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Submodular functions

Lecture 1: Introduction to submodular functions

Binh-Minh Bui-Xuan

Foreword

This short introduction to submodular functions is meant for the second JCALM
(Journée Combinatoire et Algorithmes du Littoral Méditéranéen) on April 26-27,
2007, at the Lirmm. We borrow heavily on Maurice Queyranne’s seminar talk [1].

1 Definition

Let V be a finite set. The set of all subsets of V will be denoted by 2V . A set function
f : 2V → R is submodular if it meets the following equivalent conditions

i. ∀A, B ∈ 2V , f(A) + f(B) ≥ f(A ∪B) + f(A ∩ B)
ii. ∀A ⊆ B ⊆ V, ∀v ∈ V \B, f(A + v)− f(A) ≥ f(B + v)− f(B)
iii. ∀A ⊆ V, ∀u, v ∈ V \ A, f(A + u)− f(A) ≥ f(A + u + v)− f(A + u),

where A + v stands for A ∪ {v}, provided that v /∈ A.

We say that f is supermodular if (−f) is submodular, and modular if it is both
submodular and supermodular.

2 Examples

2.1 Example 1: Numerical Submodular Functions

From the fact that |A|+|B| = |A∪B|+|A∩B| the following function is by definition
modular:

f : 2V → N

A 7→ |A|.
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Fig. 2. Concavity and derivative.

More generally, if a submodular function only depends on the cardinality of the
given subsets, namely if there exists g : N→ R such that f(A) = g(|A|), then

f is submodular ⇔ g is concave,

with the following slight abusiveness on the definition of concavity. A real valued
function g on a discrete domain is concave if g(x+y

2
) ≥ g(x)+g(y)

2
for all x, y in the

domain of g such that x+y

2
also is in the domain of g. This highly relates to the

condition i. in the definition of submodularity of Section 1 (see Figure 1).

Notice moreover that, if g is differentiable, its concavity is equivalent to the decreas-
ing monotonicity of its derivative. This could be seen as an informal illustration of
conditions ii. and iii. in the definition of submodularity of Section 1 (see Figure 2).

Examples of differentiable concave functions on R include the negation of a power
x 7→ −x2 and the logarithm function x 7→ log x. An example on [0, 1] can be the
entropy function p 7→ −p log p− (1− p) log(1− p).

2



2.2 Example 2: Cut functions (a.k.a. border functions)

Let G = (V, A) be a digraph. One might want to put a weight function on the arc
set with ω : A→ R

+. The cut, or border, of a vertex subset U ⊆ V is defined as

δ+(U) = {(u, v) ∈ A | u ∈ U and v /∈ U}.

The cut function on G is the function f : 2V → R defined as

f(U) = ω(δ+(U)) =
∑

a∈δ+(U)

ω(a).

When ω is a positive valued function, the cut function f is submodular. Indeed, if
U and W are two vertex subsets, there are three types of arcs, defined in Figure 3:
type 1 arcs are counted once in both f(U) + f(W ) and f(U ∪W ) + f(U ∩W ); type
2 arcs are counted twice in both f(U) + f(W ) and f(U ∪W ) + f(U ∩W ); type 3
arcs are counted once in f(U) + f(W ) and not in f(U ∪W ) + f(U ∩W ).

U

W

type 2 arcs

type 3 arcs

type 1 arcs

Fig. 3. Three types of arcs involved with two vertex subsets U and W .

2.3 Example 3: Spanning forests in a graph

Let G = (V, E) be a graph. A spanning forest of G is a collection F ⊆ E of edges of
G such that the partial subgraph (V, F ) is cycle-free. (A spanning tree is a connected
spanning forest.)

The graphic rank r(H) of a subset of edges H is the maximum size of a spanning
forest of the partial subgraph (V, H):

r(H) = max{ |F | , F ⊆ H and (V, F ) is a spanning forest}.
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The graphic rank function denotes

r : 2E → N

H 7→ r(H)

We have the two following properties. First, the graphic rank function is submodular.
Second, the number of connected components in the partial subgraph (V, H) is

c(H) = |V | − r(H)

(which by definition leads to a supermodular function).

2.4 Example 4: Matroid rank

Let V be a finite set, and F ⊆ 2V a family of subsets of V . The rank function of
(an arbitrary subset family) F is defined as

∀A ∈ 2V , r(A) = max{ |B| , B ⊆ A and B ∈ F}.

We say that F is a matroid if it satisfies the three following conditions.

• ∅ ∈ F ;
• if (A ⊆ B) and (B ∈ F) then A ∈ F ;
• if (A ∈ F) and (B ∈ F) and (|A| < |B|) then there exists v ∈ B \ A such that

A + v ∈ F .

Conversely, let r : 2V → N be an arbitrary positive valued set function. Let F =
{ A ∈ 2V , r(A) = |A| }. Then, F is a matroid if and only if for all A, B ∈ 2V

• 0 ≤ r(A) ≤ |A|,
• A ⊆ B ⇒ r(A) ≤ r(B), and
• r is submodular.

3 Links to Greedy Algorithms

A popular relation between matroids and greedy algorithms could be stated as
follows. Let V be a finite set, F ⊆ 2V a family of subsets of V , and ω : V → R

+

a positive weight function. For convenience, we denote ω(A) =
∑

v∈A ω(v) for all
subset A of V .
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Fig. 4. Here V = {v1, v2, v3} and x : V → R.

The Max(V,F , ω) problem consists of finding the elements of F with maximum
weight, that is X ∈ F such that ω(X) = maxA∈F ω(A). The Greedy(V,F , ω)
algorithm proceeds as follows.

• Sort the elements of V with respect to ω: ω(v1) ≥ ω(v2) ≥ · · · ≥ ω(vn).
• Let X = ∅. For i varying from 1 to n, if X + vi belongs to F , replace X with

X + vi.

Then, the Greedy algorithm solves the Max problem if and only if F is a matroid.

This result has been improved to submodular polyhedra by Edmonds in 1970 1 [2–4].
However, before showing the result, let us discuss on some terminologies. A subset
A of V can also be seen as a choice function on the elements of the ground set
A : V → {0, 1}. This is why the set of all subsets of V usually is denoted by 2V . We
now relax this notion and consider the set R

V of all real valued functions x : V → R.

Obviously, a subset A : V → {0, 1} of V is an element of R
V . In particular, a

singleton A = {v} with v ∈ V is an element of R
V . Then, each element x : V → R

of R
V can be seen as a vector in the R−vector space spanned by the basis B =

{ {v} | v ∈ V } formed by all singletons of V (see Figure 4). For all v ∈ V , x(v) is
the projection of the vector x w.r.t. the base vector {v} ∈ B, which, not without a
certain abusiveness, will also be denoted by v (see Figure 4).

If B ∈ 2V is seen as a sub-basis of B, we define x(B) =
∑

v∈B x(v). Let f : 2V → R

be a function over the subsets of V . The f -polyhedron is defined as

P (f) = { x ∈ R
V | ∀B ∈ 2V , x(B) ≤ f(B) }.

The polyhedron P (f) is called submodular polyhedron if f is submodular.

We now define a linear programming problem MaxLP as follows. If V is a finite

1 The original version [2] probably is unaccessible now. However, you still can buy the
revised article at the hyperlink given with the reference [3]. Also, it seems that this result
is better explained by Lovász in [4]. Since I could not access Lovász paper, I favoured
Queyranne’s terminologies
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set, ω : V → R
+ a positive weight function over V , and f : 2V → R a set function

over the subsets of V , then MaxLP(V, f, ω) consists of finding x ∈ P (f) such that
ωtx is maximum.

The Polyhedron-Greedy(V, f, ω) algorithm proceeds as follows.

• Sort the elements of V with respect to ω: ω(v1) ≥ ω(v2) ≥ · · · ≥ ω(vn).
• Let B0 = ∅.
• For i varying from 1 to n, do
· Bi ← Bi−1 + vi,
· x(vi)← f(Bi)− f(Bi−1).

Theorem (Edmonds): The Polyhedron-Greedy algorithm solves the MaxLP

problem if and only if f is submodular (see e.g. [2–4]).
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Lecture 2: Minimizing submodular functions

Thierry Monteil and Stéphan Thomassé

Foreword

We present Schrijver’s algorithm for minimizing a submodular function [1].

1 Introduction.

Let V be a finite set. A function f defined from the set 2V of all subsets of V into the
reals is submodular if f(A)+f(B) ≥ f(A∪B)+f(A∩B), for all A, B ⊆ V . The topic
of this lecture is to present a way of minimizing f over 2V , i.e. finding a subset A ⊆ V
for which f(A) is minimum. Since we are concerned with an efficient algorithm
(polynomial in |V |), the way in which the function f is coded is of importance - we
will assume that an oracle can calculate in constant time any value f(A) which is
asked for. Let us now turn to some examples in which appears this minimization
problem:

• Cut functions. We have already seen that the border function δ defined on subsets
of vertices of a graph G = (V, E), where δ(X) is the number of edges across X
and V − X, is a submodular function. Minimizing δ results in a not-so-exciting
problem since the emptyset (or equivalently the whole set of vertices) certainly
reaches the minimum value of 0. However, if we fix two distinct vertices u, v of
our graph, minimizing δ over all subsets of vertices containing u and not v is
the classical MINCUT problem of finding the minimum number of edges which
disconnect u from v.
• Weighted matroids. The rank function of a matroidM on ground set E is defined

by letting rk(F ) to be the maximum size of an independent set of M contained
in F . This function is submodular, and again minimizing it is a triviality since
the emptyset has rank 0. Now assign a real valued weight function w on E, which
extends naturally to 2E by letting the weight of a subset be the sum of the weights
of its elements. This function w is submodular (indeed it is modular), hence the
function rk + w is submodular. Minimizing it is now much less easy.
• Matroid intersection. König’s theorem asserts that in a bipartite graph (X, Y, E),

the size of a maximum matching is equal to the minimum size of a set of vertices
incident to all edges. A particularly complicated way of stating this result is the
following: the subsets F of edges of E such that every vertex of X has degree at
most one in F form the independent sets of a matroidMX on the ground set E.
Indeed, this is a partition matroid. We similarly define MY . The intersection of
MX and MY consists of these subsets of E which are both independent in MX

and MY . In other words, these are subsets of edges which have degree at most
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one in X and Y - a weird way of defining a brave old matching. In this particular
case of matroid intersection, König’s theorem says that finding the maximum
size of a common independent set is an easy problem. More generally Edmonds
completely characterized the matroid intersection problem as follows: letM and
M′ be two matroids on a ground set E with respective rank function rk and rk′.
The maximum size of a common independent set of M and M′ is equal to the
minimum of Φ(F ) := rk(F ) + rk′(E − F ) over all subsets F of E. This function
Φ, as a sum of two submodular functions, is in turn submodular, and the matroid
intersection maximum independent set problem therefore consists of minimizing
a submodular function.

2 The base polytope.

This section consists of results and observations which are not absolutely necessary
for presenting the minimization algorithm but since the whole method is based
upon these notions, a short survey is needed. The idea, due to Cunningham [3], is to
approach the submodular function we want to minimize by some modular functions.

Recall that a function f defined from 2V into the reals is modular if f(A) + f(B) =
f(A∪B) + f(A∩B). An example of a modular function is obtained by taking any
weight function on V and extending it to the subsets of V . Every modular function
is not of this form since weight functions value the emptyset by 0. However, every
modular function f with f(∅) = 0 is a weight function. Indeed, for every subset F
and any partition (A, B) of F , we get f(F ) = f(A) + f(B). Iterating this, we get
that f(F ) is the sum of the weight of its elements.

Thus if one would like to use modular functions to approach submodular ones,
the first step is to consider only submodular functions f for which f(∅) = 0. This
is certainly not a strong restriction since one can always shift f by the constant
value −f(∅). In particular, the minimum value we are looking for is nonpositive.
We now introduce a result of Edmonds [4], which gives a dual statement for the
minimization problem. The base polytope B(f) of f consists of all weight functions
x with x(V ) = f(V ) and such that for all A ⊆ V , we have x(A) ≤ f(A):

B(f) = {x ∈ P (f) | x(V ) = f(V )}.

Although it is not clear that this polytope is even non empty (we will prove it later
in Lemma 1), let us state the key-result of this section. Here the negative part of a
weight function x is the sum over V of its negative values and is denoted by x−(V ).

Theorem 1 The minimum value of f over 2V is equal to the maximum of the
negative part of a weight function x over B(f):

min{f(X) | X ⊆ V } = max{x−(V ) | x ∈ B(f)}.
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Proof: The inequality ≥ is clear. On the other hand, let us define for any X ⊆ V ,
f 0(X) = min{f(Y ) | Y ⊆ X}. f 0 is submodular and nonpositive. Now let us choose
x0 in B(f 0). Since f 0 ≤ f , we have B(f 0) ⊆ P (f 0) ⊆ P (f), so we can choose x in
B(f) such that x0 ≤ x. We have:

min{f(X) | X ⊆ V } = f 0(V ) = x0(V ) ≤ x−(V ).

2

This min/max results gives a hint for our original problem. Instead of minimizing
f , we can equivalently try to maximize the negative part of some weight functions.
This poses now the problem of describing the elements of the base polytope. It turns
out that the situation is not so bad, since it is possible to generate all the vertices of
this polytope. Indeed, they can be constructed in the nice following combinatorial
way:

Let < be a total order v1 < v2 < · · · < vn on the elements of V . We inductively define
a weight function x< as follows: we set x<(v1) = f(v1), then x<(v2) = f({v1, v2})−
x<(v1), and, inductively, if x< have been defined for vi, we let x<(vi+1) = f(Si+1)−
x<(Si), where Sj is the set {v1, . . . , vj}. By construction, we obtain a weight function,
which we call a permutation weight function.

Lemma 1 Every permutation weight function belongs to the base polytope.

Proof: First observe that for every set Si we have

x<(Si) = x<(Si−1) + x<(vi) = x<(Si−1) + f(Si)− x<(Si−1) = f(Si),

in particular x<(V ) = f(V ). Now, given a subset Y of V , we want to prove that
f(Y ) ≥ x<(Y ). The proof goes by induction on the size of Y . Assume that vi

is the maximum vertex of Y with respect to <. We use the submodularity of f
to get f(Y ∩ Si−1) + f(Y ∪ Si−1) ≤ f(Y ) + f(Si−1). By induction and the fact
that x<(Si−1) = f(Si−1), we get x<(Y − vi) + f(Si) ≤ f(Y ) + x<(Si−1). Hence
x<(Y − vi) + x<(vi) ≤ f(Y ), and since x<(Y ) = x<(Y − vi) + x<(vi), we have our
conclusion. 2

This proves at least that the base polytope is not empty, and, indeed, the following
result completely characterizes it:

Theorem 2 The extremal points of the base polytope are exactly the permutation
weight functions.

Proof: (sketch) By construction, the Polyhedron-Greedy algorithm described
in the first lecture always ends to a permutation weight function. Since any ex-
tremal point of a polytope can be detected by a convenient linear form x 7→ ωtx, the
extremal points of B(f) are permutation weight functions. Conversely, any permuta-
tion weight function corresponds to the case of equality of n independent equalities
x<(Si) ≤ f(Si) defining P (f), so there are all extremal points. 2
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Thus every element of the base polytope is a barycentric combination of permutation
weight functions. This is how the minimization algorithm works for the submodular
function f : the idea is to find linear combinations of permutation weight functions
in order to approach f .

3 The algorithm.

We start with an element x = x< of B(f) (< is any total order on V ).

Checking directly that a given weight function x is in B(f) is hard. Hence, we will
maintain it as a convex combination x =

∑

i∈I λix
<i during the whole algorithm.

The only a priori bound on the size of I is n!. But thanks to Caratheodory Theorem,
we can continually reorganize the convex combination to ensure that the size of I
never exceeds n so this data does not explode. Note that this is not clear that such
a transformation can be done in such a way that the size (in memory) of the λi do
not explode, we admit that we can describe those numbers and this transformation
in an efficient way.

To such a combination we associate an oriented graph whose vertices is the set V
and there is an edge from v to w if there is some i in I such that v <i w. In this
graph we define two sets N = {v ∈ V |x(v) < 0} and P = {v ∈ V |x(v) > 0}. There
are two cases.

First, suppose that at some step, there is no path from P to N : the set U of vertices
that can reach N by a directed path contains N and and is disjoint from P . For
each i in I, U is an initial segment for the order <i so x<i(U) = f(U) and by convex
combination x(U) = f(U). Now, if W ⊆ V we have:

f(W ) ≥ x(W ) ≥ x(U) = f(U).

So U minimizes f : this is our termination condition.

Second, we are in the case where there is a path from P to N . We have to make
a “small” move along B(f) that will improve the quality of x. A move from x to
x′ in B(f) corresponds in particular to add to x a weight function of total mass 0,
The most elementary are those where we increase the weight of an element t of V
by δ ≥ 0 and decrease the weight of another element s of V by the same value. The
quality of x is improved when (t, s) ∈ N ×P . It turns out that if s <i t, we are able
to describe effectively x<i + δ(χt − χs) as a convex combination of the x<′

where
the <′ are obtained by inserting an element of (s, t]<i

just before s (for a particular
δ ≥ 0).

We now make such choices in an extremal way to be able to bound the complexity:
we choose t in N such that the distance in the graph from P to t is maximal, and
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we choose s just before t on a minimizing path from P to t. Hence, for some i in
I, s <i t and we can chose i such that [s, t]<i

has maximal length: this is the triple
(t, s, i) on which we execute the elementary move. If necessary, we reduce δ to ensure
that t won’t become of positive weight. All this ensures that no element from N will
pass in P and that no distance from P to a given vertex decreases. If t and s are
chosen in a consistent way from a step to the next one, Schrijver proves that one
distance from P really increases after at most |V |4 iterations. Hence the algorithm
finishes after at most |V |6 iterations since then all distances from P to N will be
greater than |V | hence infinite, leading us to the first case.

Another polynomial time algorithm for submodular function minimization appears
in the same time in [5], it has then been improved to minimize submodular functions
defined in a general ordered group (G, +, <) (note that in Schrijver’s algorithm, we
use the fact that f has real values where extra-operations such as multiplications
and divisions are allowed). A comparison of those different approaches leading to
polynomial minimization of submodular functions can be found in [2].
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A list of open problems

Florian Huc

These open problems were proposed during the JCALM which took place in Mont-
pellier on April 26th and 27th, 2007.

1 Questions asked by Frédéric Havet:

Coloring square of graphs:

A coloring of a graph G = (V, E) is a function c : V → S s.t. ∀uv ∈ E(G), c(u) 6=
c(v). The square of a graph G = (V, E) is a graph on vertex V and with uv ∈ E(G2)
iff dG(u, v) ≤ 2 and u 6= v.

The problem is to find upper bounds on χ(G2) and ω(G2) in terms of ∆(G), where
χ(G) and ω(G) are respectively the minimun number of colours needed to colour G
and the size of the biggest clique which is a subgraph of G.

First remark that ∆(G2) ≤ ∆(G) + ∆(G)(∆(G)− 1) = ∆(G)2 + 1.

This is tight but achieved only by few graphs, namely : C5, Peterson graph, Hoffman-
Singleton graph, and maybe one with ∆ = 51

What can we say about M∆ = max
G with max degree ∆

(ω(G2))?

For ∆ large we have ∆2 + 1 ≥M∆ ≥ ∆2 −∆ + 1.

The lower bound is given by the projective plane but only for some values of ∆.
(such a projective plane contains ∆2 − ∆ + 1 points and as many lines such that
each line contains ∆ vertices and each vertex is in ∆ lines). Given a projective plane
we construct a bipartite graph G such that the left handside vertices represent the
points while the right handside vertices represent the lines. There is an edge in
between a left and a right vertex if the corresponding point is in the corresponding
line. In G2 we have cliques of size ∆2 −∆ + 1 since both parts become a clique.

The conjecture is that if ∆ is large enough, for G with max degree ∆ then χ(G2) ≤
M∆.

Also, considering only subcubic planar graph, we have the following theorem:
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Theorem 1 (Thomassen) Let G be a planar and subcubic graph χ(G2) ≤ 7.

This theorem can be proved by the following conjecture:

Conjecture 1 Let G planar and subcubic. We can partition V (G) into V1 and V2

so that G(V1) has max degree 1 and G(V2) has min degree 1 and no P4.

Considering list coloring, we have the following:

Conjecture 2 Let G planar and subcubic. χl(G
2) ≤ 7.

Conjecture 3 (Kostochka and Woodall) Let G planar and subcubic. χl(G
2) =

χ(G2).

How big can χ(G2) be in terms of ω(G2)? There exist grahs with χ(G2) ≥ 5/4ω(G2)

2 Question asked by Stéphanne Bessy:

Consider a symmetric grid network (i.e. each edge of the grid represents two arcs,
one in each direction) with on each vertex instances to achieve. To achieve these
instances only paths with one turn are allowed. Furthermore no arcs of the grid can
be used more than 2 times, i.e. the maximum authorized load is 2.

Definition 1 The Conflict graph is GC with vertex set VC = {paths used for the routing}
and edge set EC = {P1P2, withP1 and P2 sharing an edge in the grid}.

If given a column of the grid you consider only the paths using this column, GC

reduced to these paths is a caterpillar. Same for the lines. Consequently, we can see
that |E| ≤ 2|V | − 2. The fact that GC is caterpillar implies that G is 3-degenerate
and so χ ≤ 4.

Question: is χ = 3 or 4?

What happens if we increase the maximum authorized load?

3 Question asked by Omid Amini:

The following problem is due to Chen and Chvátal [2]:

Let G = (V, E) be a connected graph. The function d : V × V → N ∪ {0} is the
distance function in G, i.e. for two vertices x and y in V , it gives the length of the
shortest path between x and y. For two vertices x and y in V , the line defined by
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x and y, denoted ℓ(x, y), is the collection of all points v ∈ V , such that one of the
following equalities is verified:

• d(x, y) = d(x, v) + d(v, y)
• d(x, v) = d(x, y) + d(y, v)
• d(v, y) = d(v, x) + d(x, y)

Example 1 (1) Let e = {x, y} be a bridge in G. Then the line defined by x and y
contains all the vertices of G.

(2) Let e = {x, y} be an edge. Then ℓ(x, y) = V \{v ∈ V | d(v, x) = d(v, y)}. In this
case all v /∈ ℓ(x, y) appears on an odd cycle containing x and y. This implies
for example that if G is bipartite then every line defined by an edge contains all
the vertices.

Conjecture 4 Let G = (V, E) be a connected graph on n vertices. Suppose that for
every two vertices x, y ∈ V we have ℓ(x, y) 6= V . Then G contains at least n different
lines.

Remark: The origin of this conjecture is a theorem of De Bruijn-Erdös [3], which
says that every set of n noncollinear points in the plane defines at least n different
lines. A nice proof of this result can be obtained by induction, using the fact that
for such a set there exists always a line which contains exactly two points. This last
statement is also true for every finite metric space, and in particular for graphs, see
[1].
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4 Question asked by Florian Huc:

Conjecture 5 (The removal path conjecture of Lovász) There exists a func-
tion f = f(k) such that the following holds: for every f(k)-vertex-connected graph
G and two distinct vertices s and t in G, there exists a path P with endpoints s and
t such that G− V (P ) is k-connected.
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Remark that a weaker version of this conjecture asking only for the removal of the
edges has been proved in [1]. This paper also gives some direction that have been
tried to approach this conjecture.
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5 Questions asked by Yan van den Heuvel:

5.1 First Question

Problem 1 (Kotzig) Given an integer k, k ≥ 3, does there exist a graph G with
the property that for any two vertices there is a unique path of length k between
them?

It is true for k = 1 and 2.

5.2 Second Question

This other question is originally from Rota:

Conjecture 6 (Rota) Let V be an n-dimensional linear space and B1, . . . , Bn be
n bases. There exists an n " n array made of elements of B1, . . . , Bn such that the
line i is made of elements of Bi and that each column forms a base.

It is known for n = 1, 2 and 3.

A special case is when the problem is restricted to graphs: Let T1, . . . , Tn be spaning
trees, can we put theier edges in a nxn array such as before so that each columns
form a tree?
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6 Questions asked by Stephan Thomassé:

6.1 First Question

Conjecture 7 (Kuhn, Osthus) Let G and H be two graphs on a same vertex
set V . There exist a cut (V1, V2) with at least half of the edges of both H and G:
eG(V1, V2) ≥ ⌊e(G)/2⌋ and eH(V1, V2) ≥ ⌊e(H)/2⌋.

Remark: ≥ cannot be replaced by >, in particular due to C5. Furthermore we can

achieve easily e(G)−
√

e(G) and e(G)−
√

e(G).

If we consider 3 graphs instead of 2, we can also achieve e(G)− c
√

e(G) for some c.

6.2 Second Question

An other conjecture is related to the following fact:

Claim 2 Let D be a digraph with minimun outdegrre 3, then the vertices can be
partitionned into two sets V1 and V2 such that for all i, ∀u ∈ Ui, u has a neighbour
in Vi.

Conjecture 8 There exists a function f(k) such that every digraph with minimun
outdegree f(k) has a partition of its vertices into two sets V1 and V2 such that each
vertex in V1 has k outneighbours in V1 and every vertex in V2 has at least one
outneighbour in V2.

What happens if we ask for a greater minimun degree?
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