b = 1.

The above definition mimics the definition of the usual deter-
ministic time class TIME(f), so the following is expected:

PROPOSITION 12. TIME(f) ⊆ pλTIME(poly(f)) and
pλTIME(f) ⊆ TIME(poly(f)).

PROOF. The first is shown by simulating Turing machines in pΛ
with a polynomial slowdown, which is unsurprising. The converse
is a consequence of the polysize reduction property of pΛ (which
holds by Corollary 9 and Proposition 5). �

DEFINITION 6. A higher order Boolean circuit with n inputs is
a term t ∈ `Λ such that fv(t) = {a1, . . . , an} (all affine
variables) and such that, for all Church Booleans b1, . . . , bn,
t{b1/a1, . . . , bn/an} reduces to a Church Boolean.

We say that a language L ⊆ {0, 1}∗ has polysize higher order
Boolean circuits if there exists a family of higher order Boolean
circuits (tn)n∈N such that tn has n inputs and, for all w =
b1 · · · bn ∈ {0, 1}n, tn{b1/a1, . . . , bn/an} →∗ 1 iff w ∈ L.

THEOREM 13. P has polysize higher order Boolean circuits.

PROOF. By Proposition 12, if L ∈ P then there is M ∈ pΛ decid-
ing L in polynomially many steps. Fix an enumeration (wi)i∈N of
binary strings. By Corollary 9 applied to the family Mwi, we have
vi @Mwi such that vi reduces to a Boolean b (because bbc1 = b)
with b = 1 iff wi ∈ L and rk(vi) is polynomial in |wi|. But
vi = tiwi with ti @ M and rk(ti) = rk(vi) (wi has no box,
so it is the only approximation of itself and does not contribute to
the rank). Now, for all n ∈ N, let in1 , . . . , in2n be all the indices such
that |winj | = n and let un :=

⊔
j tinj . By Lemma 10, this is defined

and un @ M . Moreover, by the rank bound of Lemma 1, rk(un)
is polynomial in n, which means that, by Lemma 8, |un| is also
polynomial in n (|M | and d(M) are independent of n, of course).
Furthermore, since tinj winj @ unwinj , thanks to Lemma 3.1 we
have that un still decides L on strings of length n. All that is left
to do is to convert un into a higher order Boolean circuit (Defi-
nition 6). This is done by means of terms with the property that
boolToStrn{b1/a1, . . . , bn/an} →∗ b1 · · · bn, i.e., boolToStrn
builds a Church string of length n out the Boolean bits constitut-
ing it. These are easy to construct. Then, (unboolToStrn)n∈N is a
polysize family of higher order circuits deciding L. �

We let AFFINE NORMAL FORM be the following problem: given
t ∈ `Λ, do we have t →∗ 1 (the Church Boolean)? This is tanta-
mount to computing the value of a higher order Boolean circuit

with its inputs fixed, so we could also call this problem HO CIR-
CUIT VALUE.

THEOREM 14. AFFINE NORMAL FORM is P-complete.

PROOF. It is clear that AFFINE NORMAL FORM ∈ P: reduction
shrinks the size of terms and the naive algorithm which repeatedly
scans for a redex and reduces it is obviously polynomial in the size
of the initial term (it is actually quadratic).

For P-hardness, we need to find a logspace reduction from any
L ∈ P to AFFINE NORMAL FORM. By Theorem 13, we know
that there exists M ∈ pΛ such that it is enough to consider a
family (tn)n∈N @ M of rank polynomial in n in order to decide
w ∈ L for all w ∈ {0, 1}n, n ∈ N. Terms of the form tnw
are instances of AFFINE NORMAL FORM, so we are close to our
goal. Unfortunately, though, we do not know how to compute tn
in logspace (w.r.t. n). However, if k(n) := rk(tn), then tn @
bMck(n) (Lemma 11) and, by Lemma 3.1, bMck(n) also decidesL
on strings of length n. For fixed M (as in our case), homogeneous
approximations of rank k can be computed in space logarithmic in
k (see the definition given before Lemma 11). In order to determine
a given node in the syntactic tree of bMck(n) (or the absence of
such), all we need is a pointer to the syntactic tree of M and an
integer counter bounded by k(n) + m, where m is the maximum
index of exponential occurrences in M (a constant). Storing this
counter in binary only occupies logarithmic space because k(n) is
polynomial in n. �

Let HO CIRCUIT SAT be the following problem: given a higher
order Boolean circuit t with n inputs (Definition 6), are there
b1, . . . , bn ∈ {0, 1} such that t{b1/a1, . . . , bn/an} →∗ 1?

THEOREM 15. HO CIRCUIT SAT is NP-complete.

PROOF. Essentially analogous to showing that CIRCUIT SAT is NP-
complete from the proof that CIRCUIT VALUE is P-complete (Pa-
padimitriou 1994). �

5. Proof Nets and Satisfiability
Our aim now is to show that HO CIRCUIT SAT reduces to CIRCUIT
SAT, thus completing the proof of the Cook-Levin theorem (modulo
the standard reduction from CIRCUIT SAT to SAT). The idea is to
implement reduction of polyadic affine terms with Boolean circuits.
Following Terui (Terui 2004), we use proof nets as a convenient
bridge between terms and circuits.

DEFINITION 7 (Net). Let Σ := {ax, cut,⊗,`,w, !0, !, ?}. Each
symbol of Σ has an associated arity: ax and cut have arity 2; ⊗,
`, ! and ? have arity 3; w and !0 have arity 1. A net π is a tuple
(Pπ,Cπ, `π, pπ) where:
• Pπ and Cπ are finite sets, the elements of which are called ports

and cells, respectively;
• `π : Cπ → Σ is the labelling function;
• pπ is a function assigning with each cell c a tuple of ports, the

arity of which is equal to the arity of `π(c). The ports of pπ(c)
are divided into conclusions and premises and have a polarity
(relative to c), all depending on `π(c); these are given in Fig. 6,
as explained momentarily.

In addition, a net π must verify the following conditions:
• each port is conclusion of exactly one cell and premise of at

most one cell;
• if a port is conclusion of c and premise of c′, then its polarities

relative to c and c′ are opposite.
In Fig. 6, which gives the graphical representation of cells, we

specify the polarities, as well as the conclusions and premises of
cells: the former are displayed as outgoing, the latter as incoming.
When writing pπ(c) as a tuple, we separate conclusions/premises

by means of a semicolon, with the tuple order matching the left-
to-right order in graphical representations. So, for instance, if
`π(c) = ⊗, then pπ(c) = (p; q, r), with p the conclusion and
q, r the positive and negative premise, respectively.

The size of a net is the number of its ports.

Nets are usually required to satisfy some form of correctness,
yielding proof nets. We will not specify any correctness criterion
here, we will rather take “proof net” as a synonym of a net which
is the (reduct of the) encoding of a polyadic affine term.

Cut-elimination steps are defined in Fig. 7. Polarities and ori-
entations are omitted because they can be recovered without ambi-
guity from Fig. 6. In fact, such information will be omitted in all
subsequent graphical representations. In the→ax− step, the nega-
tive premise of the cut cell must not be an ax cell; in the →ax+

step, the negative conclusion of the ax cell must not be a cut cell.
We denote by→ the rewriting relation induced by cut-elimination,
which is trivially confluent and strongly normalizing.

The definition of cut-elimination for axioms deserves a com-
ment. The usual definition allows cuts on axioms to be eliminated
without conditions, leading to critical pairs such as the following:

From the rewriting point of view, such critical pairs are harmless
because they are trivially confluent. However, as first observed by
(Terui 2004), they are problematic when one wants to implement
proof net cut-elimination with Boolean circuits, as we are going
to do below. It is immediate to check that, with our definition,
there are no critical pairs. This solution, which differs from the one
given in (Terui 2004), is possible because we are using polarized
(i.e., intuitionistic) nets. It exploits less the parallelism of circuits
(which is not of concern here) but has the advantage that the
implementation uses the standard basis {¬,∧,∨} of fan-in 2, the
one traditionally adopted for formulating CIRCUIT SAT, whereas
(Terui 2004) employs a non-standard reachability gate.

Terms as proof nets. Terms of `Λ may be encoded in proof nets.
A term t with n occurrences of free variables induces a proof
net LtM with n + 1 free ports, one labelled by a special symbol
• (corresponding to the root of t) and the others labelled by the
free occurrences themselves. The net LtM is defined by induction
on t, as as shown in Fig. 9. To avoid cluttering the pictures, only
the conclusions strictly relevant to the inductive construction of the
net are drawn. The multiplicative cases (top row) are standard. Of
the exponential cases, only the encoding of t[!x := u] deserves
an explanation. For that, we first associate with every binary word
w ∈ {0, 1}∗ a net ∆w, as described in Fig. 8. Now, if xi1 , . . . , xin
are all the free occurrences of x in t, with i1 < · · · < in, we define
the binary word w = w0 · · ·win as follows: wj = 1 if j = ik for
some 1 ≤ k ≤ n, otherwise wj = 0. In other words, the j-th bit of
w is “turned on” iff xj is free in t.

Two important examples, used in the sequel: if 0 := λa.λb.b
and 1 := λa.λb.a are the Church Booleans, we have

L1M =
`
`
ax

w

L0M =

`
`

w

ax

LEMMA 16. Let t ∈ `Λ be closed. Then, t →∗ 1 (the Church
Boolean) iff

−−

+ − − +

ax cut− +
⊗ ` w !0

−
!
−

?
+

+ − + − +

+

+

Figure 6. Cells for building nets, with their polarity assignment.

→ax− →ax+
→•/◦

• ◦

Figure 7. Cut-elimination steps on nets. In the bottom step, • = ⊗ and ◦ = `, or • = ! and ◦ = ?.

∆1·w :=

∆w

. . .

w

?
w

∆w

. . .

?
∆0·w :=∆ε :=

Figure 8. The inductive definition of the net ∆w, with w ∈ {0, 1}∗.

LtM

ax
`

a •

•

LtM

Lλa.tM :=
⊗

ax

cut

••
LtM LuM

•
LtuM :=`

w
LaM :=

a •
a ∈ fv(t) a 6∈ fv(t)

•

•

Lλa.tM :=

Lt[!x := u]M :=ax
!0

!

•

•

LtMLuM
xin. . .

cut

∆w

xi1
LxiM :=

xi •
L!⊥M :=

•
Lt :: uM :=

LtM

•

• •
LuM

Figure 9. The encoding of `Λ in proof nets.

LtM

`
`

ax

γ

→∗

PROOF. A special case of the standard simulation of term reduc-
tion by cut-elimination in proof nets. We do not obtain exactly the
net L1M because we did not define cut-elimination for w cells, so,
instead of being a w cell, γ may contain some garbage. �

Proof net satisfiability. Let PROOF NET SAT be the following
problem: given a net π, 3n of its free ports r10 ,r11 ,r1∗, . . . , rn0 ,rn1 ,rn∗
and 2 other of its free ports p, q, all pairwise distinct, are there
b1, . . . , bn ∈ {0, 1} such that

rn∗cut cut. . .

π

p qr1b1 r1∗ rnbn

(we did not draw the free ports other than p, q and those concerned
by the cuts) reduces by cut-elimination to a net in which p and q
are the conclusions of the same ax cell? The complexity parameter
for this problem is the size of π.

In the sequel, we write ≤poly
m for polynomial-time many-one

reducibility (also known as Karp reducibility).

LEMMA 17. HO CIRCUIT SAT ≤poly
m PROOF NET SAT.

PROOF. A consequence of Lemma 16, observing that the distinc-
tion between L1M and L0M is just the presence/absence of an axiom
connecting a certain pair of ports. �

Thanks to the absence of critical pairs, the operation of reducing
in parallel all cuts in a net is well defined:

DEFINITION 8 (Parallel cut-elimination). We write π ⇒ π′ when
π′ is obtained from π by simultaneously reducing all cuts, or
π′ = π in case π is irreducible.5

Note that there is exactly one π′ such that π ⇒ π′. It is this
deterministic operation which we will implement with a circuit.

Let P be a set of ports. For each p, q, r ∈ P we con-
sider Boolean variables associated with cells: ax(p, q;), cut(; p, q),
tens(p; q, r), par(p; q, r), etc. (as the notation suggests, these are
morally predicates, but technically they are variables). The semi-
colon separates conclusions and premises and is only mnemonic.
A net π such that Pπ ⊆ P will be represented as a valuation on
the above variables: e.g. ax(p, q;) = 1 iff in π there is an ax cell
whose negative conclusion is p and positive conclusion is q.

LEMMA 18. There exists a circuit ParRedP of size O(|P |7)
which, given in input π with Pπ ⊆ P , outputs the unique π′ such
that π ⇒ π′.

5 We say “irreducible” instead of cut-free because cut-elimination as defined
in Fig. 7 does not eliminate cuts on w and !0 cells.

reloc−(p′, p) :=
∨
s

axcut−(p′, s, p) ∨

p′ = p ∧
∧
s,s′

¬axcut−(s′, s, p)

tens′(p; q, r) :=

∧
p′,q′,r′

¬logcut(p′, q′, r′, p, q, r) ∧

 ∨
p′,q′

tens(p′; q′, r) ∧ reloc+(p′, p) ∧ reloc−(q′, q)

Figure 10. An example of output of the circuit ParRedP .

PROOF. Let us give the idea. We want to know if π′ contains a
certain cell, e.g. we want to know whether in π′ there is a ⊗ cell
of conclusion p and premises q, r. This is tantamount to computing
the output variable tens′(p; q, r) of ParRedP (we add a “prime”
to denote outputs). Now, there is such a cell c in π′ only if, in π,
there is no such cell involved in a⊗/` cut (which would disappear
in π′); if such a necessary condition is met, then c must result from
a ⊗ cell of π, because cut-elimination does not create ⊗ cells. The
presence of a ⊗/` cut in π may be computed by the constant-size
circuit logcut(p, p′, p′′, q, q′, q′′) defined by

cut(; p′, p) ∧ par(p′; q′, r′) ∧ tens(p; q, r).

Similarly, one may define circuits (this time of size O(|P |))
axcut−(p1, p2, p3) and axcut+(p1, p2, p3) detecting the presence
of cuts of type ax− and ax+ at the given ports. To express the fact
that axiom elimination rules “relocate” ports, we define the circuit
reloc−(p′, p) as in Fig. 10 (s, s′ range over P), which is of size
O(|P |2). The meaning is that reloc−(p′, p) = 1 iff either port p′

will be relocated to port p because of the presence of an ax− cut, or
p′ = p is a port that will not be relocated by such a redex. A similar
circuit, called reloc+(p′, p), may be given for ax+ cuts. The circuit
computing tens′(p; q, r) may then be defined as in Fig. 10, which
reads: there is a ⊗ cell c of conclusion p and premises q, r in π′

iff, in π, there is no such cell involved in a ⊗/` cut and there is a
similar cell which results in c, possibly after a relocation. The other
outputs are computed following the same idea.

To compute the total size of ParRedP , one may check that the
worst case is given by the outputs of the form tens′(p; q, r) (and
those of the form par′(p; q, r)), of which there are O(|P |3), each
computed by a circuit of size O(|P |4), which brings the size of
ParRedP to O(|P |7), as stated. �

LEMMA 19. PROOF NET SAT ≤poly
m CIRCUIT SAT.

PROOF. Let π, ri0, ri1, ri∗ (with 1 ≤ i ≤ n), p, q be an instance
of PROOF NET SAT, with π of size s. We define an instance of
CIRCUIT SAT as follows. First, we build the circuit

C0 :=

s︷ ︸︸ ︷
ParRedPπ ◦ · · · ◦ ParRedPπ

(the outputs of the first copy are fed as inputs to the second, and
so on). From this, we define a circuit C1 by fixing the inputs of
C0 to the valuation corresponding to π, leaving unset only the
inputs corresponding to cut(; rib, r

i
∗) (1 ≤ i ≤ n, b ∈ {0, 1}) and

we isolate the output corresponding to ax′(p, q;) (for instance by
xoring all other outputs with themselves and ∨-ing the result with
ax′(p, q;)). Now, there obviously is a constant-size circuit which,
on input xi, sets cut(; ri1, r

i
∗) = 1 and cut(; ri0, r

i
∗) = 0 if xi = 1

and dually if xi = 0; we plug these n circuits to the relevant
inputs of C1, obtaining C. Such a C is obviously computable in
time linear in its size, which is polynomial in s by Lemma 18.
Furthermore, it is clear that C is satisfiable iff π is. �

All in all, we compile a higher order circuit of size s into a fan-in

2 circuit over {¬,∧,∨} of size O(s8). By looking at (Terui 2004),
one finds a compilation with a bound O(s4), which seems much
better. However, Terui uses unbounded fan-in and a non-standard
reachability gate. If we allow unbounded fan-in, we too get a circuit
of sizeO(s4). The difference is in the depth, which is always linear
in our case, whereas in Terui’s case, using the reachability gate, it
may be sublinear or even bounded.

6. Types and Perspectives
Intersection types. Consider the following types:

A,B ::= o | A(B | 〈A1, . . . , An〉,

where o is an atomic type. We use
−→
A as a shorthand for the type

〈A1, . . . , An〉, and define A0 ::
−→
A := 〈A0, A1, . . . , An〉. The

height of a type is the height of its syntactic tree.
The type

−→
A may be seen as a ⊗ of arbitrary arity. It may

also be considered as an associative, non-commutative and non-
idempotent intersection type. In fact, the approximation relation of
Fig. 5 is related to an intersection type system for pΛ, presented
in Fig. 11. Typing contexts are of the form Γ; ∆ where Γ contains
type declarations for exponential variables, of the form x :

−→
A ,

and ∆ contains type declarations for affine variables, of the form
a : A (note that A is arbitrary in the latter case, while it must be a
sequence type in the former).

The type system itself must be read ignoring the annotations in
gray. Conversely, if we only consider the annotations in gray, we
obtain the simply-typed `Λ. More exactly: if all term annotations
are erased, one obtains the natural logic for the types/formulas
introduced above, a polyadic version of propositional intuitionistic
multiplicative affine logic. Via Curry-Howard, the proofs of this
logic correspond to terms of `Λ, those annotated in gray. However,
the same type system may be read as an intersection type system
for pΛ. Given a derivation δ of Γ; ∆ ` M : A, one may consider
the polyadic term t associated with δ and it turns out that t @ M .
In fact, the approximation relation is exactly the type-erasure of the
type system, justifying the use of the@ symbol in Fig. 11, which we
invite the reader to compare to Fig. 5. Furthermore, as we already
observed, all of our continuity results (Lemma 3, Propositions 4
and 7) are reflected into subject expansion properties.

We call our types “intersection types” for pΛ because, although
they are just simple types for `Λ, they are not the propositional
formulas of parsimonious logic, the image of pΛ on the logical side
of Curry-Howard. These were considered in (Mazza 2015; Mazza
and Terui 2015) and are obtained by replacing the type

−→
A with

!A in the above grammar; the corresponding type system is quite
different from that of Fig. 11. Instead, the cons rule (with the black
annotation) looks a lot like an intersection rule. Also, connections
between linearization of the λ-calculus and intersection types were
already observed by (Kfoury 2000). Indeed, the approximation
relation of Fig. 3 too stems from a non-idempotent intersection type
system for the usual λ-calculus (with the same types).

Γ; ∆, a : A ` a @ a : A
ax

Γ; ∆, a : A ` t @M : B

Γ; ∆ ` λa.t @ λa.M : A(B
(I

Γ; ∆ ` t @M : A(B Γ; ∆′ ` u @ N : A

Γ; ∆,∆′ ` tu @MN : B
(E

Γ, x : 〈A0, . . . , Ai〉; ∆ ` xi @ xi : Ai
ax!

fv(M) ⊆ x
x : Γ;` !⊥ @ !M : 〈〉

empty

Γ; ∆ ` t @M : A Γ′; ∆′ ` u @ !M++ :
−→
B

Γ,Γ′; ∆,∆′ ` t :: u @ !M : A ::
−→
B

cons
Γ′; ∆′ ` u @ N :

−→
A Γ, x :

−→
A ; ∆ ` t @M : C

Γ,Γ′; ∆,∆′ ` t[!x := u] @M [!x := N] : C
let

Figure 11. Simple types for `Λ and intersection types for pΛ, superposed.

Perspectives. What do we gain from this meeting of Church with
Cook and Levin? In technical terms, the fine analysis of continuous
approximations turns out to give much better bounds on the com-
plexity of normalizing a simply-typed parsimonious term of size s
and depth d: in (Mazza 2015), we had bounds of the form O(s2

d

),
whereas our Lemma 8 here gives O(sd

k

), which is definitely an
improvement.

In broader terms, the intriguing relationship between the affine
approximations developed here and intersection types (originally
observed by (Kfoury 2000)) offers a novel approach to the ques-
tion of space cost models for functional languages. In other words,
given a λ-term M , what do we count as space used by M? Or, if
M decides a language L, what measure fM (n) can we take (where
n is the input size) to infer that L ∈ SPACE(O(fM (n)))? To
our knowledge, very few papers address this question (an exam-
ple is (Spoonhower et al. 2008)) and none does it in an abstract,
implementation-independent way. By contrast, work concerning
abstract time cost models for the λ-calculus abounds, culminating
in (Accattoli and Dal Lago 2014) (see the references therein).

The relationship between intersection types and complex-
ity of λ-terms is well understood for time (de Carvalho 2009;
Bernadet and Lengrand 2011; Terui 2012; De Benedetti and Ronchi
Della Rocca 2013) but not for space. The key point is the use of the
geometry of interaction (GoI), which is known to capture space-
efficient computation, an idea originally due to (Schöpp 2007) and
also (Dal Lago and Schöpp 2010). Without giving any detail, let us
state a result which may be obtained by combining the GoI with
reasoning similar to that of Theorem 14. We set

−→
BA0,...,An := 〈An−1 (An, . . . , A0 (A1〉,

Str[A0, . . . , An] :=
−→
BA0,...,An (

−→
BA0,...,An (A0 (An.

What we obtain is somewhat analogous to (Borodin 1977):

THEOREM 20. Let ;` tn @ M : Str[An0 , . . . , A
n
n] (Bool, and

let hn be the maximum height of An0 , . . . , A
n
n, for n ∈ N. Then, M

decides a language in SPACE(O(hn log |tn|)).

Theorem 20 may be used to factorize soundness results for im-
plicit characterizations of complexity classes. For instance, retro-
spectively, the soundness part of (Mazza 2015) was about proving
that type derivations of the simply-typed pΛ may be mapped to in-
tersection types derivations of the form required by Theorem 20, of
polynomial size and bounded height (in n), yielding logspace lan-
guages. Theorem 20 was also implicitly used in (Mazza and Terui
2015), yielding a refinement of the results of (Terui 2004): in partic-
ular, polysize bounded-depth higher-order circuits are now known
to capture L/poly, whereas they were previously characterized in
terms of a non-standard class.

Let us conclude by observing that continuity results analogous
to Proposition 7 and its Corollary 9 also hold for the linear substi-
tution calculus with linear head reduction (Accattoli 2012), which
shows that our methodology is general and may be applied to cal-

culi which were defined completely independently of the polyadic
affine λ-calculus.

Acknowledgments
We acknowledge partial support of ANR grants COQUAS (ANR-
12-JS02-006-01) and ELICA (ANR-14-CE25-0005).

References
B. Accattoli. An abstract factorization theorem for explicit substitutions. In

Proceedings of RTA, pages 6–21, 2012.
B. Accattoli and U. Dal Lago. Beta reduction is invariant, indeed. In

Proceedings of CSL-LICS, page 8, 2014.
S. Arora and B. Barak. Computational Complexity - A Modern Approach.

Cambridge University Press, 2009.
S. Bellantoni and S. A. Cook. A new recursion-theoretic characterization

of the polytime functions. Computational Complexity, 2:97–110, 1992.
A. Bernadet and S. Lengrand. Complexity of strongly normalising lambda-

terms via non-idempotent intersection types. In Proceedings of FOS-
SACS, pages 88–107, 2011.

A. Borodin. On relating time and space to size and depth. SIAM J. Comput.,
6(4):733–744, 1977.

U. Dal Lago and U. Schöpp. Functional programming in sublinear space.
In Proceedings of ESOP, pages 205–225, 2010.

E. De Benedetti and S. Ronchi Della Rocca. Bounding normalization time
through intersection types. In Proceedings of ITRS, pages 48–57, 2013.

D. de Carvalho. Execution time of lambda-terms via denotational semantics
and intersection types. CoRR, abs/0905.4251, 2009.

J.-Y. Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987.
J.-Y. Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998.
N. D. Jones. Logspace and ptime characterized by programming languages.

Theor. Comput. Sci., 228(1-2):151–174, 1999.
A. J. Kfoury. A linearization of the lambda-calculus and consequences. J.

Log. Comput., 10(3):411–436, 2000.
D. Leivant and J.-Y. Marion. Lambda calculus characterizations of poly-

time. Fundam. Inform., 19(1/2), 1993.
H. G. Mairson. Linear lambda calculus and PTIME-completeness. J. Funct.

Program., 14(6):623–633, 2004.
D. Mazza. An infinitary affine lambda-calculus isomorphic to the full

lambda-calculus. In Proceedings of LICS, pages 471–480, 2012.
D. Mazza. Non-uniform polytime computation in the infinitary affine

lambda-calculus. In Proceedings of ICALP, Part II, pages 305–317,
2014.

D. Mazza. Simple parsimonious types and logarithmic space. In Proceed-
ings of CSL, pages 24–40, 2015.

D. Mazza and K. Terui. Parsimonious types and non-uniform computation.
In Proceedings of ICALP, Part II, pages 350–361, 2015.

C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
U. Schöpp. Stratified bounded affine logic for logarithmic space. In

Proceedings of LICS, pages 411–420, 2007.
D. Spoonhower, G. E. Blelloch, R. Harper, and P. B. Gibbons. Space

profiling for parallel functional programs. J. Funct. Program., 20(5-6):
417–461, 2008.

K. Terui. Proof nets and boolean circuits. In Proceedings of LICS, pages
182–191, 2004.

K. Terui. Semantic evaluation, intersection types and complexity of simply
typed lambda calculus. In Proceedings of RTA, pages 323–338, 2012.

	Introduction
	The Polyadic Affine Calculus
	The Parsimonious Lambda-Calculus
	Reconciling Church with Cook and Levin
	Proof Nets and Satisfiability
	Types and Perspectives

