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Abstract. The aim of this short note is to describe the set of finite
words that appear in the cutting sequences of a smooth curve to arbi-
trary small scale. This language strictly contains the factors of Sturmian
words, and can be decided by a linear time algorithm.
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1 Introduction

A smooth curve is a map γ from a compact interval I of the real line to the
plane, which is C∞ and such that ||γ′(t)|| > 0 for any t ∈ I (this last property is
called regularity). Any such curve can (and will be considered to) be arc-length
reparametrised (i.e. ∀t ∈ I, ||γ′(t)|| = 1).
We can approximate such a curve by drawing a square grid of width (mesh or
resolution) h on the plane, and look at the sequence of squares that the curve
meets. For a generic position of the grid, the curve γ does not hit any corner and
crosses the grid transversally, hence the curve passes from a square to a square
that is located either r ight, up, left or down of it. We record this sequence of
moves and define the cutting sequence of the curve γ with respect to this grid
as a word w on the alphabet {r, u, l, d} which tracks the lines of the grid crossed
by the curve γ.
The following picture shows a curve γ with cutting sequence rruuldrrrd.

h

γ

Note that since the grid can be translated, a given curve may have more than
one cutting sequence for a given mesh h. Our knowledge of the curve from one of
its cutting sequences increases when the mesh h decreases, and when the mesh
approaches 0, the local patterns of the cutting sequence allow the digital geome-
ters to define infinitesimal estimators (like tangents or curvature), for example
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by recognising maximal straight segments appearing in the cutting sequence [4]
[3].

Cutting sequences associated to straight segments are known to be exactly the
balanced words (see Section 3.5), which are also the finite factors of Sturmian
words. A problem is that some non-balanced words appear at arbitrary small
scale even for very regular curves. For example, the word rruu appears in the
cutting sequence of infinitely many Bresenham circles [5] but is not balanced.
This “infinitesimal noise” has the following consequence: when the mesh tends
to 0, the length of the maximal segments does not necessarily tend to infinity,
causing some convergence problems for the estimators.

A solution might be found in another definition of what digital tangents are:
in this paper, we consider all the finite words that appear in the cutting se-
quences of some smooth curve for arbitrary small scale (like rruu for the circle).
More precisely, let F (γ,G) denote the set of factors of the cutting sequence of
the curve γ with respect to the square grid G (when the curve hits a corner,
the cutting sequence is not defined and we set F (γ,G) = ∅). We define the
asymptotic language of γ by

T (γ) = lim sup
mesh(G)→0

F (γ,G) =
⋂
ε>0

⋃
mesh(G)≤ε

F (γ,G).

More generally, when X is a set of curves, let us denote by T (X) the set⋃
γ∈X T (γ). When X is the set of smooth curves, we simply denote T (X) by

T , and call its elements tangent words. The aim of this note is to characterise
this language. Note that we are only interested in the language, not on the rate
of convergence to it.

2 Analytic characterisation

Proposition 1. A word w is tangent if, and only if, for any ε > 0, w is the
cutting sequence of a curve γ which is ε-close (for the C1 norm) to a straight
segment (the grid is fixed).

Proof. The only if part is straightforward. For example, the word 00011 cannot
be tangent, since, when the mesh goes to zero, it corresponds to a point where
the slope of the curve is both at most 1/2 (because of the factor 000) and at
least 1 (because of the factor 11).
For the if part, since the space C∞ endowed with the distance defined by
d(γ, δ) =

∑
n≥0 2min(1,supt∈I ||γ

(n)(t)−δ(n)(t)||) is complete, we can build a con-
venient curve by accumulating arbitrarily small and flat copies of a curve whose
cutting sequence is w (the nth copy of the curve should be flat enough so that
its first n derivatives are very small, ensuring that we get a Cauchy sequence
whose limit has the desired property).



ut

3 Combinatorial description

For the sake of simplicity, let us first focus on curves going right and up, i.e.
smooth curves such that both coordinates of γ′(t) are positive for any t. Let us
rename r and u by 0 and 1 respectively to stick to the usual notation.

3.1 Renormalisation (desubstitution)

Balanced words are know to have a hierarchical structure, where the morphisms
σ0 = (0 7→ 0, 1 7→ 10) and σ1 = (0 7→ 01, 1 7→ 1) play a crucial role [8] [6]. The
same renormalisation applies to tangent words.

Proposition 2. Let w be a finite word over the alphabet {0, 1}. The following
are equivalent:

– w is tangent.
– σ0(w) is tangent.
– σ1(w) is tangent.

Proof (sketch). It suffices to notice that applying the substitution σ1 (resp. σ0)
to the word w geometrically corresponds to applying the linear bi-uniformly

continuous bijection given by the matrix M0 =
(

1 1
0 1

)
(resp. M1 =

(
1 0
1 1

)
).

Such maps preserve tangency. A clear presentation of this argument can be read
in [10]. ut

Hence, given a finite word w, we can “desubstitute” it by

– removing one 0 per run of 0 if 11 does not appear in w, or
– removing one 1 per run of 1 if 00 does not appear in w.

If we repeat this process as much as possible, we get a derivated word denoted
by d(w). The word w is balanced if, and only if, d(w) is the empty word, and the
derivation process is related to the continued fraction development of the slope
of the associated straight segment.



3.2 Last step

To finish the description of tangent words going up and right, it suffices to de-
scribe the set of derivated words that are tangent words.

Let us say that a word w is diagonal if one of the following equivalent con-
ditions hold:

– w is recognised by the following automaton with three states, which are all
considered as initial and accepting:

0

1

0

1

– the word w is in the language defined by the regular expression (ε|0|1)(01|10)∗(ε|0|1),
– there exists an integer k such that for any prefix p of w, the difference between

the number of occurrences of 0 in p and the number of occurrences of 1 in p
is between k and k + 2, i.e.

max{|p|0−|p|1 | p is a prefix of w} ≤ min{|p|0−|p|1 | p is a prefix of w}+2,

where |p|i denotes the number of occurrences of the letter i in p.

For example, the word 0110100110 (which is not balanced) is diagonal:

Proposition 3. A word w is tangent if, and only if d(w) is diagonal.

Proof (sketch). If d(w) is not the empty word, then 00 and 11 are occurrences of
d(w), hence the slope of the tangent is 1 (the diagonal). The three gray diagonals
correspond to the three states of the automaton defining the diagonal words. ut

3.3 Example

The word w = 01110110110111011101 is tangent: it can be desubstituted as
01101010110110, then 010001010, and finally d(w) = 10011, which is diagonal
since it can be written as (10)(01)1.



3.4 Complexity

The complexity of a language L is the map that counts, for any integer n, the
number of elements of L of length n. Since T contains the language defined by the
regular expression (01|10)∗, the complexity of the language T has exponential
growth, whereas the complexity of the language of balanced words has cubical
growth (an explicit formula was given in [7]).

3.5 Balance

A binary word w is said to be k-balanced if for any two factors u and v of w
of the same length, the number of 0 in u and the number of 0 in v differ by at
most k. The 1-balanced words (also known as balanced words) correspond to the
cutting sequences of discrete line segments.
We already saw that the balanced words form a strict subset of the tangent
words, since 0011 is tangent but not balanced. Conversely, tangent words form
a strict subset of 2-balanced words, since 00011 is 2-balanced but not tangent.

3.6 Algorithm

The combinatorial description provides a linear time algorithm that decides
whether a word is tangent or not: concerning the renormalisation, we can ac-
celerate the desubstitution procedure by removing a run equal to the length of
the shortest inner run from any run of the non-isolated letter (including possible
leading and trailing runs even if they have shorter length). Each such accelerated
desubstitution reduces the size of the word by at least 2/3, hence, if c denotes
the complexity of the derivate algorithm that maps a word w to d(w), we have:

c(n) ≤ n+ c((2/3)n) ≤ n+ (2/3)n+ c((2/3)2n) ≤ · · · ≤ n
∑
k≥0

(2/3)k ≤ 3n .

The last step consist in deciding whether the obtained derivated word matches
the regular expression (ε|0|1)(01|10)∗(ε|0|1), this can be achieved in linear time
as well. A basic implementation exists in the free open source mathematical
software Sage: the is tangent() method is being reviewed as ticket #9877 and
can be tested at http://www.sagenb.org/home/pub/2123/.
Moreover, any existing digital straight segment recognition algorithm based on
the hierarchical structure can easily be adapted to tangent words recognition,
in particular, we can construct on-line linear-time algorithms for this purpose
[1]. Also, digital straight segment recognition can easily be replaced by tangent
word recognition in existing digital geometry algorithms, in particular for those
dealing with curve segmentation.

4 Other classes of curves

Let us briefly study the asymptotic language of some other classes of curves.
Each class is stable by the action of invertible linear maps on the plane, hence
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the associated languages turn out to be stable by the renormalisation procedure
described in subsection 3.1.

4.1 Continuous curves

Proposition 4. If X denotes the set of continuous curves (defined on a closed
interval), then all the words are admissible: T (X) = {0, 1}∗ (or T (X) = {r, u, l, d}∗
if we deal with curves going in all directions).

Proof. Given a word w, it suffices to construct a curve γ : [0, 1/2] → R2 whose
cutting sequence is w, then to glue a smaller copy of it from [1/2, 3/4] to R2,
then to glue another even smaller copy from [3/4, 7/8] to R2 and so on to get
a curve [0, 1] → R2 that admits w in its cutting sequence at arbitrary small
scales. ut

Note that the statistical properties of the finite words appearing in the asymp-
totic language of generic continuous functions have been studied (in a similar
framework) in [9].

4.2 Ck curves

Proposition 5. If X denotes the set of Ck regular curves, then T (X) = T
(1 ≤ k ≤ ∞).

Proof. The only if part of the proof of Proposition 1 only uses the fact that the
curve is C1. The C∞ function built in the if part is in particular Ck for any
1 ≤ k ≤ ∞. ut

Hence, the asymptotic language shows some stability with respect to the regular-
ity of the curve. This is a hint to grasp higher order notions such as curvature: we
will probably have to look one step further, like the mutual organisation of those
words. Note that existing methods based on maximal digital straight segments
were proven to be not rigorous [2].

4.3 Analytic curves

However, many tangent words won’t appear for the more rigid class of analytic
curves.

Proposition 6. If X denotes the set of analytic regular curves, then a finite
word w is in T (X) if, and only if, d(w) is recognised by the following automaton
with eight states, which are all considered as initial and accepting:



0 1

0
1

0

1

01

1
0

1

0

Proof (sketch). The tangent words oscillating at least twice should be removed.
For example, the word 001100 cannot be in T (X) since, if a corresponding an-
alytic curve γ is denoted by (x, y), then the derivative of (x − y) has two close
zeroes, but since the mesh can be arbitrarily small, we get an accumulation of
such zeroes, which contradicts the analyticity of the map (x− y)′. ut

Note that those remaining words can all be found in T (C), where C denotes the
set of planar circles (winding both clockwise and counterclockwise).

4.4 Smooth curves defined on an open interval

To get a uniform control on the tangents of the curve, we assumed the com-
pactness of the interval on which the smooth curve is defined. Here is why this
assumption was necessary.

Proposition 7. If X denotes the set of regular smooth curves defined on an
open interval, then T (X) = {0, 1}∗ (or T (X) = {r, u, l, d}∗ if we deal with
curves going in all directions).

Proof. As in the proof of Proposition 4, we can accumulate any noise near a
boundary of the interval, since there is no need to ensure derivability at the
endpoint. ut

4.5 Smooth curves with nowhere zero curvature

Proposition 8. If X (resp. Y ) denotes the set of smooth curves whose curvature
is positive (resp. negative), then a finite word w is in T (X) (resp. T (Y )) if, and
only if, d(w) is recognised by the following automaton with six states, which are
all considered as initial and accepting:

0

1

0
1

0

1
0

1

and respectively for smooth curves with negative curvature:



1

0

1
0

1

0
1

0

For example, the word 1001010110 appears in the cutting sequence of a smooth
curve with positive curvature:

We can notice that the asymptotic language of analytic regular curves is the
union of those two languages, which is the asymptotic language of smooth curves
with nowhere zero curvature, showing again some stability with respect to the
considered class of curves.

5 Curves going in all directions

Let us finish by the complete characterisation of tangent words without any
assumption on the direction of the curve.
The four letters {r, u, d, l} cannot all appear simultaneously in a tangent word.
If only two letters appear in a tangent word and are consecutive for the cyclic
order r < u < l < d, then, if we replace them by 0 and 1, we have the same
characterisation as above.
If two non-consecutive letters a and b appear in a tangent word w, we are in
the case where the tangent is vertical or horizontal, and this case is similar to
the last step described before (no renormalisation must be done): there exists
a letter c, different from a and b, such that w is recognised by the following
automaton with two states, both initial and accepting:

a

b

c c

That is, after removing the occurrences of c in w, the letters a and b are alternat-
ing. Equivalently the word w is in the language defined by the regular expression
c∗(ε|b)(c∗ac∗bc∗)∗(ε|a)c∗.



6 Conclusion

We introduced and described the asymptotic language of smooth curves, i.e. the
set of words that can survive in the cutting sequence of a smooth curve when
the grid mesh goes to zero, and discussed some of its properties. We saw that
those words are closely related to the tangents of the curve.
So, we can use them to change one of the most basic primitive for discrete
geometry, that of discrete tangency: instead of using digital straight segment,
we could use tangent words. One possible advantage is that the smallest length
of maximal tangent words one can find in a smooth curve goes to infinity when
the grid mesh goes to zero, whereas it may stay bounded for straight segments.
What can be done with this?
In terms of complexity, most tangent words are not balanced. However, we can
notice a kind of prevalence of balanced words among tangent words. For example,
the intersection of the asymptotic languages of all closed smooth regular curves
is the set of balanced words (those are the most “stable”). Hence, the study of
probabilistic aspects of the occurrences of tangent words should be interesting.
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