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A fruitful use of word combinatorics is its contribution to the study of dy-

namical systems, through the symbolic dynamical systems defined in Sec-

tion 1.6. Indeed, the study of most dynamical systems in the topological

and the measure-theoretic categories can be reduced, by appropriate coding

techniques, to the study of a suitable symbolic system Xx; and the topologi-

cal properties of a symbolic systemXx (equipped with the product topology

on AN) can be translated into combinatorial properties of the infinite word

x.

In this chapter, we shall study the first two combinatorial properties of

infinite words which are significant (and indeed, primordial) for symbolic

dynamical systems. The first one is the well-known uniform recurrence

which translates the dynamical property of minimality, that is the fact that

the topological system cannot be split into smaller systems. The second

one is the fact that the topological system has one invariant probability

measure; this is called unique ergodicity, a somewhat unhappy expression

as it suggests a close association with the classical (i.e., measure-theoretic)

ergodic theory, though in fact it is a purely topological notion. Thus, for

symbolic systems, unique ergodicity translates into the existence of frequen-

cies for every finite factor of the infinite word x, and the limit defining these

frequencies is a uniform one; thus we propose to say that the infinite word

x has uniform frequencies. Similarly, the set of invariant measures depends

only on the topological structure, and combinatorial properties of the word

x will give informations on its structure.

Thus we want to explain how the notions of minimality/uniform recur-

rence and unique ergodicity/uniform frequencies provide an interaction be-

tween dynamical systems and word combinatorics, in most cases the dy-

namics being the main source of questions and the combinatorics the main

tool for answers. We shall focus more on the second couple of notions, as

it has been less studied, and also because it constitutes a very strong prop-

374



Infinite words with uniform frequencies, and invariant measures 375

erty, for the system and for the infinite word: in particular it means that

dynamical results, which ergodicians are happy to know almost everywhere

for a given system, will be valid everywhere for a uniquely ergodic system.

In Section 7.1 we study the relationship between symbolic systems and

languages, and between minimality and uniform recurrence. In Section 7.2

we describe what is known of the set of invariant measures for a general

symbolic system, and detail the notion of unique ergodicity and its con-

sequences. Section 7.3 presents some achievements of word combinatorics,

initiated by M. Boshernitzan, which allow us to deduce uniform frequencies

(or, more generally, to bound the number of ergodic invariant measures of

the system) from simple combinatorial properties of the words. In Section

7.4 we review the known examples of words with uniform frequencies, and in

Section 7.5 we give important examples which do not have uniform frequen-

cies. We finish in Section 7.6 by hinting how these basic notions have given

birth to very deep problems and high achievements in dynamical systems.

7.1 Basic notions

7.1.1 Languages and subshifts

Let us recall some definitions introduced in Section 1.6.2. Proofs are

sketched. Let A be a finite alphabet. The set of infinite words AN is en-

dowed with the product topology defined in Section 1.2.10. It is a compact

metrisable space. Let S denote the shift map defined on AN by

S(x0x1x2 · · · ) = x1x2x3 · · · .

This map is continuous for the product topology.

Definition 7.1.1 A subshift (also called symbolic dynamical system) is a

couple (X,S), where X is a non-empty closed subset of AN, which is stable

under S. We still denote by S the restriction S|X . The orbit of a point x

in X under the shift map S is the set O(x) = {Sn(x) | n ∈ N}.

Given a subshift (X,S), let L(X) denote the language of the finite words

which occur in some element of X, and let Ln(X) = L(X)∩An (for n ∈ N).

This language is a non-empty subset of A∗ with the additional properties

of being

(i) factorial : any factor of any element of L(X) is also in L(X),

(ii) extendable: for any element w of L(X), there exists a letter a in A

such that wa is also in L(X).
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A subshift is determined by its language, more precisely, we have the fol-

lowing correspondence:

Proposition 7.1.2 The map (X,S) 7→ L(X) is a bijection from the set of

subshifts to the set of non-empty factorial and extendable languages.

Proof We can define an inverse map by sending a non-empty factorial and

extendable language L to the subshift ({y ∈ AN | L(y) ⊆ L}, S).

When x is an infinite word, we denote by (Xx, S) the smallest subshift

containing x. The set Xx is equal to the closure (in AN) of the orbit of x

under S:

Xx = O(x) = {Sn(x) | n ∈ N}.

In terms of languages, if L(x) denotes the set of all finite factors of the

word x (see Definition 1.2.8), then (Xx, S) is the subshift whose associated

language is L(x): L(x) = L(Xx). Hence, we have,

Xx = {y ∈ AN | L(y) ⊆ L(x)}.

If u = u0 · · ·un−1 ∈ An is a finite word, we can define the cylinder [u]X
(or simply [u] when the context is clear) as the set of elements of X which

admit u as a prefix:

[u]X = {x ∈ X | ∀i ≤ n− 1, xi = ui}.

The cylinders are clopen sets and form a basis of the topology of X. In

particular, the characteristic function χ[u] of a cylinder [u] is continuous.

We have,

L(X) = {u ∈ A∗ | [u]X 6= ∅}.

7.1.2 Uniform recurrence and minimality

Definition 7.1.3 A symbolic dynamical system (X,S) is minimal if it does

not contain a smaller subshift.

Definition 7.1.4 The infinite word x is uniformly recurrent if every factor

of x occurs in an infinite number of places with bounded gaps.

Those two notions are in correspondence, we recall this with some more

details:

Proposition 7.1.5 Let x be an infinite word on the alphabet A. The fol-

lowing assertions are equivalent:
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(i) The word x is uniformly recurrent.

(ii) For any factor u ∈ L(x), there exists an integer n ∈ N such that any

element of Ln(x) contains an occurrence of u.

(iii) Any word y of Xx satisfies L(y) = L(x).

(iv) Any word y of Xx satisfies Xy = Xx.

(v) The orbit of any element y of Xx under the shift map S is dense in

Xx.

(vi) The subshift (Xx, S) is minimal.

Proof (i) ⇔ (ii) and (iii) ⇔ (iv) are direct reformulations. For (iv) ⇔

(v) ⇔ (vi), it suffices to notice that, for any y in Xx, Xy = O(y) is the

smallest subshift containing y and is included in Xx. For (ii) ⇒ (iii), let

y be an element of Xx, and let u be an element of L(x). Because of the

hypothesis, there exists an integer sequence (αn)n∈N such that (Sαn(x))

converges to y, and there exists an integer n0 ∈ N such that any element of

Ln0
(x) contains an occurrence of u. Since the sequence (Sαn(x)) converges

to y, for N big enough, the prefix of length n0 of SαN (x) coincides with

the prefix of length n0 of y. Hence y contains an occurrence of u. For

¬(ii) ⇒ ¬(iii), because of the hypothesis, there exists a factor u ∈ L(x)

such that for any integer n ∈ N, there exists an integer αn such that u does

not occur in xαn
· · ·xαn+n. Let y be an adherent point of the sequence

(Sαn(x))n∈N in Xx (which exists by compactness). The finite word u is not

a factor of y, hence L(y) ⊂ L(x).

7.1.3 Uniform frequencies

Definition 7.1.6 The infinite word x has uniform frequencies if, for every

factor w of x, the ratio |xk···xk+n|w
n+1 (see 1.2.3 for the notation) has a limit

fw(x) when n→ +∞, uniformly in k.

The aim of the next section is to provide a dynamical equivalent of uniform

frequencies (see in particular Proposition 7.2.10 below).

7.2 Invariant measures and unique ergodicity

7.2.1 Two frameworks in dynamical systems

We first insist on the difference between topological and measure-theoretic

dynamics, unique ergodicity being a topological notion. A good reference

for this section is (Denker, Grillenberger, and Sigmund 1976).

Definition 7.2.1 A measure-theoretic dynamical system is a quadruple
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(X,B, µ, T ) where (X,B, µ) is a probability Lebesgue space and T : X → X

is a measurable function that preserves the measure µ:

∀B ∈ B, µ(T−1(B)) = µ(B).

Such a system is ergodic if the only T -invariant measurable subsets of X

have measure 0 or 1 (a subset B of X is T -invariant if T−1(B) = B).

A measure-theoretic ergodic dynamical system satisfies the Birkhoff er-

godic theorem (see Theorem 1.6.7). We refer the reader to Chapter 5

of (Pytheas Fogg 2002) for a presentation of this fundamental result in the

present framework:

∀f ∈ L1(X,R) ,
1

n

n−1
∑

k=0

f ◦ T k µ−a.e.
−−−−→
n→∞

∫

X

fdµ.

Definition 7.2.2 A topological dynamical system is a couple (X,T ), where

X is a compact metric space and T : X → X is a continuous function.

Hence, a subshift can be seen as a topological dynamical system.

7.2.2 The set of invariant measures of a subshift

A way to understand a topological dynamical system (X,T ) is to study

the set M(X,T ) of Borel probability measures on X that are preserved

by T : this corresponds to the measure-theoretic dynamical systems that

are housed by (X,T ). Let E(X,T ) denote the subset of ergodic invariant

measures.

We will need some basic material coming from measure theory and func-

tional analysis (the Riesz representation theorem and the Banach–Alaoglu

theorem) (Rudin 1987) (Rudin 1991), it is summarised in the following

proposition:

Proposition 7.2.3 The set of Borel probability measures on a compact

metrisable space X can be identified with a convex subset of the topological

dual of C0(X,R), endowed with the weak-star topology. This topology is

metrisable and compact. A sequence (µn)n∈N of such measures converges

to a measure µ if, and only if, for each continuous function f ∈ C0(X,R),
∫

X
fdµn converges to

∫

X
fdµ. When X is a closed subset of AN, continuous

functions can be replaced with characteristic functions of cylinders, i.e., µn

converges to µ if, and only if, for each finite word u, µn([u]) converges to

µ([u]).
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We can now describe some properties and the geometry of the set of in-

variant measures of a topological dynamical system and its subset of ergodic

measures:

Proposition 7.2.4 Let (X,T ) be a topological dynamical system.

(i) The set M(X,T ) is a non-empty convex compact subspace of the

space of Borel probability measures on X.

(ii) Let µ ∈ E(X,T ) and ν ∈ M(X,T ). If ν is absolutely continuous

with respect to µ, then µ = ν.

(iii) The extreme points of M(X,T ) are the ergodic measures.

(iv) Two distinct elements of E(X,T ) are mutually singular.

(v) A set of n distinct ergodic measures generates an affine space of

dimension n− 1, i.e., such measures are affinely independent.

Proof

(i) The set M(X,T ) is clearly convex and closed in the set of Borel

probability measures on X. Let us prove that the system (X,T )

admits at least one invariant probability measure. Pick a point x in

X. Since the set of Borel probability measures onX is metrisable and

compact, we can take for µ any accumulation point of the sequence

of probability measures defined by µn = 1
n

∑n−1
k=0 δTk(x), where δ

stands for the one-point Dirac measure. The average ensures that µ

is preserved by T .

(ii) Since ν is absolutely continuous with respect to µ, the Radon–

Nikodym theorem ensures that there exists a map f ∈ L1(X,R+)

such that for any Borel subset B of X, ν(B) =
∫

B
fdµ. Let us show

that f is constant µ-almost everywhere. Assume, by contradiction,

that the measure of the Borel set B = {x ∈ X | f(x) >
∫

X
fdµ}

belongs to (0, 1). Since µ is ergodic, B is not T -invariant. Therefore,

µ(T−1B \B) = µ(B \ T−1B) > 0. We have, µ(B \ T−1B)
∫

X
fdµ <

∫

B\T−1B
fdµ = ν(B \ T−1B) = ν(T−1B \ B) =

∫

T−1B\B
fdµ ≤

µ(T−1B \ B)
∫

X
fdµ, which is absurd. Hence f is constant with

value ν(X) = 1, so µ = ν.

(iii) Let µ be an element of E(X,T ) that can be written as a convex

combination µ = λµ1+(1−λ)µ2, where µ1 and µ2 are two elements of

M(X,T ) and λ ∈ (0, 1). Since λµ1 ≤ µ, the measure µ1 is absolutely

continuous with respect to µ, hence (ii) ensures that µ1 = µ, so µ is

an extreme point of M(X,T ). Conversely, let µ be an extreme point

of M(X,T ). Assume by contradiction that µ is not ergodic: there

exists a Borel set B of X which is T -invariant and satisfies µ(B) ∈
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(0, 1). Let us define, for any two Borel sets C and D of X with

µ(C) > 0, µC(D) = µ(C∩D)
µ(C) . We have µ = µ(B)µB+(1−µ(B))µX\B ,

hence µ can be written as a non-trivial convex combination of two

elements of M(X,T ), a contradiction.

(iv) Let µ and ν be two distinct ergodic measures for (X,T ). Since µ

and ν are distinct, there exists a measurable function f such that
∫

X
fdµ 6=

∫

X
fdν. Let Gµ,f be the set of points of X for which

the Birkhoff ergodic sums for f converge to
∫

X
fdµ and Gν,f be the

one corresponding to
∫

X
fdν. Those two sets are disjoint and satisfy

µ(Gµ,f ) = ν(Gν,,f ) = 1 and µ(Gν,f ) = ν(Gµ,f ) = 0.

(v) Let µ1, . . . , µn be n distinct elements of E(X,T ). Let (β1, . . . , βn) be

a tuple in R
n such that

∑n
k=1 βkµk = 0. Let 1 ≤ i ≤ n be an integer.

By (iv), for any j 6= i, there exists a Borel set Gj such that µi(Gj) =

1 and µj(Gj) = 0. We have βi =
∑n

k=1 βkµk(∩j 6=iGj) = 0. Hence,

the µk are linearly independent, therefore affinely independent.

Those results remain valid for the particular case of symbolic systems,

and can again be interpreted in terms of word combinatorics.

Definition 7.2.5 A weight function on a subshift (X,S) is a map ϕ :

L(X) → R
+ such that:

(i) ϕ(ε) = 1,

(ii) ∀w ∈ L(X), ϕ(w) =
∑

a∈A, wa∈L(X) ϕ(wa),

(iii) ∀w ∈ L(X), ϕ(w) =
∑

a∈A, aw∈L(X) ϕ(aw).

Let us denote by W(X,S) the set of weight functions on (X,S).

Again, we have a correspondence:

Proposition 7.2.6 The following map is a bijection.





M(X,S) −→ W(X,S)

µ 7−→

(

L(X) −→ R
+

w 7−→ µ([w])

)





Proof Despite the symmetry between the second and the third item, they

do not play the same role: (ii) follows from the additivity of the measure,

whereas (iii) follows from its shift-invariance. The first item tells that the

measure is a probability measure, i.e., a measure of total mass 1. Therefore,

the map is well defined. Since the set of cylinders generates the Borel

σ-algebra on X (it is a basis of the topology of X) and is closed under
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finite intersection, the map is injective (acccording to Dynkin theorem, see

e.g., (Rudin 1987)). The surjectivity is guaranteed by the Carathéodory

extension theorem (construction of an outer measure), for example any

open set is a disjoint (possibly infinite) union of cylinders, its measure is

given by summing the weights of those cylinders.

The Birkhoff ergodic theorem applied to characteristic functions of cylin-

ders can be restated in terms of frequencies:

Proposition 7.2.7 Let (X,S) be a subshift, and let µ be an element of

E(X,S). Then for µ-almost any x in X, and for any finite word w in

L(X), the frequency fw(x) exists and is equal to µ([w]).

Proof Apply the Birkhoff ergodic theorem with the countable family of

maps f = χ[w] and notice that

|x0 · · ·xn+|w|−2|w =

n−1
∑

k=0

χ[w] ◦ S
k(x).

The points which satisfy this convergence are said to be generic for µ. With

the notations of the proof of Proposition 7.2.4(iv), the set of generic points

for µ is equal to ∩w∈L(X)Gµ,χ[w]
. This proposition lets us imagine a proto-

strategy to prove that an infinite word x has frequencies, by considering the

subshift Xx and looking for the ergodic invariant measures on it. Unfortu-

nately, it is possible that the word x is generic for no element of E(Xx, S)

(see Proposition 7.2.11).

7.2.3 Unique ergodicity

Definition 7.2.8 A topological dynamical system is uniquely ergodic if it

has only one invariant probability measure.

The unique invariant measure µ is ergodic (it is an extreme point of a sin-

gleton by Proposition 7.2.4(iii)). In this extreme case of a uniquely ergodic

dynamical system, all the orbits are equidistributed:

Proposition 7.2.9 Let (X,T ) be a uniquely ergodic topological dynamical

system, whose unique invariant measure is denoted by µ. Let f : X → R be

a continuous function. Then, the sequence of functions ( 1
n

∑n−1
k=0 f ◦T

k)n∈N

converges uniformly to the function with constant value
∫

X
fdµ.
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Proof Assume by contradiction that there exist ε > 0, a sequence (xn)n∈N

in X and an extraction (i.e., a strictly increasing integer sequence) α such

that for any integer n, 1
α(n)

∑α(n)−1
k=0 f(T k(xα(n)))−

∫

X
fdµ ≥ ε. As in the

proof of Proposition 7.2.4(i), let ν be an adherent point of the sequence of

probability measures νn = 1
α(n)

∑α(n)−1
k=0 δTk(xα(n)). The measure ν is T -

invariant and satisfies
∫

X
fdν−

∫

X
fdµ ≥ ε, this contradicts the uniqueness

of µ.

In the symbolic case, when we apply this result to characteristic functions

of cylinder sets as in Proposition 7.2.7, we get the following proposition:

Proposition 7.2.10 A symbolic system (Xx, S) is uniquely ergodic if, and

only if, x has uniform frequencies.

Given a symbolic dynamical system (X,S), one can imagine the situation

where there exists more than one ergodic invariant measure but any x in X

has frequencies (that can depend on the point x). A theorem of J. Oxtoby

(Oxtoby 1952) ensures that this is not possible in the minimal case, making

unique ergodicity a necessary condition for global existence of frequencies:

Proposition 7.2.11 If (X,S) is a minimal non-uniquely ergodic symbolic

system, then there exist an infinite word x ∈ X and a finite word w such

that the frequency of w in x is not defined.

Proof Assume by contradiction that any word in X has frequencies. There-

fore, the function

fw(x) = lim
n→∞

1

n

n−1
∑

k=0

χ[w](S
k(x))

is well defined on X, for any finite word w. Since X is not uniquely ergodic,

there exist two ergodic measures µ 6= ν, hence there is a finite word w such

that µ([w]) 6= ν([w]). Let x be a generic point for µ and y be a generic point

for ν. We have fw(x) = µ([w]) 6= ν([w]) = fw(y) and since fw is constant

along the orbits, fw is nowhere continuous (the minimality implies that

both orbits of x and y are dense). But fw is a simple limit of continuous

functions on the complete metric space X (which is even compact), hence

the Baire category theorem implies that the points of continuity of fw must

be dense in X. A contradiction.

It is important to keep in mind that unique ergodicity is not a measure-

theoretic notion but a topological one. The Jewett, Krieger and Rosen-

thal theorem (Jewett 1969) (Krieger 1972) (Rosenthal 1988) asserts that
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unique ergodicity does not imply any restriction on the (unique) associated

measure-theoretic ergodic dynamical system:

Proposition 7.2.12 Every measure-theoretic ergodic dynamical system

has a uniquely ergodic topological model, i.e., for any measure-theoretic er-

godic dynamical system (X,A, µ, S), there exists a uniquely ergodic topo-

logical dynamical system (Y, T ) such that (X,A, µ, S) is isomorphic to

(Y,B, µ, T ), where B denotes the set of Borel subset of X and µ denotes

the unique element of M(X,T ).

7.2.4 Finitely many ergodic invariant measures

When a subshift admits more than one ergodic invariant measure, we can

still get some information from a bound on the number of its ergodic in-

variant measures. Let us see how the cardinality of E(X,S) measures the

diversity of the behaviours of the orbits in the subshift (X,S).

First, Proposition 7.2.4(iii) tells that E(X,S) is the set of extreme points

of M(X,S). The Krein–Milman theorem (see e.g., (Rudin 1991)) ensures

that, in such a situation, M(X,S) is the closure of the convex hull of

E(X,S). Moreover, the Choquet theorem (see also (Rudin 1991)) ensures

that any invariant measure can be written as an average of ergodic mea-

sures. Hence, any invariant measure can be recovered from the ergodic ones.

Conversely, Propositions 7.2.4(iv) and 7.2.4(v) roughly tell us that no er-

godic measure can be recovered from finitely many other ones (though some

of them could be obtained as limit points of infinitely many other ones): all

of them are necessary to describe M(X,S). Concerning the orbits, since

any ergodic measure admits some generic points, ergodic measures are also

all needed to describe the different behaviours of the typical orbits.

Let us now focus on the case when E(X,S) is known to be finite. Any

invariant measure can be written, in a single manner, as a (finite) convex

combination of ergodic invariant measures. However, Proposition 7.2.11

tells us that some orbits may be generic for no ergodic measure (see also

Exercises 7.8 and 7.9). Their behaviours are nevertheless not out of control:

Proposition 7.2.13 Let (X,S) be a subshift and let x be an element of

X. Let (wj)j∈J be a family of elements of L(X). Let α be an extraction

such that, for any j ∈ J , the sequence (|x0 · · ·xα(n)−1|wj
/α(n)) converges

to a number denoted by fwj
(x, α). Then there exists an invariant measure

µ ∈ M(X,S) such that the vector (fwj
(x, α))j∈J is equal to (µ[wj ])j∈J .

In particular, if (X,S) admits at most K ergodic invariant measures,

and if (x(i))i∈I is a family of elements of X, then the set of vectors
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{(fwj
(x(i), α(i)))j∈J | i ∈ I} spans an affine space of dimension at most

K − 1.

Another direct consequence is that, for any x ∈ X and any w ∈ L(X),

min
µ∈E(X,S)

µ([w]) ≤ lim inf
n→∞

|x0 · · ·xn|w
n+ 1

≤ lim sup
n→∞

|x0 · · ·xn|w
n+ 1

≤ max
µ∈E(X,S)

µ([w]).

Proof As in the proof of Proposition 7.2.4(i), the sequence of probability

measures µn = 1
α(n)

∑α(n)−1
k=0 δTk(x) admits an adherent point µ ∈ M(X,S).

We have, (fwj
(x, α))j∈J = (µ[wj ])j∈J .

7.3 Combinatorial criteria

We describe combinatorial criteria implying unique ergodicity, or a bound

on the number of ergodic invariant measures.

7.3.1 Complexity and Boshernitzan’s criteria

Definition 7.3.1 The complexity function is the function that maps any

integer n to the number pX(n) = Card(Ln(X)).

Theorem 7.3.2 (Boshernitzan 1984) Let K ≥ 1 be an integer. A min-

imal symbolic system (X,S) such that
⌊

lim infn→∞
pX(n)

n

⌋

≤ K admits at

most K ergodic invariant measures.

Theorem 7.3.2 will follow from Theorem 7.3.7.

Theorem 7.3.3 (Boshernitzan 1984) A minimal symbolic system

(X,S) such that lim supn→∞
pX(n)

n
< 3 is uniquely ergodic.

The original proof of Theorem 7.3.3 is too long and technical to be given

here. With a careful study of the evolution of the Rauzy graphs (see Section

7.3.2 below), it can be generalised (and the proof simplified) in the following

way:

Theorem 7.3.4 (Monteil 2009) Let K ≥ 3 be an integer. A minimal

symbolic system (X,S) such that lim supn→∞
pX(n)

n
< K admits at most

K − 2 ergodic invariant measures.
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7.3.2 Deconnectability of the Rauzy graphs

Theorem 7.3.2 (and Boshernitzan’s proof) can be generalised as follows.

Let (X,S) be a symbolic system. Any word in Ln+1(X) is naturally linked

to two words in Ln(X): its prefix and its suffix of length n. A way to keep

track of this factorial structure of the language associated with X is the use

of Rauzy graphs.

Definition 7.3.5 For any integer n, the nth Rauzy graph Gn(X) is the

directed graph such that:

(i) the set of vertices of Gn(X) is Ln(X),

(ii) there is an (oriented) edge from u to v in Gn(X) if there exists w in

Ln+1(X) such that w begins with u and ends with v.

WhenX is the subshift associated with an infinite word x, the Rauzy graphs

can be denoted by Gn(x).

These graphs were first defined by N. G. de Bruijn (de Bruijn 1946) in a

particular case: the de Brujn graphs are the Rauzy graphs when Ln(X) is

made of all the possible words of length n on the alphabet, or equivalently

when X is the full shift defined in Section 7.5.1 below. In their full gen-

erality, they were defined by G. Rauzy in (Rauzy 1983) and independently

by M. Boshernitzan, in the first published reference in a refereed journal,

(Boshernitzan 1985); they were then named by Rauzy’s followers. They

should not be confused with the Rauzy diagrams, see (Yoccoz 2005) for

example, which are graphs describing classes of permutations for interval-

exchange transformations.

Definition 7.3.6 If K ≥ 1, a symbolic system (X,S) is said to be K-

deconnectable if there exist an extraction α and a constant K ′ ≥ 1 such

that for all n ≥ 1 there exists a subset Dα(n) ⊆ Lα(n)(X) of at most K

vertices such that every path in Gα(n)(X) \ Dα(n) is of length less than

K ′α(n) (in particular it does not contain any cycle).

This means that we can disconnect (in a specific way) infinitely many

Rauzy graphs by removing at most K vertices.

Theorem 7.3.7 (Monteil 2005) A K-deconnectable symbolic system

(X,S) has at most K ergodic invariant probability measures.

Proof We will first build at most K possible candidates and then prove

that they are the only ones.
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Step 1 We build the candidates to be the only ergodic invariant probability

measures.

For any integer n, let d1,α(n), d2,α(n), . . . , dK,α(n) be an enumeration

of Dα(n) (there is no loss of generality to consider that all the Dα(n)

have exactlyK elements). For now, we work in the subshift (AN, S).

We approximate X from the outside by K sequences of periodic

subshifts as follows: for i ≤ K and n ∈ N, we define

µi,α(n) =
1

α(n)

α(n)−1
∑

k=0

δSk(dω
i,α(n)

),

where dωi,α(n) denotes the infinite word di,α(n)di,α(n)di,α(n) · · · and δ

stands for the one-point Dirac measure. The measure µi,α(n) is the

only element of M(AN, S) that gives full measure to the periodic

subshift generated by the periodic word dωi,α(n). By compactness of

M(AN, S)K , there exists an extraction β such that for each i ≤ K,

µi,α◦β(n) −−−−→
n→∞

µi,

for some µi in M(AN, S). Note that if X is aperiodic (that is, if it

contains no periodic orbit), the measures µi,α(n) give measure 0 to

X. Anyway,

Step 2 We show that for i ≤ K, µi(X) = 1.

Since X is closed in AN, we have the following approximation by

open sets:

X = X =
⋂

n∈N

⋃

u∈Ln(X)

[u],

where [u] is considered as a cylinder in the dynamical system

(AN, S). Let k ≥ n ≥ 1 be two integers. For i ∈ {0, . . . , α ◦

β(k) − n}, the finite word (dωi,α◦β(k))i · · · (d
ω
i,α◦β(k))i+n−1 is a fac-

tor of the finite word di,α◦β(k), hence it belongs to Ln(X). Hence,

µi,α◦β(k)(
⋃

u∈Ln(X)[u]) ≥ (α ◦ β(k)− n+ 1)/α ◦ β(k).

Letting k tend to infinity, since the characteristic function of
⋃

u∈Ln(X)[u] is continuous, we have µi(
⋃

u∈Ln(X)[u]) = 1. By

countable intersection (n is arbitrary), we have µi(X) = 1.

Hence, we can consider µi as an element of M(X,S).

Step 3 Let µ be an ergodic measure on X. We show that µ is one of the

µi.

Since µ is ergodic, we can pick a point x in X that is generic for it,

that is, for any u in L(X),

µ([u]) = lim
n→∞

|x0 · · ·xn−1|u
n

.
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Let n be a fixed positive integer. We decompose x into blocks

of length ℓ = (K ′ + 1)α ◦ β(n), i.e., x = b0.b1.b2.b3.b4 · · · with

bj = xℓj · · ·xℓ(j+1)−1. Because of the hypothesis, any bj contains

an occurrence of one of the di,α◦β(n) (bj can be viewed as a path

of length K ′α ◦ β(n) in Gα◦β(n)(X)). So, there exists some iα◦β(n)
such that the upper density of the set

{j ∈ N | |bj |diα◦β(n),α◦β(n)
≥ 1}

is at least 1/K. Let γ be an extraction such that iα◦β◦γ(.) is con-

stant with value denoted by i. We denote by α̃ the extraction

α ◦ β ◦ γ.

Let us show that µ = µi. Let u be a finite word in L(X). Let n be

an integer greater than |u|. There is an extraction δ such that for

any integer m,

Card{j < δ(m) | |bj |di,α̃(n)
≥ 1} ≥ δ(m)/2K.

Therefore,

|b0.b1 · · · bδ(m)−1|u ≥
δ(m)

2K
|di,α̃(n)|u.

Hence,

µ([u]) = lim
m→∞

|b0.b1 · · · bδ(m)−1|u

(K ′ + 1)α̃(n)δ(m)
≥

|di,α̃(n)|u

2K(K ′ + 1)α̃(n)
.

Moreover, we can control the frequency of occurrences of u in dωi,α̃(n)
by counting separately the occurrences of u that fall in some di,α̃(n)
and the occurrences of u that appear between two consecutive oc-

currences of di,α̃(n):

µi,α̃(n)([u]) =
1

α̃(n)

α̃(n)−1
∑

k=0

δSk(dω
i,α̃(n)

)([u]) ≤
1

α̃(n)
(|di,α̃(n)|u + |u|).

Therefore,

µi,α̃(n)([u]) ≤
|di,α̃(n)|u

α̃(n)
+

|u|

α̃(n)
≤ 2K(K ′ + 1)µ([u]) +

|u|

α̃(n)
.

Letting n tend to infinity, we have µi([u]) ≤ 2K(K ′ + 1)µ([u]), so

µi is absolutely continuous relatively to µ. Since µi is S-invariant

and µ is ergodic, Proposition 7.2.4(ii) ensures that µi = µ, hence

there are at most K ergodic invariant measures.
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Proof of theorem 7.3.2 Because of the hypothesis, there is an extraction α

such that for all integer n, pX(α(n)) ≤ (K + 1)α(n) and pX(α(n) + 1) −

pX(α(n)) ≤ K. For n in N, let Dα(n) be the set of left special factors (see

Section 4.5) of length α(n) of X, whose cardinality is not greater than K.

Let n ∈ N. Any loop O in Gα(n)(X) must contain a left special factor.

Indeed, since we can assume that X is aperiodic, there exists a finite word

u in Lα(n)+1(X) \O, and since X is minimal, there exists a path from the

edge u to any vertex of O, so the first vertex of O that this path meets is a

left special factor. Therefore, Gα(n)(X) \Dα(n) does not contain any loop.

So, a path in Gα(n)(X) \Dα(n) is necessarily injective and cannot be of

length greater than Card(Lα(n)(X)) ≤ (K + 1)α(n). Therefore, (X,S) is

K-deconnectable and Theorem 7.3.7 applies.

7.3.3 Boshernitzan’s nen condition

Let (X,S) be a minimal symbolic system. If µ ∈ M(X,S) is a S-invariant

probability measure and n is an integer, we denote by en(µ) the minimal

measure of the cylinder sets of length n of X.

Theorem 7.3.8 (Boshernitzan 1992) Let (X,S) be a minimal symbolic

system. If there exists µ in M(X,S) such that lim supn→∞ nen(µ) > 0,

then (X,S) is uniquely ergodic.

Proof Because of the hypothesis, there exists c > 0 such that, for infinitely

many integers n ∈ N, we have nen(µ) ≥ c. For such n and w ∈ Ln(X),

we have µ([w]) > c/n and since all those cylinders are disjoint, we have

pX(n) = CardLn(X) ≤ n/c. Hence, lim infn→∞ pX(n)/n ≤ 1/c < ∞.

So, Theorem 7.3.2 tells us that (X,S) admits a finite number of ergodic

invariant measures.

Assume by contradiction that (X,S) is not uniquely ergodic: it admits

at least two distinct ergodic invariant measures. Hence, there exists a finite

word w such that the set E = {µ([w]) | µ ∈ E(X,S)} has a finite cardinality

which is greater than one. We choose two ergodic measures µ1 and µ2 which

correspond to consecutive elements in E, i.e., such that µ1([w]) < µ2([w])

and (µ1([w]), µ2([w])) ∩ E = ∅. Let r and s be two real numbers such that

µ1([w]) < r < s < µ2([w]).

For n ≥ 1, let Fn denote the set {x ∈ X | |x0···xn−1|w
n

∈ [r, s]}. If ν

is an ergodic invariant measure of (X,S), then the Birkhoff ergodic theo-

rem tells us that ν-almost every point x ∈ X satisfies |x0···xn−1|w
n

−−−−→
n→∞

ν([w]) /∈ [r − s], which implies ν(
⋃

N∈N

⋂

n≥N X \ Fn) = 1. Hence,
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ν(FN ) ≤ ν(∪n≥NFn) −−−−→
N→∞

ν(∩N∈N ∪n≥N Fn) = 0. Since µ is a (fi-

nite) convex combination of such ergodic invariant measures, we also have

µ(FN ) −−−−→
N→∞

0.

Let y be a generic point for µ1 and z be a generic point for µ2: there exists

an integer N such that for any n ≥ N , |y0···yn−1|w
n

< r and |z0···zn−1|w
n

> s.

Let n be an integer which is greater than N . Since (X,S) is minimal, the

Rauzy graph Gn(X) is strongly connected, so there is a path y0 · · · yn−1 =

v1 → v2 → · · · → vp−1 → vp = z0 · · · zn−1 from y0 · · · yn−1 to z0 · · · zn−1.

We choose a shortest such path (in particular, it has no loop).

For i ≤ p−1, we have |vi+1|w ≤ |vi|w+1, hence |vi+1|w
n

≤ |vi|w
n

+ 1
n
. Since

|v1|w
n

< r and
|vp|w
n

> s, the set I = {i ≤ p | |vi|w
n

∈ [r, s]} has cardinality

greater than or equal to n(s − r) − 2. Hence, Fn contains ∪i∈I [vi], so its

measure is at least µ(Fn) ≥ (n(s− r)− 2)en(µ) = (s− r)nen(µ)− 2en(µ).

Hence, nen(µ) −−−−→
n→∞

0, a contradiction.

7.4 Examples

7.4.1 Classical symbolic systems

Because of Theorem 7.3.3, every Sturmian infinite word (see Defini-

tion 1.2.13) has uniform frequencies. Exercises 7.12, 7.13 and 7.14 in Section

7.7 deal with some applications of the results of Section 7.3 to some known

families of infinite words.

It follows from Theorem 1.6.9 above that a fixed point of a primitive sub-

stitution has uniform frequencies: this was shown in (Queffélec 1987), and,

from the same proof, we can deduce that these words satisfy a strong ver-

sion of the nen condition of Boshernitzan (see also Exercise 7.14). Thus the

Thue–Morse word (Example 1.2.21), the Fibonacci word (Example 1.2.22),

or the Rudin–Shapiro word (defined as the fixed point beginning with a of

the substitution a 7→ ab, b 7→ ac, c 7→ db, d 7→ dc) have uniform frequencies.

For the Chacon word defined after Proposition 1.4.6, the substitution is

not primitive, but this word has also uniform frequencies; this can be proved

directly, see Exercises 1.8 and 7.5; we could also notice that the complexity

is 2n− 1 for n ≥ 2 (Ferenczi 1995) and apply Theorem 7.3.3, or notice that

the dynamical system is topologically isomorphic to the symbolic system

associated with the fixed point of a primitive substitution (Ferenczi 1995)

and use Theorem 1.6.9. Note that Proposition 6.5.6 generalises this fact,

implying that the fixed points of many non-primitive substitutions have

uniform frequencies.
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7.4.2 Non-uniformly recurrent words

It is a common mistake to believe that uniform frequencies imply uniform

recurrence. A simple counter-example is the word x = baaa · · · , which has

uniform frequencies (fw(x) = 1 if w = ak for any k, fw(x) = 0 if w is any

other word) but is not uniformly recurrent (b occurs only once).

A more elaborate counter-example was suggested by E. Lesigne: let y

be an infinite word which is known to be uniformly recurrent and to have

uniform frequencies, for example the Thue–Morse word. Let w be a finite

word not occurring in y, for example here w = aaa. We build a new infinite

word x by inserting the word w into y at places along a sequence of uniform

density 0: for example here, for every k ≥ 0, we put

(i) x2k+3k+i = a, i = 1, 2, 3,

(ii) x2k+3k+3+j = y2k+j , 1 ≤ j ≤ 2k+1 − 2k.

Then x is not uniformly recurrent as w does not occur with bounded gaps;

but if we compute |xk···xk+n|w′

n+1 for a finite word w′ occurring in x, we see

that it converges uniformly to limn→+∞
|yk···yk+n|w′

n+1 , which is 0 if w′ does

not occur in y, and is known to exist otherwise. Hence, x has uniform

frequencies. See also Exercise 7.16.

This example is fairly typical, and assuming that uniform frequencies

imply uniform recurrence is not a very serious mistake, as

Proposition 7.4.1 Let x be an infinite word with uniform frequencies, with

fw(x) = lim
n→+∞

|xk · · ·xk+n|w
n+ 1

.

Then, there exist infinite words y such that L(y) = {w ∈ L(x) | fw(x) >

0}. Any of these y is uniformly recurrent and has uniform frequencies, with

fw(y) = lim
n→+∞

|yk · · · yk+n|w
n+ 1

= fw(x)

for every w ∈ L(y).

Moreover, (Xy, S) is the only minimal subshift of (Xx, S), and Xy has

full measure in Xx for the invariant measure. For any z ∈ Xx, there exists

an infinite sequence nk such that limk→+∞ Snk(z) ∈ Xy.

Proof The subshift (Xx, S) is uniquely ergodic, let µ denotes its unique

invariant probability measure. The language L = {w ∈ L(x) | fw(x) > 0}

is factorial and extendable, hence Proposition 7.1.2 ensures the existence of

a subshift Y ⊆ Xx such that L(Y ) = L.

Let Z be a subshift which is included in Xx. Proposition 7.2.4(i) ensures
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that (Z, S) admits an invariant measure ν, which can be considered as an

invariant measure on Xx, hence µ = ν. In particular, ν gives positive

measure to the cylinders [w] for any w ∈ L, hence L(Y ) ⊆ L(Z), hence

Y ⊆ Z. Therefore, Y is the only minimal subshift which is included in Xx.

Let y be any element of Y : y is uniformly recurrent, and since y ∈ Xx,

it has uniform frequencies with fw(y) = fw(x) for any w ∈ L(y) ⊆ L(x).

The last assertion comes from the fact that for any z ∈ Xx, Xz contains

Y = Xy.

Corollary 7.4.2 If x is an infinite word with uniform frequencies, x is

uniformly recurrent if, and only if, fw(x) > 0 for every factor w of x.

Proof Xx is minimal if, and only if, Xx = Xy, or L(x) = L(y).

A minimal and uniquely ergodic dynamical system is sometimes called

strictly ergodic; the symbolic translation of this notion could be positive

uniform frequencies.

7.4.3 Positive entropy and Grillenberger words

The topological entropy of a symbolic dynamical system (Xx, S) can be

defined as

h(x) = lim
n→+∞

log px(n)

n
.

For a word with uniform frequencies, the same limit is also the metric (or

measure-theoretic) entropy of the system (Xx, S, µ) equipped with its unique

invariant probability measure. All the examples in Sections 7.4.1 and 7.4.2

have entropy zero.

Though the Jewett–Krieger theorem (see Proposition 7.2.12) implies that

there exist uniquely ergodic systems of every given topological entropy, it

seems difficult to find an infinite word with uniform frequencies and positive

entropy, which implies exponential complexity. The standard way to ensure

exponential complexity is to concatenate words independently: starting

with a family of words B1, . . . , Br, we decide that our infinite word will

have all the factors Bi1 · · ·Bis for some s and every sequence (1 ≤ i1 ≤

r, . . . , 1 ≤ is ≤ r), and then iterate this process. But the resulting infinite

word will not have uniform recurrence or frequencies (if we start from all

the 1-letter words, we get the counter-examples of Section 7.5.1).

The first explicit examples with uniform frequencies (and recurrence) and

exponential complexity (indeed, with arbitrarily high entropy) were built by
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F. Hahn and Y. Katznelson (Hahn and Katznelson 1967); a much simpler

construction is due to C. Grillenberger (Grillenberger 1972), who proved

Proposition 7.4.3 (Grillenberger 1972) For every integer k and every

real number 0 ≤ h < log k, there exists a uniformly recurrent infinite word

x on an alphabet of k letters which has uniform frequencies and for which

h(x) = h.

The basic construction falls into the general framework of adic words

studied in Section 7.5.3; it is a clever replacement of the independent con-

catenation mentioned above by permutations, and of exponentials by facto-

rials; indeed, to build a one-sided infinite word x (as a slight variation from

(Grillenberger 1972) which considers two-sided infinite words), we build in-

ductively families of words Bn,i, 1 ≤ i ≤ kn, where B0,i = i, 1 ≤ i ≤ k,

and, for any permutation π on {1, . . . , kn}

Bn+1,π = Bn,π(1) · · ·Bn,π(kn),

the permutations are then ordered lexicographically to number the new

words from Bn+1,1 to Bn+1,kn!.

Then the infinite word x beginning with Bn,1 for every n has uniform

frequencies and recurrence and, if k ≥ 3, exponential complexity. The

infinite words in Proposition 7.4.3 are then deduced from one of these x

by applying a suitable substitution. Note that on two letters, the above

construction yields the Thue–Morse word, which is of entropy zero: if we

want exponential complexity on two letters, we can start with the above

construction on three letters, and replace them by aa, ab, ba.

7.4.4 Interval exchange maps

Interval exchange maps are one-dimensional geometrical systems introduced

by V. I. Oseledec (Oseledec 1966), for the study of which symbolic dynamics

proved to be a very efficient tool.

Definition 7.4.4 Let r ≥ 3. Let Λr be the set of vectors (λ1, . . . , λr) in R
r

such that 0 ≤ λi ≤ 1 for all i and Σr
i=1λi = 1. An r-interval exchange map

is given by a vector λ ∈ Λr and a permutation π of {1, 2, . . . , r}. The map

Tλ,π is the piecewise translation defined by partitioning the interval [0, 1)

into r sub-intervals of lengths λ1, λ2, . . . , λr and rearranging them according

to the permutation π or, formally,

∆i =





∑

j<i

λj ,
∑

j≤i

λj



 ,
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Tλ,πξ = ξ +
∑

π−1j<π−1i

λj −
∑

j<i

λj

if ξ ∈ ∆i.

The map Tλ,π satisfies the i.d.o.c. property (Keane 1975) if the negative

orbits of the discontinuity points
∑

j≤i λj , 1 ≤ i ≤ r − 1, are infinite and

disjoint.

Warning: roughly half the texts on interval exchange maps re-order the

subintervals by π−1; as it is not always clear to which half a given text

belongs, we insist that the present definition corresponds to the following

ordering of T∆i: from left to right, T∆π(1), . . . , T∆π(r). It makes sense

to re-order also the ∆i, thus defining T by two permutations π0 and π1
(though of course sometimes π−1

0 and π−1
1 are used...), see (Yoccoz 2006)

for example. Though it might have come useful in the definition of Keane’s

examples in Section 7.5.2.2 below, we prefer to stick to one permutation.

Definition 7.4.5 A natural coding of an r-interval exchange map is any of

the words x(ξ) for a point ξ ∈ [0, 1), where xi(ξ) = j whenever T iξ ∈ ∆j .

If x is a natural coding of Tλ,π, we can consider the symbolic system

(Xx, S). Though this system is not topologically conjugate to ([0, 1), Tλ,π),

it shares all its properties of minimality and unique ergodicity, and any

invariant measure for one of these systems can be carried to the other one.

The i.d.o.c. condition ensures that (Xx, S) and ([0, 1), Tλ,π) are minimal,

each natural coding x is uniformly recurrent and the language L(x) is the

same for all the natural codings. Then the complexity function of any

natural coding is (r − 1)n + 1 and thus the number of ergodic invariant

probability measures on (Xx, S) or ([0, 1), Tλ,π) is at most r−2 by Theorem

7.3.4 (geometrical methods can improve this bound to r
2 (Katok 1973)).

We shall call m the normalised Lebesgue measure on Λr, and µ the

Lebesgue measure on [0, 1). It is proved in (Keane 1975) that for an ir-

reducible permutation π (π{1, . . . k} 6= {1, . . . k} for every k < r) the i.d.o.c.

property is implied by the total irrationality of the λi (the λi have no ratio-

nal relation except λ1 + · · ·+ λr = 1), and thus for m-almost every λ ∈ Λr,

Tλ,π satisfies it, and hence is minimal, or equivalently the x(ξ) are uniformly

recurrent.

It follows from Theorem 7.3.3, and it is stated in (Keane 1975), that

Proposition 7.4.6 For three-interval exchange maps the i.d.o.c. condi-

tion implies unique ergodicity (hence uniform frequencies for the natural

codings).
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It was conjectured by M. Keane (Keane 1975) that the i.d.o.c. condi-

tion implies unique ergodicity for every r. After this conjecture was dis-

proved (see Section 7.5.2.1), a weaker result was considered as a question

by the same author (Keane 1977) and proved independently by H. Masur

(Masur 1982) and W. Veech (Veech 1982).

Theorem 7.4.7 For a given irreducible π, Tλ,π is uniquely ergodic (or

equivalently the x(ξ) have uniform frequencies) for m-almost every λ ∈ Λr.

The proofs of W. Veech and H. Masur use deep geometrical methods;

but a later proof of M. Boshernitzan uses mainly combinatorial methods;

it is published in (Boshernitzan 1985) but can be simplified (and made

completely combinatorial) by using the criteria of (Boshernitzan 1984)

(Boshernitzan 1992) described in Section 7.3. Thus we give here this sim-

plified proof, with an updated vocabulary.

Proposition 7.4.8 (Boshernitzan 1985) Let Un,ε be the set of λ ∈ Λr

such that en(Tλ,π) ≤
ε
n
(see Section 7.3.3). If 0 < ε < 1

r
, m(Un,ε) ≤ 3r3ε.

Proof Let Gn(λ) denote the Rauzy graphs (see Definition 7.3.5) of length

n of any infinite word x(ξ) in the natural coding of Tλ,π. As the complexity

of any x(ξ) is (r − 1)n+ 1, Gn(λ) has at most 3r − 3 branches.

The weight functions of Definition 7.2.5 can be carried over to the Rauzy

graphs: ψ is a weight function on a graph if it is positive on each vertex,

the sum of its values on vertices is 1, and it can be extended to the edges

such that for every vertex w

ψ(w) =
∑

incoming edges

ψ(e) =
∑

outgoing edges

ψ(e).

And the function ψλ, defined on the vertices of Gn(λ) by associating with

the vertex w1 · · ·wn the measure of the cylinder, µ[w1 · · ·wn], is a weight

function on the graph Gn(λ); the weight of an edge w1 · · ·wn+1 is also

µ[w1 · · ·wn+1].

We fix now a Rauzy graph G of length n; let Λ(G) be the set of λ ∈ Λr

such that Gn(λ) = G. For a given word w = w1 · · ·wn, ψλ(w1) is just λw1
;

for all λ ∈ Λ(G), all the Rauzy graphs Gi(λ), 1 ≤ i ≤ n, are fixed, and when

we look at the defining equalities of the weight function ψλ on Gi(λ), we

see that the measures of cylinders of length i+ 1 are computed by explicit

formulas from those of length i; thus the numbers ψλ(w1 · · ·wi), 1 < i ≤ n,

can be computed inductively; they depend linearly on λ. Because Tλ,π
preserves the measure µ, ψλ(w1 · · ·wn) = ψλ(w

′
1 · · ·w

′
n) if w1 · · ·wn and
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w′
1 · · ·w

′
n are on the same branch of G; hence, for fixed λ, ψλ(w1 · · ·wn)

takes 1 ≤ t ≤ 3r − 3 values, which we denote by ϕ1(λ), . . . , ϕt(λ); the ϕj

are linear functionals, en(Tλ,π) is just the smallest of the ϕj(λ), 1 ≤ j ≤ t.

Furthermore, again through the defining equalities of the successive weight

functions on Gi(λ), we can retrieve λ from the values ψλ(w) on all the

vertices of G; thus Λ(G) is a convex set and every weight function ψ on G

yields a λ ∈ Λ(G) such that ψλ = ψ.

We want to estimate the measure of {λ ∈ Λ(G) | ϕi(λ) ≤
ε
n
}; for this, we

use a general result for which we refer the reader to (Boshernitzan 1985),

Corollary 7.4: If ϕ is the restriction of a linear functional to a convex set

K of dimension d, taking values between 0 and A, then, if V denotes the

volume,

V (ϕ−1[0, B)) ≤
dB

A
V (K).

We apply it with K = Λ(G), restricting ourselves to those with

m(Λ(G)) > 0, ϕ = ϕi, B = ε
n
; the dimension is r − 1, the volume is

the Lebesgue measure; we need an estimate on A; for this, we claim that

for each vertex s of G, there exists a weight function such that ψ(s) ≥ 1
rn

.

To do this, we choose a λ ∈ Λ(G) such that Tλ,π is minimal, which is pos-

sible as m(Λ(G)) > 0; this implies that G is strongly connected and thus

we can find a loop s = s0 → · · · → sk → s0 in G; by taking it of minimal

length, we ensure it has no repetition. Then we define ψ′ to be 1
k+1 on

the si and 0 on the other vertices; ψ′ is not a weight function as it may be

0 on some vertices, but ψ = (1 − δ)ψ′ + δψλ is a weight function, and as

k ≤ (r − 1)n+ 1 we can choose δ such that our claim is proved.

Thus we have A ≥ 1
rn

, and thus, for all G with m(Λ(G)) > 0 and hence

for all G,

m({λ ∈ Λ(G) | ϕi(λ) ≤
ε

n
}) ≤ (r − 1)rεm(λ(G)).

As t ≤ 3r − 3,

m({λ ∈ Λ(G) | min
1≤i≤t

ϕi(λ) ≤
ε

n
}) ≤ 3(r − 1)2rεm(λ(G)),

which implies the proposition.

Proof of Theorem 7.4.7 If 0 < ε < 1
r
and n ≥ 1, we put Vn,ε = Λr \ Un,ε,

and Vε = ∩N≥1 ∪n>N Vn,ε ∩ {λ | Tλ,π is i.d.o.c.}.

If λ is in Vε, there are infinitely many n such that en(Tλ,π, µ) ≥
ε
n
, hence

nen(Tλ,π, µ) 6→ 0 when n→ +∞, and Tλ,π is uniquely ergodic by Theorem

7.3.8. Thus m({λ | Tλ,π is uniquely ergodic}) is at least m(Vε) ≥ 1− 3r3ε),

and thus is one as ε is arbitrary.
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The above proof does not use any of the geometrical properties of interval

exchange maps.

Explicit examples of infinite words with uniform frequencies coming from

coding of four-interval exchanges can be deduced from (Keane 1977) or

found in (Ferenczi and Zamboni 2008) or (Cheung and Masur 2006). Ex-

amples for higher number of intervals can be deduced from (Sataev 1975),

see Proposition 7.5.3 below.

7.5 Counter-examples

7.5.1 The full shift

As we have seen in Section 7.4, non-uniformly recurrent words and words

of positive entropy are generally expected not to have uniform frequencies,

unless they have been built for the specific purpose of having them.

Typical examples falling into both these categories are the words with

full complexity p(n) = kn on any finite alphabet A of cardinality k, such

as the Champernowne word 011011100101110 · · · , built by concatenating

the expansions in base 2 of 0, 1, 2, . . . , n, . . .: they do not have uniform

frequencies, and their associated symbolic system is the full shift AN.

Proposition 7.5.1 The full shift has uncountably many ergodic invariant

measures.

Proof Take a probability vector π = (π1, . . . , πk) and assign to cylinders

the measure µπ([w1 · · ·wn]) = πw1
· · ·πwn

. These measures are ergodic (see

Exercise 7.17).

The system (AN,B, µπ, S) is then called a (one-sided) Bernoulli shift.

But there are lots of other ergodic invariant measures for the full shift, for

examples the Dirac measure on each periodic orbit (see Exercise 7.11), or

the measures arising from the uniquely ergodic examples given in Section

7.4 (that can be considered as invariant measures on the full shift defined

on the same alphabet).

The non-trivial subshifts of finite type (where we consider all the infinite

words in which a prescribed set of finite words does not occur) and the

sofic systems (which constitute the closure of the subshifts of finite type

for a natural notion of homomorphism), defined in (Weiss 1973) behave

like the full shift in having positive entropy, with no uniform recurrence or

frequencies. See Section 1.6 and 2.3.1 for definitions.
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7.5.2 Interval exchange maps again

7.5.2.1 Veech’s counter-examples

Systems which are minimal and not uniquely ergodic are not so easy to

build; the famous examples of H. Furstenberg (Furstenberg 1961) are de-

fined on multi-dimensional tori, and do not give rise naturally to infinite

words.

Then came the examples of W. Veech (Veech 1969), which use ideas of

(Furstenberg 1961) together with very involved arithmetic considerations:

Theorem 7.5.2 (Veech 1969) For two irrationals α and β, let f =

−2χ[0,β) + 1 and T be the map on R/Z× {−1, 1} defined by

T (ξ, e) = (ξ + α, f(ξ)e).

If β is not of the form pα + q with p and q integers (independence con-

dition), T is minimal.

If α and β satisfy the coboundary condition

ef(ξ)g(ξ) = g(ξ + α),

for every ξ ∈ [0, 1), some measurable function g and number e = ±1, T is

not uniquely ergodic.

For each α with unbounded partial quotients, there exist uncountably

many numbers β such that both these conditions are satisfied.

This result does not appear as such in the paper (Veech 1969). Indeed,

it is written under a partly symbolic form with T replaced by the map

T (y, e) = (S(y), y0.e) on Xx × {−1, 1}, where x = (xn)n is defined as

follows: we fix ξ ∈ [0, 1), and xn = −1 if ξ + nα (modulo 1) falls into

[0, β), xn = +1 otherwise; hence, Xx ⊂ {−1, 1}N. It is then straight-

forward, though not written in (Veech 1969), that, for α and β satisfying

the conditions, the iterates of (x, 1) give an infinite word on the alphabet

{(−1,−1), (1,−1), (−1, 1), (1, 1)} which is uniformly recurrent and does not

have uniform frequencies, and these may be considered as the first infinite

words with these properties.

If now we replace R/Z× {−1} with [0, 1) and R/Z× {1} with [1, 2), and

normalise by 2, we see that T is also a five-interval exchange map defined

(if for example β < 1−α) by λ = 1
2 (β, 1−α−β, α+β, 1−α−β, α) and the

permutation 1 7→ 3, 2 7→ 2, 3 7→ 5, 4 7→ 1, 5 7→ 4. Under the independence

condition, T satisfies the i.d.o.c. condition; and its natural coding on a

five-letter alphabet is another uniformly recurrent infinite word, without

uniform frequencies if α and β satisfy the coboundary condition.

We can look at another map T ′, induced (see Definition 7.5.4 below)
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on [0, β) by the rotation of angle α. The map T ′ is a three-interval ex-

change map, satisfying the i.d.o.c. condition if α and β satisfy the inde-

pendence condition. It is an implicit consequence of (Veech 1969), stated in

(Veech 1984), that the coboundary condition is equivalent to an unexpected

property, namely that T ′ has −1 as an eigenvalue, meaning that there exists

g in L2([0, 1)) with g ◦ T ′ = −g. A direct proof of this property is given in

(Ferenczi, Holton, and Zamboni 2004).

We can also look at the map T ′′, which is an exduction on [0, β) of the

rotation of angle α: namely T ′′ξ = ξ + 1 for 0 ≤ ξ < β, and for β ≤ ξ <

1 + β, T ′′ξ is the representative of ξ + α modulo 1 which falls into [0, 1).

It is also a three-interval exchange map, defined after normalisation (if for

example β < 1− α) by λ = 1
1+β

(β, 1 − α − β, α + β) and the permutation

1 7→ 3, 2 7→ 2, 3 7→ 1. It can be viewed as a dual version of T ′ (as the

rotation is an induced map of T ′′) and shares the same properties. The

map T ′′ was introduced in (Keynes and Newton 1976) in order to exhibit

T ′′2 as a non-uniquely ergodic five-interval exchange map.

The coboundary condition is studied further by Y. Cheung

(Cheung 2003) where, for fixed β, estimates are given for the Hausdorff

dimension of the set of α for which α and β satisfy it; the non-unique er-

godicity of T is also seen as the non-ergodicity of some directions for a

billiard flow.

A nice generalisation of Veech’s result appeared a few years later in a pa-

per of E. Sataev. The lack of communication between West and East at that

time explains that Sataev apparently did not know the paper (Veech 1969)

and that in turn (Sataev 1975) was widely ignored thereafter.

Proposition 7.5.3 (Sataev 1975) For any integer r ≥ 2 and any integer

1 ≤ k ≤ r, there exist an irrational α, r−1 disjoint intervals Ij ⊆ [0, 1) and

r− 1 different permutations πj of {1, . . . , r}, 1 ≤ j ≤ r− 1 , such that U is

minimal and has exactly k ergodic invariant probability measures, where U

is the map on T
1 × {1, . . . , r} defined by U(ξ, e) = (ξ + α, h(ξ)e), and h(ξ)

is the permutation πj when ξ is in Ij and the identity elsewhere.

This gives exchanges of at least r2 and at most 2r2 intervals which have

a prescribed number 1 ≤ k ≤ r of ergodic invariant probability measures.

7.5.2.2 Keane’s counter-examples

Then M. Keane (Keane 1977) lowered the number of intervals required for

a counter-example to four, which is optimal in view of Proposition 7.4.6.

But his paper uses very different techniques, and there appear for the first

time two ideas which were to be named and systematically studied later:
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one is the induction, a different form of which will give the Rauzy induction

and is the starting point of the geometrical methods mentioned in Section

7.4.4; the other one is the use of matrices for adic systems, which will be

developed in the next section.

We recall that

Definition 7.5.4 If T is map from a set X to itself, and A a subset of X,

the induced map of T on A is defined by TA(z) = T rA(z)z, with rA(z) =

min{n > 0 | Tnz ∈ A}, for all z ∈ A for which rA(z) is finite.

The induction idea works as follows: M. Keane takes a four-interval

exchange for the permutation (in our notation, see Section 7.4.4 above)

1 → 4, 2 → 2, 3 → 1, 4 → 3, denoted by π, with a probability vector λ as

yet unknown.

Some inequalities on the λi ensure that the induced map of Tλ,π on the

fourth interval ∆4 is well defined and is another four-interval exchange

map which, after renormalisation and a renumbering of the intervals which

reverses their order, can be defined by the permutation π and a vector λ′

such that λ = Am,pλ
′, where m and p are integers and Am,p is the matrix









0 0 1 1

m− 1 m 0 0

p p p− 1 p

1 1 1 1









.

This induction process is then iterated.

Proposition 7.5.5 (Keane 1977) For every infinite sequence of matrices

Amk,pk
, if P is the positive cone in R

4, the set ∩k∈NAm1,p1
· · ·Amk,pk

P is

non-empty.

Let E be this set normalised by λ1 + · · · + λ4 = 1. For every λ ∈ E,

the four-interval exchange Tλ,π is such that, if we iterate k times the

induction on the fourth interval, after renormalising, and reversing the

order if k is even, we get the four-interval exchange Tλ′

(k)
,π, with λ =

Am1,p1
· · ·Amk,pk

λ′(k).

The matrix part of (Keane 1977) will be stated in greater generality as

Proposition 7.5.10; it shows that under mild conditions on the mk and pk,

T is not uniquely ergodic. Minimality for this example can be realised

through the i.d.o.c. condition, and also with the stronger requirement of

total irrationality, which was not satisfied by Veech’s examples.

Further examples of non-uniquely ergodic four-interval ex-

changes can be found in (Marmi, Moussa, and Yoccoz 2005) and
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(Ferenczi and Zamboni 2008), and a generalisation of Keane’s exam-

ples to r intervals has been done in (Yoccoz 2005) for any r ≥ 4. In all

cases, by natural coding we get uniformly recurrent words without uniform

frequencies.

7.5.3 Adic words and languages

7.5.3.1 Adic systems in the symbolic framework

The Bratteli–Vershik dynamical systems, initially called adic systems by

A. Vershik , are defined and studied at length in Chapter 6 of the present

book. They do not fit into the framework of symbolic dynamics. Indeed,

they are defined on what looks like a space of infinite words, but not as

a shift, and some of them are not topologically isomorphic to a symbolic

system since they are not expansive (see Section 6.5.3). For many of them,

however, there is a standard way to code them into a well-defined subshift,

see the discussion after Proposition 7.5.8, and we take this coded form as

a (somewhat pedestrian) definition of what we call a symbolic adic system.

More precisely we define an adic infinite word as a word whose language

is generated by a finite number of families of words, build by recursive

concatenation rules:

Definition 7.5.6 An infinite word x is adic if there exist finite words

Bn,1, . . . , Bn,kn
, for n ∈ N , such that L(x) is the set of words w for which

there exist n and i such that w is a factor of Bn,i, with the additional

conditions

(i) B0,i = i, 1 ≤ i ≤ k0,

(ii) for each 1 ≤ i ≤ kn, there exist an integer t(n, i) > 0, and t(n, i)

integers 1 ≤ ks(n, i) ≤ kn−1 such that

Bn,i = Π
t(n,i)
s=1 Bn−1,ks(n,i),

(iii) for every p there exists N(p) such that for every word w in L(x) of

length at least N(p) and every decomposition

w = UΠr
j=1Bp,ljV

where U is a (proper, possibly empty) suffix of some Bp,l0 and V

is a (proper, possibly empty) prefix of some Bp,lr+1
, U and the li,

1 ≤ i ≤ r, depend only on w.

The nth matrix Mn(x) of the adic word is the matrix which has on its

ith line, 1 ≤ i ≤ kn−1, and jth column, 1 ≤ j ≤ kn, the number of

1 ≤ s ≤ t(n, j) such that ks(n, j) = i.
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The notation B is for block which is more used by ergodicians than word,

and the matrix counts the number of Bn−1,i which appear in the defining

formula for Bn,j .

The third condition in the definition is called a condition of recognisability;

though it is cumbersome to write, it is generally easy to check.

We have already seen examples of adic words in Section 7.4.3, with those

of the Grillenberger words which are built explicitly with blocks Bn,i. As

has been stated, the examples of Section 7.5.2.2 fall into this category: it is

an easy consequence of Proposition 7.5.5 that (with the notations of Section

7.5.2.2)

Proposition 7.5.7 For any λ in E, the natural codings of Tλ,π are adic

words with kn = 4 for all n and Mn = Amn,pn
.

More generally, natural codings of interval exchange maps are adic

words, with explicit constructions being given for some permutations

in (Ferenczi, Holton, and Zamboni 2003) (Ferenczi and Zamboni 2009)

(Ferenczi and Zamboni 2008); another construction can be deduced from

Section 6.5.6.

Recent general results on Bratteli–Vershik systems compute all

their invariant probability measures, see for example (Fisher 2009),

(Bezuglyi, Kwiatkowski, Medynets, et al. 2009), and Section 6.8 with fur-

ther references. We give here a simple particular case of these results,

adapted to the needs of the present section, together with a sketch of a

self-contained proof which does not need the whole Bratteli–Vershik ma-

chinery, but still may be skipped by readers who are more interested in

word combinatorics than in dynamical systems.

Proposition 7.5.8 Let x be an adic word with matrices Mn, such that

kn = k and detMn 6= 0 for every n, and

lim
n→+∞

min{Σa∈Ca | C column of M1 · · ·Mn} = +∞.

If P is the positive cone in R
k, each point µ in the set ∩n∈NM1 · · ·MnP ,

normalised by µ1+ · · ·+µk = 1, defines an invariant probability measure on

(Xx, S) such that µ[i] = µi; every invariant probability measure on (Xx, S)

is of that form, and at most k of them are ergodic.

Proof The recognisability condition ensures that for every n, every infinite

word y in Xx admits a unique infinite decomposition UBn,l1Bn,l2 · · · ; for

1 ≤ i ≤ k we define the set Fn,i to be the set of y ∈ Xx for which the suffix U

is empty and l1 = i. We check that for each given n, the SjFn,i, 1 ≤ i ≤ k,
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0 ≤ j ≤ |Bn,i| − 1 form a partition of Xx (which is indeed a Kakutani–

Rokhlin partition, see Definition 6.4.1); these partitions are increasing (the

atoms of the (n+ 1)th partition are subsets of atoms of the nth partition),

and, except possibly for a countable number of points, two points belonging

to the same atom of the nth partition for every n are the same (these

infinite words coincide on arbitrarily long initial segments, as the condition

on the columns of M1 · · ·Mn ensures that the |Bn,i| go to infinity with

n); the system (Xx, S) is indeed a Bratteli–Vershik dynamical system and

moreover it is of finite rank, see (Ferenczi 1997). This is enough to ensure

that a measure on Xx is determined by its values on the atoms of these

partitions, thus, if it is S-invariant, by its values on the Fn,i.

It follows from the definitions that Fn−1,i is a union of images by S of

the Fn,j , 1 ≤ j ≤ k, with an iterate of Fn,j appearing in Fn−1,i whenever

some ks(n, i) is equal to j in the defining decomposition of Bn,i thus, if

ρn = (µ(Fn,1), . . . , µ(Fn,k)), we get ρn−1 = Mnρn. Thus the measure µ is

completely determined by the vector ρ0, and the space of such vectors is

of dimension at most k; we can define such a measure if, and only if, all

the vectors ρn have positive coordinates; thus, after normalising, we get the

claimed result.

Let us mention that if we describe a Bratteli–Vershik dynamical system

through a sequence of Kakutani–Rokhlin partitions as in Theorem 6.4.3,

this gives immediately a symbolic system as in Definition 7.5.6, by putting

the letter l at the jth place of the word Bn,i whenever (with the notation

of Theorem 6.4.3) T jBi(n) falls into Bi(0). Unfortunately, the symbolic

system we get is not always isomorphic to the system defined from the

KR-partitions, as happens when we start from the dyadic odometer (see

Section 6.5.1), which is aperiodic but gives rise to an infinite word defined

by kn = 1, B0 = 0, Bn+1 = BnBn, which is just the periodic infinite word

0000 · · · ; the isomorphism does however work whenever the words we get

satisfy the recognisability condition, which is generally the case - though

obviously not for the Bn of the dyadic odometer.

7.5.3.2 Some families of examples

For an adic word, minimality can be ensured by mild properties of primi-

tivity of the matrices:

Proposition 7.5.9 Let x be an adic word with matrices Mn, such that,

for every n, there exists m ≥ n such that all the entries of Mn · · ·Mm are

positive; then x is uniformly recurrent.

Proof Exercise 7.20.
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This gives a cornucopia of uniformly recurrent words without uniform

frequencies, by ensuring there is more than one normalised element in

∩n∈NM1 · · ·MnP . And first we can state the result which is implicitly

proved in the matrix part of (Keane 1977):

Proposition 7.5.10 An adic word with matrices Mn = Amn,pn
, with p1 ≥

9 and 3(pn + 1) ≤ mn ≤ 1
2 (pn+1 + 1) for all n, does not have uniform

frequencies.

Thus the non-unique ergodicity of Keane’s examples comes only from

the adic structure of the system and Proposition 7.5.8, which is proved

in (Keane 1977) in this particular case (the general case uses basically the

same reasoning). And we see from Propositions 7.5.7 and 7.5.8 that there is

a duality between the lengths of the intervals and the values of the invariant

measures on them: with the notations of Section 7.5.2.2, for any λ ∈ E,

every invariant probability measure on ([0, 1), Tλ,π) is defined from a vector

µ ∈ E by giving measure µi to the ith interval (it follows from the proofs

of both Theorem 7.4.7 and Proposition 7.5.8 that the measures of the four

initial intervals determine the measure µ completely). Under the above

conditions on the (mk, pk), E is not reduced to a point but is a segment,

whose two endpoints give the two ergodic invariant measures (note that

here the adic structure predicts at most four ergodic invariant measures;

but we have seen in Section 7.4.4 that, by Katok’s result (Katok 1973), this

can be reduced to two for a four-interval exchange). If we choose λ to be

in the interior of this segment, these two ergodic measures are absolutely

continuous with respect to the Lebesgue measure but different from it; if we

choose λ to be an endpoint, one ergodic measure is the Lebesgue measure

and the other one is singular; a recent work of J. Chaika (Chaika 2008) has

proved that this singular measure can have a support of arbitrarily small

Hausdorff dimension.

The non-unique ergodicity for the examples of

(Ferenczi and Zamboni 2008) comes also directly from their adic defi-

nition.

The paper (Ferenczi, Fisher, and Talet 2009) is devoted to the building

of examples with the lowest possible kn.

Proposition 7.5.11 (Ferenczi, Fisher, and Talet 2009) Any adic

words with the following matrices Mn are uniformly recurrent without

uniform frequencies:

(i)

(

qn 1

1 qn

)

if Σ+∞
n=0

1
qn
< 1.
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(ii)

(

qn rn
sn tn

)

if q0t0 > r0s0, Σ
+∞
n=0

qnrn+1

rntn+1
< +∞, Σ+∞

n=0
bnsn+1

anqn+1
< +∞,

where (an, bn) is the first line of the matrix M0 · · ·Mn.

(iii)





qn 1 0

1 qn 1

0 qn 1



 if Σ+∞
n=0

1
qn
< 1.

(iv)





qn 0 qn − 1

rn rn − 1 rn
1 1 1



 if r0 ≥ 6 and 3rn+1 ≤ 2qn ≤ rn+1 for all

n > 0.

The first examples provide probably the simplest words which may be

built with uniform recurrence but without uniform frequencies. The last

family of examples is an abstract version of Keane’s examples of Section

7.5.2.2 with k = 3; note that they are not natural codings of three-interval

exchanges, because of Proposition 7.4.6.

In the above examples, uniform recurrence and uniform frequencies are

ensured by sufficient conditions on the matrix only; however, in general

uniform recurrence and uniform frequencies depend on the actual recursion

formulas giving the words Bn,i, see Exercise 7.18.

7.5.3.3 Complexity and the Cassaigne–Kaboré word

The complexity of an adic word depends on the actual recursion formulas;

let us mention that if kn = k for all n the complexity is sub-exponential (the

topological entropy is 0), but examples can be built with lim sup px(n)
f(n) =

+∞ for any given f with subexponential growth: such examples are built

in Proposition 3 of (Ferenczi 1996) under a slightly different form; with the

notations of that paper, those built for bounded K can be defined as adic

words with kn = K + 1 by putting Bn,i = Bn1
i−1, 1 ≤ i ≤ K + 1.

At the other end of the spectrum J. Cassaigne and I. Kaboré

(Cassaigne and Kaboré 2009) have investigated the words without uniform

frequencies with the lowest possible complexity function.

Proposition 7.5.12 (Cassaigne and Kaboré 2009) There exists a

uniformly recurrent adic word without uniform frequencies such that

px(n) ≤ 3n+ 1 and lim infn→+∞
px(n)

n
= 2.

This tends to show that the bounds in Theorems 7.3.2 and 7.3.3 are

optimal.

The example itself uses sequences of numbers 0 < ln < mn < pn, with

ln tending to infinity, pn

mn
growing fast enough, and mn

ln
faster enough; for
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example ln = 24+2n+1

, mn = 22
n+3

, pn = 25.2
n+1

. Then, we define B0,1 = 1,

B0,2 = 2, Bn+1,1 = Bmn

n,1B
ln
n,2 and Bn+1,2 = Bmn

n,1B
pn

n,2.

The infinite word x can be defined as the limit of the Bn,1 when n→ +∞.

Its complexity can be computed by using bispecial factors (see Section 4.5):

we find that px(n+1)−px(n) is 2 or 3, the value 2 being taken on intervals

[sn, tn] with tn ≥ lnsn, which proves the assertions. The uniform recurrence

comes from Proposition 7.5.9, and the absence of uniform frequencies can

be proved either by checking we are in the second class of examples in

Proposition 7.5.11, or by imitating the simpler proof for the first class of

examples in Proposition 7.5.11, or directly, see Exercise 7.19 below.

7.5.3.4 Earlier examples

X. Bressaud (unpublished) used the same formulas as J. Cassaigne and

I. Kaboré but with ln replaced by 1, mn growing fast and pn much faster

than mn; his word is also uniformly recurrent and without uniform frequen-

cies.

A. Frid (CANT 2006, unpublished) suggested the following example: let

x be the infinite word that is the limit of the finite words Bn defined by

B0 = 1 and Bn+1 = Bnσ(Bn)
kn , where σ(w) denotes the word obtained by

exchanging 2 and 1 in w.

If kn grows sufficiently fast, then A. Frid showed that x is uniformly

recurrent and does not have frequencies. More precisely (Xx, S) admits

exactly two ergodic invariant measures. Indeed, this is an adic word if we

put Bn,1 = Bn, Bn,2 = σ(Bn); it looks different from the previous examples

as the higher entries in the matrix are not on the diagonal, but x is also the

limit of B2n,1, and if we look only at the B2n,1 and B2n,2 we get an adic

word whose matrix is of the same type as those in Proposition 7.5.11.

7.5.3.5 The Pascal-adic language

The reference for this whole section is (Méla and Petersen 2005). As we

noticed in the proof of Proposition 7.5.8, all the adic examples of Section

7.5.3, which are built with a constant kn, could also be described with the

older notion of finite rank (Ferenczi 1997), and the adic terminology may

seem to be just a more fashionable presentation; however, this terminology

comes into its own when kn is unbounded, and the following very interest-

ing example could not have been defined within the framework of earlier

notions. Note that here the dynamical system is not defined by one infi-

nite word, but by a language; but this slight generalisation does not change

anything to the properties and techniques involved.

Definition 7.5.13 The Pascal-adic language is the set L of words w for



406 S. Ferenczi, T. Monteil

which there exist n and i such that w is a factor of Bn,i, where the Bn,i,

1 ≤ i ≤ n+2, are defined by B0,i = i, 1 ≤ i ≤ 2; for every n, Bn,1 = Bn−1,1,

Bn,n+2 = Bn−1,n+1 and for 2 ≤ j ≤ n+ 1

Bn,j = Bn−1,j−1Bn−1,j .

The Pascal-adic system is the subshift (XL, S), where XL is the set of all

x ∈ {1, 2}N such that L(x) ⊆ L (see Proposition 7.1.2).

This language is related to the Pascal triangle, as the length of Bn,i is

the binomial coefficient
(

n+1
i−1

)

, and the blocks are built in the same way as

these coefficients are built along the Pascal triangle.

The system (XL, S) is not minimal, as Bn,2 = 1n2 for every n ≥ 1 so

1ω ∈ XL. The following result states that it has infinitely many ergodic

invariant probability measures.

Theorem 7.5.14 (Méla and Petersen 2005) For every word w in L,

for every real number 0 ≤ α ≤ 1, there exists fα(w) such that for any

sequence kn → +∞ with limn→+∞
kn

n
= α,

lim
n→+∞

|Bn,kn
|w

|Bn,kn
|
= fα(w).

Moreover, all the ergodic invariant probability measures on (XL, S) are the

measures µα given on the cylinders by µα([w]) = fα(w).

Thus, this is a very interesting intermediate case where the invariant

measures are known (and there are not too many of them), and there are

what we could call directional frequencies. As for the complexity, it satisfies

limn→+∞
p(n)
n3 = 1

6 .

7.6 Further afield

In spite of the Jewett–Krieger theorem, uniquely ergodic systems may be

considered to represent a small and particularly well-behaved class of dy-

namical systems; however, even more complicated systems can present

properties which generalise directly the notion of unique ergodicity: in-

stead of hoping that there will be one invariant measure, we know some

explicit invariant measures, and what we want to prove is that these con-

stitute the whole set of invariant measures. For example, a measure-

theoretic system (X,T, µ) has minimal self-joinings if every ergodic mea-

sure on X × X, invariant by T × T , and whose marginals on X are

µ, is either the product measure µ × µ, or a diagonal measure defined

by ν(A × B) = µ(A ∩ T kB) for some k. This notion was defined by
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D. J. Rudolph in (Rudolph 1979). The standard example of a system with

minimal self-joinings is Chacon’s map, the symbolic system associated with

the Chacon word of Section 1.4. Moreover, the (mostly combinatorial)

techniques used in (del Junco, Rahe, and Swanson 1980) to prove this re-

sult were generalised in a famous series of papers by M. Ratner, starting

from the joinings of horocycle flows (Ratner 1983) and culminating in the

proof of Raghunathan’s conjecture on unipotent groups (Ratner 1991).

The results on interval-exchange maps can generally be interpreted into

results on more geometrical systems; in particular, Boshernitzan’s nen cri-

terion is not only a tool in proving Theorem 7.4.7 above, but also a way

of knowing that a given interval exchange is uniquely ergodic; thus it is

proved by W. Veech (Veech 1999) to imply an earlier criterion of H. Ma-

sur (Masur 1992) for the unique ergodicity of some foliations on Riemann

surfaces of genus at least two equipped with a holomorphic 1-form. Then

he uses this criterion to precise the knowledge of invariant measures for

another famous flow, the Teichmüller geodesic flow.

7.7 Exercises

Section 7.1

Exercise 7.1 Prove that an infinite word x is eventually periodic if, and

only if, Xx is finite. Prove that x is periodic if, and only if, Xx is finite and

S|Xx
: Xx → Xx is onto.

Exercise 7.2 Consider the words x = 01011013014015 · · · and y =

01001103130414 · · · . Describe the subshifts Xx and Xy and the subshifts

they contain. Which ones are minimal? Make a picture describing the

action of S on Xx and Xy.

Exercise 7.3 Prove that the set of cylinders of a subshift (X,S) is equal to

the set of closed balls (any centre, any radius) of X for the distance defined

in 1.2.10. Prove that it is also equal to the set of open balls of X for this

distance. Prove that any element of a ball is a centre of it.

Exercise 7.4 Let (X,S) be a subshift. Prove that

X =
⋂

n∈N

⋃

u∈Ln(X)

[u],

where [u] is considered as a cylinder in the dynamical system AN.
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Exercise 7.5 Using exercise 1.8, prove directly that the Chacon word has

uniform frequencies.

Hint. Show that fw(x) = limn→+∞
|bn|w
|bn|

.

Section 7.2

Exercise 7.6 Rephrase the definition of a weight function in terms of

Rauzy graphs.

Exercise 7.7 Give an example of a non-minimal non-uniquely ergodic sub-

shift (X,S) such that any infinite word x in X has uniform frequencies.

Exercise 7.8 Let (X,S) be a subshift, and n be a positive integer. Assume

that there exist n elements x1, . . . , xn of X and n elements w1, . . . , wn of

L(X) such that, for any i, j ≤ n satisfying i 6= j, we have fwi
(xj) > 0 and

fwi
(xi) = 0. Prove that (X,S) admits at least n ergodic invariant measures.

Exercise 7.9 Let (X,S) be a subshift, such that for any letter a ∈ A,

there exists a word x ∈ X such that lim supn→∞
|x0···xn|a

n
> 1/2. Prove

that (X,S) admits at least Card(A) ergodic invariant measures.

Exercise 7.10 Let (an)n∈N be an integer sequence which grows sufficiently

fast. Let x be the word 0a01a10a21a30a41a50a61a7 · · · . Show that x does

not have frequencies, but all of the minimal subshifts contained in Xx are

uniquely ergodic.

Section 7.3

Exercise 7.11 For any element v of A+, let us define the measure µv =
1
|v|

∑|v|−1
k=0 δSk(vω). Prove that the set {µv | v ∈ A+} is a subset of E(AN, S)

which is dense in M(AN, S). In particular, E(AN, S) = M(AN, S).

Hint. To approximate an invariant measure µ in M(AN, S), let n be a big

integer, let {u1, . . . , uk} be an enumeration of Ln(A
N) = An, and consider

the word v = up1

1 · · ·upk

k , where pi/q is a rational approximation of µ([ui]).

Section 7.4

Exercise 7.12 An infinite word x is said to be episturmian if L(x) is

closed under reversal and has at most one right special factor of each

length (Droubay, Justin, and Pirillo 2001). Prove that an episturmian infi-

nite word has uniform frequencies.
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Exercise 7.13 Let x be an infinite word on A. A finite word q ∈ A∗ is said

to be a quasiperiod of x if x is covered by the occurrences of q (in particular,

q is a prefix of x). An infinite word x is said to be multi-scale quasiperiodic

if it admits infinitely many quasiperiods (Marcus and Monteil 2006). Prove

that a multi-scale quasiperiodic infinite word has uniform frequencies.

Exercise 7.14 An infinite word x is said to be linearly recurrent if ∃K ≥

0, ∀u ∈ L(x), ∀v ∈ LK|u|(x), |v|u ≥ 1 (Durand 2000) (see also Section

6.5.3). Prove that a linearly recurrent infinite word has uniform frequencies.

Prove that a fixed point of a primitive substitution is linearly recurrent.

Prove that an infinite word x is linearly recurrent if, and only if, there

exists µ in M(Xx, S) such that lim infn→∞ nen(µ) > 0.

Hint. If v = v0 · · · vn is a long element of L(x) having no occurrence of

u, assume that vu ∈ L(x) and compute the measure of ∪i≤n[vivi+1 · · · vnu]

(this trick is due to M. Boshernitzan).

Exercise 7.15 Give an example of a minimal subshift of linear complexity

whose invariant measures are not determined by their values on the cylin-

ders of length 1.

Hint. Consider the substitution 0 7→ 0011, 1 7→ 0101.

Exercise 7.16 Give an example of an infinite word x such that, for any k,

f0k(x) = 1 and such thatXx has infinitely many ergodic invariant measures.

Is it possible to construct a uniformly recurrent example?

Section 7.5

Exercise 7.17 Let µ = µπ be the Borel measure defined on the full-shift

(AN, S) as in the proof of Proposition 7.5.1. Prove that, for any two finite

words u and v and for any n ≥ |u|, we have µ([u]∩S−n([v])) = µ([u])µ([v]).

Since µ is outer-regular, we know that for any Borel subset B of AN and for

any ε > 0, there exist some finite words w1, . . . , wℓ such that B is included

in the disjoint union ⊔ℓ
i=1[wi] and such that µ(⊔ℓ

i=1[wi]) ≤ µ(B)+ ε. Prove

that, for any two Borel subsets B and C of AN, we have limn→∞ µ(B ∩

S−n(C)) = µ(B)µ(C) (the measure-theoretic dynamical systems satisfying

this property are said to be strongly mixing). Prove that, for any S-invariant

Borel subset B of AN, we have µ(B) = µ(B)2. Conclude that the system

(AN,B, µπ, S) is ergodic.

Exercise 7.18 Let x denote the fixed point of the substitution a 7→ aaab

b 7→ b which begins with the letter a. Show that Xx is neither minimal nor
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uniquely ergodic. Show that both x and Chacon’s word can be described

in the adic framework with the same (constant) sequence of matrices.

Exercise 7.19 Let Bn,1 and Bn,2 be as in Section 7.5.3.3. Show that

1 ≤ |Bn,2|
|Bn,1|

≤ pn−1

ln−1
. Show that

|Bn+1,2|2
|Bn+1,2|

≥ pn

mn+pn
≥ |Bn,2|2

|Bn,2|
. Show that

|Bn+1,1|1
|Bn+1,1|

≥ mn

mn+ln
pn−1
ln−1

|Bn,1|1
|Bn,1|

. Use infinite products to give lower bounds

for
|Bn,2|2
|Bn,2|

and
|Bn,1|1
|Bn,1|

. Show that
|Bn,2|2
|Bn,2|

+
|Bn,1|1
|Bn,1|

≥ 3
2 for good choices of ln,

mn, pn. Conclude that this contradicts the existence of uniform frequencies.

Exercise 7.20 Prove Proposition 7.5.9.

7.8 Note: Dictionary between word combinatorics and symbolic

dynamics

combinatorics on words symbolic dynamics

infinite word x subshift (Xx, S)

factorial and extendable language L subshift (X,S)

finite word w cylinder [w]

uniform recurrence minimality

weight function invariant measure

uniform frequencies unique ergodicity

positive uniform frequencies strict ergodicity
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Math. France 123, (1995) 271–292.

[Ferenczi 1996] Ferenczi, S. Rank and symbolic complexity. Ergod. Th. & Dynam.
Sys. 16, (1996) 663–682.

[Ferenczi 1997] Ferenczi, S. Systems of finite rank. Colloq. Math. 73(1), (1997)
35–65.

[Ferenczi, Fisher, and Talet 2009] Ferenczi, S., Fisher, A., and Talet, M. Some
(non)-uniquely ergodic adic transformations. J. Analyse Math. To appear.

[Ferenczi, Holton, and Zamboni 2003] Ferenczi, S., Holton, C., and Zamboni,
L. Q. Structure of three-interval exchange transformations. II. A combi-
natorial description of the trajectories. J. Anal. Math. 89, (2003) 239–276.

[Ferenczi, Holton, and Zamboni 2004] Ferenczi, S., Holton, C., and Zamboni,
L. Q. Structure of three-interval exchange transformations III: ergodic and
spectral properties. J. Anal. Math. 93, (2004) 103–138.

[Ferenczi and Zamboni 2008] Ferenczi, S. and Zamboni, L. Q. Eigenvalues and
simplicity for interval exchange transformations, 2008. Preprint.

[Ferenczi and Zamboni 2009] Ferenczi, S. and Zamboni, L. Q. Structure of k-
interval exchange transformations: induction, trajectories, and distance the-
orems. J. Analyse Math. To appear.

[Fisher 2009] Fisher, A. M. Nonstationary mixing and the unique ergodicity of

411



412 References

adic transformations. Stoch. Dyn. To appear.
[Furstenberg 1961] Furstenberg, H. Strict ergodicity and transformation of the

torus. Amer. J. Math. 83, (1961) 573–601.
[Grillenberger 1972] Grillenberger, C. Construction of strictly ergodic systems

I. Given entropy. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 25,
(1972/73) 323–334.

[Hahn and Katznelson 1967] Hahn, F. and Katznelson, Y. On the entropy of
uniquely ergodic transformations. Trans. Amer. Math. Soc. 126, (1967) 335–
360.

[Jewett 1969] Jewett, R. The prevalence of uniquely ergodic systems. J. Math.
Mech. 19, (1969/70) 717–729.

[del Junco, Rahe, and Swanson 1980] del Junco, A., Rahe, M., and Swanson, L.
Chacon’s automorphism has minimal self-joinings. J. Analyse Math. 37,
(1980) 276–284.

[Katok 1973] Katok, A. B. Invariant measures of flows on orientable surfaces. Dokl.
Akad. Nauk SSSR 211, (1973) 775–778.

[Keane 1975] Keane, M. S. Interval exchange transformations. Math. Zeitschrift
141, (1975) 25–31.

[Keane 1977] Keane, M. Non-ergodic interval exchange transformations. Israel J.
Math. 26(2), (1977) 188–196.

[Keynes and Newton 1976] Keynes, H. B. and Newton, D. A “minimal”, non-
uniquely ergodic interval exchange transformation. Math. Z. 148(2), (1976)
101–105.

[Krieger 1972] Krieger, W. On unique ergodicity. In Proceedings of the Sixth Berke-
ley Symposium on Mathematical Statistics and Probability (Univ. California,
Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 327–346. Univ.
California Press, Berkeley, Calif., 1972.

[Marcus and Monteil 2006] Marcus, S. and Monteil, T. Quasiperiodic infinite
words : multi-scale case and dynamical properties, 2006. Preprint.

[Marmi, Moussa, and Yoccoz 2005] Marmi, S., Moussa, P., and Yoccoz, J.-C. The
cohomological equation for Roth-type interval exchange maps. J. Amer.
Math. Soc. 18(4), (2005) 823–872 (electronic).

[Masur 1982] Masur, H. Interval exchange transformations and measured folia-
tions. Ann. of Math. (2) 115(1), (1982) 169–200.

[Masur 1992] Masur, H. Hausdorff dimension of the set of nonergodic foliations of
a quadratic differential. Duke Math. J. 66(3), (1992) 387–442.
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