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The theorem of Kerkhoff, Masur and Smillie [5] asserts that for any connected
translation surface S (in particular for any rational polygonal billiard), and for
almost every θ ∈ S1, the flow in the direction θ is uniquely ergodic.

1. Rough idea

To define the flow on a polygonal billiard, we need the Euclidean notion of
angle, whereas for translation surfaces we only need the affine notion of straight
line.

In particular, we can apply the matrix gt =

(
et 0
0 e−t

)
on a translation surface S

without changing the dynamical properties of the flow defined on it.
By contracting the vertical direction, gt accelerates the time of the vertical flow, so
that the asymptotic behaviour of the trajectory {gtS} on the space of translation
surfaces will provide some informations about the dynamics of the vertical flow
defined on S.

2. Remark

Applying the flow gt to the standard flat torus R2/Z2 will lead to a degenerate
torus (its vertical meridians are shrunk), but it is not always the case, since it is
sometimes possible to reorganise the translation surface while applying gt. For

example, let us consider the action of A =

(
2 1
1 1

)
on the standard flat torus,

which is well defined since A ∈ SL(2,Z).

A reorganise

The matrix A is diagonalisable, with two orthogonal eigenlines corresponding to
the eigenvalues λ = (3 +

√
5)/2 and λ−1. If we rotate the torus so that the

eigenlines become vertical and horizontal, we obtain a new torus S and the action
of A on R2/Z2 corresponds to the action of glog λ on S, hence glog λS = S and the
trajectory {gtS} is periodic.

glog λ reorganise
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3. Strategy of the proof

The proof of the theorem is split into three parts:

(1) In order to deal with the asymptotic behaviour of the trajectory {gtS},
we will define a convenient topology on the set of translation surfaces and
provide a criterion for compactness.

(2) Masur’s criterion [6]: if {gtS} does not converge to infinity (that is, if there
exists a subsequence tn → ∞ such that gtnS stays in a given compact),
then the vertical flow is uniquely ergodic.

(3) For any translation surface S and for almost every θ ∈ S1, the flow in
the direction θ does not converge to infinity (meaning that the previously
discussed degeneration is a rare phenomenon).

We will focus on the first two parts.

4. Topology on the set of translation surfaces

Any translation surface can be triangulated so that the edges are saddle con-
nections, and any collection of saddle connections having disjoint interiors can be
extended to such a triangulation. Thanks to the Euler characteristic, the number
of triangles in a triangulation depends only on the number of singularities and on
the genus of the surface.
Let S be a translation surface and T be a triangulation of S. We define a small
neighbourhood of S by letting the edges of T (viewed as a vectors of R2) move
slightly around their initial position. In particular, two nearby translation surfaces
admit triangulations that have the same combinatorics of glueing (and therefore
have the same genus). Each saddle connection in S can be written as a sum of
edges of T , so that the choice of the triangulation is not relevant.

Let systole(S) denote the length of a shortest saddle connection in S. Let us
prove that, given g ≥ 1 and ε > 0, the set of translation surfaces of genus g (and
of constant area 1) satisfying systole(S) ≥ ε is compact.
For this, let Sn be a sequence of translation surfaces of genus g whose systole is
larger than ε. To get compactness, we have to ensure that it is possible to find
a triangulation of each Sn whose edges have uniformly bounded length. We can
achieve this by starting from any triangulation Tn of Sn, and assume that the
longest edge e of Tn is very long. This edge bounds two triangles whose edges
have length at least ε. Since the area of Sn is 1 and e is the longest edge, the
angles that the triangles make with e are very small.

small acute angle

new shorter edge

longest edge e of Tn
length ≥ ε

So we can reorganise the triangulation of S to get a better triangulation, by re-
placing (with a flip) e by a shorter saddle connection whose length if smaller by
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a constant of at least ε/2. So after finitely many such reorganisations, we get a
triangulation of Sn whose edges have uniformly bounded length (the bound is of
the order of 1/ε).
Since the number of triangles is bounded, there are only finitely many combina-
torics of glueings, so that we can assume that the type of the triangulation is
fixed along a subsequence. Up to another subsequence, each edge of each triangle
converges, so that we can construct a limit translation surface S∞.

We also would like to say that two points in two close surfaces are close to each
other if they are close in a common triangulation. Some tricky stuff can happen
near a surface which admits two symmetric triangulations (different points of the
surface will be identified). This problem can be solved by considering marked
translation surfaces to break the symmetry, we will not take care about this later.

5. Proof of Masur’s criterion

Let S be a translation surface whose trajectory {gtS} does not converge to
infinity. Let {tn} be a subsequence such that Sn := gtnS converges to a translation
surface S∞.
Assume by contradiction that the vertical flow in S is not uniquely ergodic: there
exist two distinct ergodic probability measures µ 6= ν that are invariant under the
vertical flow. Let Q be a horizontal rectangle in S such that µ(Q) 6= ν(Q).
Let x be a generic point for µ. We can follow the trajectory {xn} of x on {Sn}
under gtn . Passing to a subsequence, we can assume that this trajectory converges
to some x∞ ∈ S∞. Do the same for y with ν.
Let us first assume that there exists an open set that does not meet any singularity
which contains a rectangle R∞ in S∞ such that x∞ (resp. y∞) is the lower-left
(resp. upper-right) corner of the rectangle. So, for n big enough, we can still
embed a rectangle Rn in Sn, whose dimensions (wn, hn) are very close to the ones
of R∞, and such that xn (resp. yn) is the lower-left (resp. upper-right) corner of
it. Let us apply g−1tn to Rn: we get a very long rectangle in S (of height etnhn).

gtn limit
S

y
•

x•

g−1
tn

Rn

Q

Sn

•

•

xn

yn

Rn

S∞

•

•

x∞

y∞

R∞

3



Its left side corresponds to the orbit of x under the vertical flow from time 0 to
time etnhn, and its right side corresponds to the orbit of y under the vertical flow
from time −etnhn to time 0. If φt denotes the vertical flow on S, Birkhoff’s ergodic
theorem applied to the characteristic function of Q tells us that

1

T

(∫ T

t=0

χQ(φt(x))dt−
∫ 0

t=−T
χQ(φt(y))dt

)
−−−−→
T→∞

µ(Q)− ν(Q) 6= 0

For T = etnhn, the parenthesis on the left side is the difference between the length
of the intersection of Q with the right side of the rectangle g−1tn (Rn) and the

length of the intersection of Q with the left side of the rectangle g−1tn (Rn), which is

bounded by two times the height of Q (a defect happens when g−1tn (Rn) is astride
a vertical side of Q, which can happens at most twice). So, we get a contradiction
when n goes to infinity.

We assumed the possibility to embed a nice rectangle R∞ in S∞ with x∞ and
y∞ as opposite corners. If this is not the case, since x and y are not on the
vertical of some singularity, we can ensure (up to shifting some elements of the
subsequence {tn}) that {xn} and {yn} stay uniformly far from the singularities, so
that x∞ and y∞ are not singularities of S∞. Then, since S∞ is connected, there
exists a path in S∞ between x∞ and y∞, which can be surrounded by an open set
not meeting any singularity (by compactness). So, there exists a finite sequence
x∞ = x1∞, x

2
∞, . . . , x

k
∞ = y∞ such that each rectangle with opposite corners xi∞

and xi+1
∞ lies in the open set.

•

•

•

•

•

•

•

x1
∞

this might not be a generic point
for some ergodic measure

x2
∞

x3
∞

xk∞

If, up to taking more subsequences, each xi∞ is a limit point of the trajectory of
some point xi in S under gtn that is generic for some invariant ergodic measure
µi (for φt), then we can apply the previous reasoning on each rectangle and prove
that µ = µ1 = µ2 = · · · = µk = ν, which concludes the proof.
To ensure this, we can notice that each xi∞ (1 ≤ i ≤ k − 1) can be moved a bit,
so, given a small open neighbourhood U i∞ of xi∞ in the open set, we have to find
a good substitute for xi∞ in U i∞. The open set U i∞ can be backported to an open
set U in in Sn, for n big enough. This set and therefore its preimage g−1tn U

i
n have

uniformly positive Lebesgue measure (in n). Since the Lebesgue measure is an
average of ergodic measures, there exists an ergodic measure µi (for φt in S) that
gives positive measure to the set of points that belong to infinitely many g−1tn U

i
n,

in particular, there exists a generic point xi for µi in S such that the trajectory
{gtnxi} has a limit point xi∞ in U i∞.
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6. Related results

6.1. Approximating irrational polygonal billiards by rational ones. Bosher-
nitzan and Katok [5] proved that the set of n-gons on which the billiard flow is
ergodic is a dense Gδ subset of the set of n-gons. The result also holds if we re-
strict ourselves to a subspace X of n-gons such that for any N , the set of rational
tables P with |G(P )| ≥ N is dense in X (e.g. the set of right-angled triangles).
Vorobets [9] gave a quantitative version of this theorem: if P is a polygonal bil-
liard table whose angles θ = (θ1, . . . , θn) are such that there exist infinitely many
rationals of the form P/q = (p1/q, . . . , pn/q), with gcd(p1, . . . , pn, q) = 1 and

||θ − P/q||∞ ≤ 1/22
22

q

, then the billiard flow is ergodic on P .

6.2. Hausdorff dimension of the set of non-uniquely ergodic directions.
Masur [6] proved that for any translation surface S, the Hausdorff dimension of
the set of non-uniquely ergodic directions is less than or equal to 1/2. Cheung
[2] proved that this bound is sharp: there exists translation surfaces whose set
of non-uniquely ergodic directions has Hausdorff dimension equal to 1/2. Masur
and Smillie [7] proved that for any connected component C of any stratum (in
genus at least 2), there exists δ > 0 such that for any generic translation surface
S in the component C, the Hausdorff dimension of the set of non-uniquely ergodic
directions is δ.

6.3. Slow divergence still implies unique ergodicity. Cheung and Eskin [3]
proved that there exists ε > 0, depending only on the stratum of the translation
surface S, such that the condition lim inft→∞ tεsystole(gtS) > 0 implies that the
vertical flow is uniquely ergodic.
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