Heterodox Exponential Modalities
in Linear Logic

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

CIRM, 28 January 2022
The Perfect World (or, Linear Logic without Exponential Modalities)

classical

\(\otimes, 1, \exists, \bot\)

\(&, \top, \oplus, 0\)

*-autonomous categories
with fin. products
(e.g. Vect\(_k\))

intuitionistic

\(\otimes, 1, \rightarrow\)

\(&, \top, \oplus, 0\)

symmetric closed monoidal cats
with fin. prods and fin. coprods
(e.g. CMon)

Everything is decidable:

- the space of proof search is finite;
- the size of proofs shrinks under cut-elimination (not quite in MALL...).

<table>
<thead>
<tr>
<th>provability</th>
<th>(untyped) cut-elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLL</td>
<td>NP-complete</td>
</tr>
<tr>
<td>MALL</td>
<td>PSPACE-complete</td>
</tr>
<tr>
<td></td>
<td>P-complete</td>
</tr>
<tr>
<td></td>
<td>coNP-complete</td>
</tr>
</tbody>
</table>
Imperfection (or, Orthodox Exponential Modalities)

\[
\begin{array}{c}
\text{cat with fin. prods} & \xrightarrow{\text{strong}} & M & \xleftarrow{\text{lax symm. mon.}} & L & \text{model of (l)M(A)LL}
\end{array}
\]

Examples:
- \((-)^* : \text{Set} \rightleftarrows \text{CMon : } U\)
- \(U : \text{Set} \rightleftarrows \text{Rel : } P\)

Infinity steps in:

<table>
<thead>
<tr>
<th></th>
<th>provability</th>
<th>(untyped) cut-elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>MELL</td>
<td>???</td>
<td>(undecidable) non-elementary</td>
</tr>
<tr>
<td>LL</td>
<td>undecidable</td>
<td>(undecidable) non-elementary</td>
</tr>
</tbody>
</table>

Not so “God-given”:
- who had heard of LNL adjunctions before linear logic?
- Not determined by \(\otimes\) (consider \(U : M\text{Rel} \rightleftarrows \text{Rel : } M_{\text{fin}}\))
An Alternative Presentation of Linear Logic

Sequents with an “exponential part”: \(\vdash \Theta; \Gamma \)

\[
\begin{align*}
\vdash \Theta; A^\perp, A & \quad \vdash \Theta; \Gamma, A^\perp & \quad \vdash \Theta; \Delta, A \\
\vdash \Theta; \Gamma, \Delta & \\
\vdash \Theta; \Gamma, A & \quad \vdash \Theta; \Gamma, \Delta, B & \quad \vdash \Theta; \Gamma, \perp \\
\vdash \Theta; \Gamma, A \otimes B & \quad \vdash \Theta; \Gamma, A, B & \quad \vdash \Theta; \Gamma, A \parr B \\
\vdash \Theta; \Gamma, \top & \quad \vdash \Theta; \Gamma, A & \quad \vdash \Theta; \Gamma, B \\
\vdash \Theta; \Gamma, A & \quad \vdash \Theta; \Gamma, A \& B & \quad \vdash \Theta; \Gamma, A_i & \quad \vdash \Theta; \Gamma, A_1 \oplus A_2 \\
& \quad i \in \{1, 2\} \\
\vdash \Theta; A & \quad \vdash \Theta, A; \Gamma, A & \quad \vdash \Theta; A; \Gamma \\
\vdash \Theta, !A & \quad \vdash \Theta; \Gamma, ?A
\end{align*}
\]

(First considered by Andreoli for proof search).
The Polynomial Structure of Exponential Modalities

Decorate exponential part with $P_i \in \mathbb{N}[X]$: $\vdash P_1 \cdot A_1, \ldots, P_n \cdot A_n; \Gamma$

$\vdash \vec{0} \cdot \Theta; A^\perp, A$

$\vdash \vec{P} \cdot \Theta; \Gamma, A^\perp \vdash \vec{Q} \cdot \Theta; \Delta, A$

$\vdash \vec{P} \cdot \Theta; \Gamma, A \vdash \vec{Q} \cdot \Theta; \Delta, B$

$\vdash \vec{P} + \vec{Q} \cdot \Theta; \Gamma, \Delta, A \otimes B$

$\vdash \Theta; \Gamma \vdash \Theta; \Gamma, \perp \vdash \Theta; \Gamma, A \otimes B$

Making structure explicit yields graded modalities (bounded LL & co.).
A Family of Heterodox Exponential Modalities

We obtain a subsystem of LL by restricting the shape of P in

$$
\vdash \Theta, P \cdot A; \Gamma
\vdash \Theta; \Gamma, \, ?A
$$

Theorem. For every submonoid M of $(\mathbb{N}[X], \circ, X)$, the subsystem of LL defined by restricting the above rule to $P \in M$ enjoys η-expansion and cut-elimination (also, $!(-)$ is always lax monoidal). Moreover, if we define

\[
\begin{align*}
0(A) & := 1 \\
1(A) & := A \\
(P + Q)(A) & := P(A) \otimes Q(A) \\
(PQ)(A) & := P(Q(A)) \\
X(A) & := !A
\end{align*}
\]

then $P \in M$ implies $!A \rightarrow P(A)$ provable in the subsystem.
Examples of Systems with Heterodox Modalities

LL
- 4LL
 - \{\deg P \geq 1 \text{ or } P = 0\}
- TLL
 - \{\deg P \leq 1\}
- ELL
 - \{nX\}
- PLL
 - \{aX + n \text{ with } a \in \{0, 1\}\}
- LLL
 - \{X\} \cup \mathbb{N}
- "light logics"
- parsimonious logic

\(\neg\) not monoidal
Main Properties

- **4LL, TLL**: [Danos, Joinet 2003]. Stream computation in 4LL [Dal Lago 2016].

- **Light logics**: enjoy untyped normalization.
 - **ELL**: [Girard 1998] [Danos, Joinet 2003] characterizes elementary time.
 - **SLL**: [Lafont 2004] characterizes polynomial time.
 - **LLL**: [Girard 1998] [Danos, Joinet 2003] characterizes polynomial time.

- **PLL**: [M. 2014] Turing-complete if untyped. With $!A \equiv A \otimes !A$:
 - **propositional**: characterizes logspace [M. 2015];
 - **linear 2nd order**: characterizes polytime [M. and Terui 2015].

- Two different approaches to control complexity:
 - **stratification** (light logics) vs. **local control** (parsimony);
 - parsimony enables *non-uniform complexity* via approximations.
Characterizing Complexity Classes: What and How

Typical Theorem. For some types Str and Bool, terms of type
Str → Bool
decide exactly the problems in the complexity class C.

Typical proof.

Soundness: (decidable by a term implies in C)
Find a parameter \(d \) such that:
- terms of size \(s \) and parameter \(d \) normalize in \(O(f(d, s)) \) time/space;
- terms of type Str have constant parameter \(d \) and size \(O(n) \) where \(n \) is the
 length of the represented string;
- for constant \(k \), the bound \(O(f(k, n)) \) ensures membership in C.

The proof may be combinatorial or semantic.
For light logics, \(d \) does not depend on the type of the term.
For logspace, use the GoI (normalization via traveling pointers).

Completeness: (in C implies decidable by a term)
A programming exercise (maybe non-trivial). □
Approximations (or, Exponential Modalities are Limits)

Relation $t \sqsubseteq M$ between simple programs and programs (and between simple computations and computations) with cost maps

Such that

$$u \sqsubseteq u$$

iff

$$M \xrightarrow{\rho} N \quad M \xrightarrow{\rho} N$$

$$c_1(\rho) = c_0(t)$$
Conclusions

- Light logics are dead, long live heterodox exponentials!
- Categorical models?
- Limit constructions and approximations?
- Where do approximations come from?