
Keyboard configuration for Unicode input on Linux

Jean-Yves Moyen

July 17, 2017

Abstract

This document explains how to configure your keyboard (XKB + XCompose) to input Unicode
characters. Rather than lengthy XCompose sequences, I prefer to use dead keys for short sequences
and to use some of the unused keys (like the Window or Menu keys) as extra modifiers to access
these. The proposed solution is purely a user-based configuration and does not require privileged
access.

This document is probably way more verbose than needed. I know.

1 Goals and aims

1.1 What I want
I am only writing text in Western European languages, hence the usual keyboard configurations are
normally good for me. I do, however, insert “special” characters quite often, most likely mathematical
characters in formulas. Thus, I’d like to have a quick and easy way to make use of Unicode and access
these characters.

Because my typical use-case is to insert special characters one by one, I do not need to totally switch
my keyboard layout. Typically, people writing both in English and Japanese do have a way to switch the
keyboard between layouts because they alternately need to write long sequences of characters in both
scripts. In my case, the special characters are rare and usually lonely, so I don’t need a new layout.

The main mechanism existing for inputing special character is XCompose. It is very easy to find
online examples of .XCompose files with long lists of sequences for special characters. This is, indeed,
very convenient. The main drawback of these files is the sometimes rather long sequences that need to
be typed for a single character. For example, something like :
<Multi_key> <d> <d> <a> <g> : ”‡” U2021 # DOUBLE DAGGER
I do find it rather inconvenient to type a sequence of 5 keys to enter a single character. . . Plus, as a
LATEX user, this has little advantage over typing \ddag.

A different (well, actually not) mechanism is the use of dead keys. A dead key produce nothing when
pressed but wait for the next character and combines with it. Dead keys are typically used for producing
diacritics. Typically, some layout have dead_acute, dead_caron or other dead diacritics accessible. This
mechanism is not limited to diacratics. Indeed, it is possible to have a dead_greek key on your keyboard.
Pressing it will turn the next character into its Greek version (or the closer think there is). On the bépo
layout, dead_greek is assigned to AltGr+g, making it easy to type and inputing greek characters in
texts.

I find it more convenient to use a dead keys mechanism as it requires less keystrokes to produce the
special characters. Thus, I want, typically:

• to have a dead_blackboard_bold accessible on my keyboard;

• to tell the system that dead_blackboard_bold should turn the next character into its “Blackboard
bold” version (e.g. dead_blackboard_bold followed by ’N’ should become N);

• to assign these dead keys to relatively easily accessible keys. Because I want room for a lot of
special characters (better safe than sorry), and because AltGr+key is already assigned for most
keys on my keyboard, I’d like to use some other keys as modifiers. Because I’m not really using
the Window and Menu keys, they are perfect candidates for this.

1

1.2 What this is not about
I will only explain how to create dead keys to input special characters. I will not explain how to install
the correct fonts for your computer to display these characters. I will not explain how to tell LATEX(or
rather its more modern versions) to handle these characters. All this is another subject and other guides
are better suited than this one to explain it.

While I will enter a bit into XKB configuration, I do not intend to write an XKB guide. Better
guides exist. Moreover, my handling of XKB is very dirty and a proper layout should be built to make
this work cleanly.

1.3 Warning
These instructions come with no warranty. Use at your own risk.

Changing your XKB configuration can result in a totally “broken” keyboard. For example, one can
make the Enter key totally inactive. The best way to solve these troubles it to not make the change
permanent (i.e. not put them in your configuration files) until they are properly tested. That way, you
can go back to a working keyboard by rebooting your computer. . .

Changing your XCompose configuration can also result in bad stuff. Probably not as bad as XKB,
but still enough to make the keyboard unusable (e.g. unable to produce the character ’a’ anymore).
Here also, exercise caution when making changes.

Your Window Manager might already use some of the keys for its own shortcuts (e.g. Windows+d
for “Show Desktop”). This can result in strange effects while making tests.

Using xmodmap together with heavy changes to XKB might be a bad idea. At the same time, if you
start making changes to XKB, you can do whatever xmodmap was doing but better. This will obviously
requires a bit more changes than what is described here.

XKB configuration can be changed on the fly and changes will take effect as soon as you load the
new file.

XCompose configuration is only read at the start of an application. Thus, you need to launch a new
application to make tests. Some applications actually clone themselves rather than launching a new
instance (typically, some terminal do that, and emacs may do it depending on your configuration). Be
sure to find an application where you can easily launch new instances when making XCompose tests.

If you are using a Typematrix keyboard, the two keys “Shuffle” and “Documents” are actually pro-
grammed at hardware level. The system cannot tell the difference between pressing “Shuffle” and
“Alt+Tab”. You can change this by switching to 106 mode. This is a physical change on the keyboard and
probably also requires you to change your logical keyboard configuration from the 102 mode to the 106
mode in order to tell the system how to handle these keys (dpkg-reconfigure keyboard-configuration
on Debian, this does require root access). Do that before starting to make other changes. Doing it also
remap 4 other keys. If you happened to use them, you’ll need to manually undo these changes (more on
that later).

2 What exists and what doesn’t exist

2.1 Pressing a key
When you press a key, the keyboard sends a keyscan to the computer. These keyscans are somewhat
standard (I think). Next, some low level part of the computer (kernel? driver?) turns the keyscan into
a numerical keycode. This is where we can start doing stuff.

Keycodes are somewhat standard (I think). For normal keys, they correspond to the physical position
of the key. For special keys (Enter, Shift, . . .) they are special keycodes for these keys.

Next, XKB get the numerical keycodes and turn them first into keylabels (again, positional for
standard keys, special names for special keys) and then into keysyms. The keylables are very standard
names. The keysyms are mostly regular characters. The keylabel to keysym translation depends on your
keyboard layout. Typically, the top left alphabetical key (keylabel AB01) is mapped onto the keysym ’q’
for an English (qwerty) layout; ’a’ for a French (azerty) layout; and ’b’ for a bépo layout.

XKB also handle modifiers. That is, pressing the ’a’ key alone produces the ’a’ keysym, but pressing it
together with the Shift key produces the ’A’ keysym. Each key may accept up to 8 modifiers (hence up to

2

256 different keysyms) but usually only accepts 2: Shift and AltGr (called Mod5 or ISO_Level3_Shift);
hence can generate up to 4 keysyms (normal, Shift, AltGr, Shift+AltGr).

Your trusted friend for tests here is xev. Here is a typical display of xev when pressing a key:

KeyPress event, serial 37, synthetic NO, window 0x4200001,
root 0xcc, subw 0x0, time 5814898, (64,100), root:(939,692),
state 0x80, keycode 59 (keysym 0xfe8c, dead_greek), same_screen YES,
XLookupString gives 0 bytes:
XmbLookupString gives 0 bytes:
XFilterEvent returns: True

The important line is the third: state 0x80, keycode 59 (keysym 0xfe8c, dead_greek) which tells
you both the keycode read (59), the keysym generated (dead_greek) and the list of modifiers used at
the time the key was pressed (the state, 0x80 which is a bitstring, here 0b10000000, telling that only one
modifier was pressed). Pressing the key whose keycode is 59 without any modifiers results in another
keysym. An intensive use of xev is usually needed to inspect what is happening with your keyboard
configuration.

Finally, keysyms are intercepted by XCompose. XCompose reads sequences of keysyms and turn
them into another symbol. The dead keys mechanism is actually handled by the system-wide XCompose
file.

Only after XCompose has done its magic does the application receive the symbol typed to display
(or process, or whatever).

2.2 The good, the bad and the ugly
Many people already use XCompose to generate special characters, and many example of .XCompose files
can be found online. The usual paradigm in these files is “special characters are inputed by a sequence
of keys which starts with the Compose key (keysym Multi_key)”. As I said, I prefer to have shorter key
sequences and using dead keys. Obviously, shorter sequences means potentially harder mnemonics, but
a good choice of dead keys can help in many cases (e.g. the choice of AltGr+g for dead_greek on the
bépo layout is easy to remember).

The good part about XCompose is that it can interpret any sequence of keysyms, not just the ones
starting with Multi_key. Thus, it is possible for example to turn the ’b’ key into a dead_blackboard_bold
by adding rules like:
<N> : "N"
This is , however, not a good idea as you probably don’t want ’b’ to become a dead key. . . But if we
can find another key (or keysym) to use, we’re good.

The good part about XCompose is that it can also handle some modifiers for keys. Thus, a better
attempt would be:
Alt<N> : "N"
which turns Alt+b into a dead_blackboard_bold.

The bad part about XCompose, however, is that it can only handle a handful of modifiers, namely
Shift, Ctrl, Alt and Meta. While this is theoretically enough for many purposes, this is not practicable
because:

• Shift+key is interpreted as a different keysym by XKB, thus XCompose never receives Shift+a but
always A, making it hardly usable. And of course, you don’t want to turn your uppercase letters
into dead keys.

• Ctrl is similarly widely used by many applications. If Ctlr+c is turned into a dead key, copy/paste
might become difficult. . .

• Alt and Meta are better candidates but still somewhat used by applications. Especially, emacs uses
Meta and often uses Alt as a substitute for Meta (because many keyboards do not have a properly
defined Meta key).

Thus, XCompose alone is not able to solve my problem and I need to go into XKB. . .

3

Note that having a proper Meta key separate from Alt might be enough to emulate a lot of dead
keys with Alt+key. This, however, does not allow as many possibilities and already requires digging into
XKB. Since I need to go down there, lot’s do it fully.

The good part about XKB is that with up to 8 modifiers –hence up to 256 keysyms– per key, I
have more than enough to do whatever I want. Theoretically, with around 50 normal keys (alphabetical,
numerical, punctuation, . . .) and 250 keysyms for each, we could generate around 12,000 keysyms,
probably more than I need. However, this makes the mnemonics extremely hard to remember. And of
course, pressing up to 9 keys (8 modifiers+key) at the same time is probably more funny to watch than
to do.

But a combination of XKB and XCompose can certainly do the trick. We tell XKB to generate dead
keys keysyms for certain keys and XCompose to interpret them. Because we now allow sequences of 2
keys (+modifiers), we don’t need that many modifiers. My choice here is to handle two more modifiers
(called Hyper and Super) and to have the regular key generate 4 new keysyms for Hyper, Shift+Hyper,
Super, Shift+Super. Adding 4 keysyms per key allows around 200 new dead keys and thus around 10,000
new symbols, more if the second key is itself modified (typically normal/Shift). Moreover, I am only
adding states that requires 1 or 2 modifier keys to be pressed, similar to the existing AltGr/Shift+AltGr,
thus this stays physically doable.

The bad part about XKB is that it is not possible to create new keysyms. The list of existing
keysyms is in a .h file and we don’t want to recompile XKB after adding each new keysym. . .

The ugly trick is that XKB (and XCompose) accept any Unicode character (entered as Uxxxx) as
a keysym. Thus, we are going to use Unicode characters as “pseudo keysyms”. Fortunately, Unicode has
some reserved areas, the Private Use Areas, that are reserved for private use.

The ugly part is also editing your XKB configuration to create Hyper and Super keys where you
want them to be. . .

2.3 Roadmap
So, what we have do to is:

1. Assign Hyper and Super to some keys.

2. Make regular keys accept Hyper and Super (with or without Shift) as modifiers.

3. Turn the dirty pseudo keysyms (Unicode characters from the PUA) into nicer human readable
virtual keysyms.

4. Make shareable and human readable .XCompose file using these virtual keysyms.

The steps are both in logical order of what happen when a key is pressed; in decreasing order of
difficulty (the closer to the hardware, the messier); and in increasing order of work-intensivity. Steps 1
and 2 only need to be done once and for all; step 3 requires a bit of work for each new virtual keysym
one want to use; and step 4 requires copying and adapting scores of similar lines of .XCompose (typically,
one for each letter, lowercase and uppercase, after a new dead key is introduced).

Step 3 is not strictly necessarily, but it allows to make step 4 much more human-readable. Since step
4 is the work-intensive part, it’s also the one we want to be human readable.

3 XKB
Warning! It is easy to make your keyboard unusable while modifying the XKB configuration.

Do not render the changes permanent until they are thoroughly tested. That way, you can always go
back to default settings by rebooting.

BÉPO users can find a pre-made keyboard configuration file at https://http://www.lipn.fr/
~moyen/Unicode_keyboard/bepo_hyper_super.txt. It’s meant to be used on a TypeMatrix keyboard
in 106 mode. Simply load it with xkbcomp bepo_hyper_super.txt $DISPLAY. It maps Hyper to both
the Left Window key and the Document key; and Super to the Menu key. Comes with no warrany, use
at your own risks.

4

3.1 Modifying XKB configuration
Some parts of the XKB configuration are common to most keyboards and layouts (for example, the fact
that the LSHF keylabel should correspond to the Shift_L keysym, or the fact that some keys accept
both Shift and AltGr as modifiers) while some other parts are layout-dependent (sometimes maybe even
physical keyboard dependent), for example, the fact that the upper-left alphabetical key (keylabel AB01)
should correspond to the keysym ’a’, ’q’, . . .

In order to avoid duplicating common parts, XKB builds your custom configuration by assembling
several pieces. The pieces can be found in the subdirectories of /usr/share/X11/xkb/, and there are
many of them. The pieces actually used to build your keyboard can be listed with

$ setxkbmap -print
xkb_keymap {
xkb_keycodes { include "evdev+aliases(azerty)" };
xkb_types { include "complete" };
xkb_compat { include "complete" };
xkb_symbols { include "pc+fr(bepo)+inet(evdev)+compose(caps)+terminate(ctrl_alt_bksp)"
};
xkb_geometry { include "typematrix(tm2030USB-106)" };
};

Which tells, for example, that XKB is taking the pc file from the symbols subdirectory, as well as the bepo
part of the fr file in the same directory, . . . Note that dpkg-reconfigure keyboard-configuration
simply asks you which parts you want to include in your XKB configuration.

As can be expected, building a clean new layout is somewhat delicate. I’m going for a quick and
dirty solution which is easier to do and also does not required priviliged access. However, it will build a
custom XKB configuration with all the drawbacks it has (notably of not adapting to any update in the
mainstream configuration).

The XKB configuration resulting by including all these bits can be saved with
xkbcomp $DISPLAY keyboard_old.txt. Make a copy of this file in keyboard_new.txt. After changing
it, the new configuration can be loaded with xkbcomp keyboard_new.txt $DISPLAY. The global syntax
is xkbcomp source destination where $DISPLAY stands for the current configuration.

Safety first! I strongly suggest that you put in your CLI history the line
xkbcomp keyboard_old.txt $DISPLAY. That way, if you break something while building the new con-
figuration, you may simply go back in history to restore the original one (hopefully, you haven’t also
break the arrows and Enter keys. . .) You may also want to remove writing right on the keyboard_old
file, or even its directory, just to be sure. . .

Loading a configuration will output some error messages if things are wrong (e.g. you used an
undeclared keysym). It does happen that even the original configuration has some unimportant errors
(in my case, undefined keycodes). . .

Of course, once everything is fixed, you’ll probably want to add the load line somewhere in your
configuration files and do it automatically at every login. . .

3.2 What’s inside
Get a look into the keyboard_new.txt file. This is where we’re going to make changes. The file uses
C-style line comments (everything after a // is a comment).

It should start with a xkb_keycodes section which contains lines such as <AE01> = 10;. These lines
assign a keylabel (on the left) to each keycode (on the right). We’re not changing that. Note that it is
maybe easier to create new modifiers by changing that rather than the keylabel/keysym association, but
it felt a bit too low level for me to change. . .

Next, you have a xkb_types section. Each key may accept up to 8 modifiers, but to reduce the
exploration space when performing the modifiers+keylabel to keysym association, each key receive a
type telling which modifiers are allowed with this key. The section should start with the ONE_LEVEL (no
modifier) and TWO_LEVEL (only Shift) types. We’ll need to add new types in order to allow Hyper and
Super as modifiers. Note: the ALPHABETIC and SEMIALPHABETIC variants of types depends on the way
Caps Lock should interact with the key.

5

Next, there is a xkb_compatibility section. We can quite safely ignore it. It may be useful for some
fine tuning but this is beyond the scope of this document.

Then comes the very important xkb_symbols section. It lists, for each keylabel, what is the type
of the key and what are the keysyms it should produce when pressed (in combination with different
modifiers). This is where we’ll tell XKB what keysym need to be produced with Hyper or Super.

Finally, there is a xkb_geometry section. It is quite useless for us. It describes how to draw the
keyboard on the screen.

Each of these sections starts with the parts that have been included by XKB when building them.
But at this point, this is basically irrelevant. I actually thing that the name of the sections is irrelevant
at this point. . .

If you want to make a first test, it is easy to swap the keysym generated by some keys (in the
xkb_symbols section) and load the new file to test the result. Beware, if you decide that the ’a’ key
should now produce the ’b’ keysym and do not assign the ’a’ keysym to any other key, you have no
way to produce it anymore. . . including for reverting the change. . . (use copy/paste, or reload the old
configuration).

3.3 Adding new modifiers
This is the dirty part, the not totally automatic part where you’ll have to thing about stuff. . .

First, decide which physical keys you want to use as Hyper and Super and use xev to get their
keycodes. Then, use the xkb_keycodes section to get their keylabel. Finally, go into the xkb_symbols
section, find the description of the key and replace it with whatever you want.

For example, I’ve decided that the both the left Window key and the ’Document’ key should be used
for Hyper. Using xev, I find that their keycodes are respectively 133 and 100. Looking that in the
xkb_keycodes section, I discover that the keylabels are respectively LWIN (left Window) and HENK (used
for writing Japanese).

Now, I find the line defining their keysym and replace them. Namely,
key <LWIN> { [Super_L] };
is replaced by
key <LWIN> { [Hyper_L] };
and
key <HENK> { [Henkan_Mode] };
is replaced by
key <HENK> { [Hyper_R] };

Note that Left Windows was already assigned to Super, changing it to Hyper might have been a
poor choice of myself. . . I’ve moved Super elsewhere. . . Anyway, it’s done. . . Think before making your
choices.

Go through the same process for all the keys you want to move around. Use xev to check that you
now have a Hyper and a Super keys (they should produce the correct keysyms).

Note that your Window manager might make use of Super or Hyper in shortcuts. Moving them
around might change the behaviour of the WM. . . You may also take the opportunity to define a proper
Meta key separate from Alt, and possibly to place a Compose (Multi_key) wherever you want.

Typematrix keyboards need to be switched in 106 mode in order to be able to reprogram the “Shuffle”
and “Documents” key (otherwise, the keyboard does produce several keyscans and it’s impossible to do
anything about it, I think it’s a not so good design choice from Typematrix. . .) This also reprogram 4
others keys that you may want to change back to their usual behaviour. . . Namely:
BKSL ⇒ XF86Mail
AB11 ⇒ ccedilla (on a bépo layout)
HKTG ⇒ XF86HomePage
AE13 ⇒ XF86Calculator
Here also, I chose to change the keylabel to keysym associations rather than the keycode to keylabel
association. Mostly because some of these keylabels are positional (AB11 and AE13) and changing them
doesn’t sound like a good idea.

6

3.4 Adding new types
Now that we have Hyper and Super keys, we’ll need to tell XKB that they are actually modifiers. The
good new is that this is already done, the bad new is that they are (probably) both assigned to Mod4.

At the end of the xkb_symbols section (just before the xkb_geometry one), you should find lines of
modifier_map Shift { <LFSH> };
In my case, both SUPR and HYPR (Super and Hyper) were assigned to Mod4 and nothing was assigned to
Mod3. Thus, I simply replace
modifier_map Mod4 { <SUPR> };
with
modifier_map Mod3 { <SUPR> };
Now, Super and Hyper are both declared as different modifiers (Mod3 and Mod4). If they are assigned
as the same modifier, XKB cannot separate them. . .

Because I also remapped the Caps Lock key to something else, I also had to comment out the line
// modifier_map Lock { <CAPS> };
You may want to do the same if you wish to use Caps Lock for something more useful. . .

Next, go at the end of the xkb_types section and add the following type declarations (adapted from
the FOUR_LEVEL_* types).

type "EIGHT_LEVEL_HYPER_SUPER" {
modifiers= Shift+LevelThree+Hyper+Super;
map[Shift]= Level2;
map[LevelThree]= Level3;
map[Shift+LevelThree]= Level4;
map[Hyper]= Level5;
map[Shift+Hyper]= Level6;
map[Super]= Level7;
map[Shift+Super]= Level8;
level_name[Level1]= "Base";
level_name[Level2]= "Shift";
level_name[Level3]= "Alt Base";
level_name[Level4]= "Shift Alt";
level_name[Level5]= "Hyper";
level_name[Level6]= "Shift Hyper";
level_name[Level7]= "Super";
level_name[Level8]= "Shift Super";

};
type "EIGHT_LEVEL_ALPHABETIC_HYPER_SUPER" {

modifiers= Shift+Lock+LevelThree+Hyper+Super;
map[Shift]= Level2;
map[Lock]= Level2;
map[LevelThree]= Level3;
map[Shift+LevelThree]= Level4;
map[Lock+LevelThree]= Level4;
map[Shift+Lock+LevelThree]= Level3;
map[Hyper]= Level5;
map[Shift+Hyper]= Level6;
map[Lock+Hyper]= Level5;
preserve[Lock+Hyper]= Lock;
map[Shift+Lock+Hyper]= Level6;
preserve[Shift+Lock+Hyper]= Lock;
map[Super]= Level7;
map[Shift+Super]= Level8;
map[Lock+Super]= Level7;
preserve[Lock+Super]= Lock;
map[Shift+Lock+Super]= Level8;

7

preserve[Shift+Lock+Super]= Lock;
level_name[Level1]= "Base";
level_name[Level2]= "Shift";
level_name[Level3]= "Alt Base";
level_name[Level4]= "Shift Alt";
level_name[Level5]= "Hyper";
level_name[Level6]= "Shift Hyper";
level_name[Level7]= "Super";
level_name[Level8]= "Shift Super";

};
type "EIGHT_LEVEL_SEMIALPHABETIC_HYPER_SUPER" {

modifiers= Shift+Lock+LevelThree+Hyper+Super;
map[Shift]= Level2;
map[Lock]= Level2;
map[LevelThree]= Level3;
map[Shift+LevelThree]= Level4;
map[Lock+LevelThree]= Level3;
preserve[Lock+LevelThree]= Lock;
map[Shift+Lock+LevelThree]= Level4;
preserve[Shift+Lock+LevelThree]= Lock;
map[Hyper]= Level5;
map[Shift+Hyper]= Level6;
map[Lock+Hyper]= Level5;
preserve[Lock+Hyper]= Lock;
map[Shift+Lock+Hyper]= Level6;
preserve[Shift+Lock+Hyper]= Lock;
map[Super]= Level7;
map[Shift+Super]= Level8;
map[Lock+Super]= Level7;
preserve[Lock+Super]= Lock;
map[Shift+Lock+Super]= Level8;
preserve[Shift+Lock+Super]= Lock;
level_name[Level1]= "Base";
level_name[Level2]= "Shift";
level_name[Level3]= "Alt Base";
level_name[Level4]= "Shift Alt";
level_name[Level5]= "Hyper";
level_name[Level6]= "Shift Hyper";
level_name[Level7]= "Super";
level_name[Level8]= "Shift Super";

};

The differences are in the way the Caps Lock key is used, depending on whether Levels 1/2 (normal/Shift)
and 3/4 (AltGr/Shift+AltGr) are alphabetical characters or not. Here, I choose to treat the four new
levels as non-alphabetic, that is they should basically ignore Caps Lock.

3.5 Creating new keysyms
Finally, we can tell XKB to generate the new keysyms. Since it is not possible to actually create keysyms,
we need to cheat. We’re going to generate Unicode characters (this is possible without restriction).
Unicode has some Private Use Areas which are points with no characters assigned to them (and the
guarantee that it will stay that way). Some of these are used when new glyphs are proposed for possible
future inclusion in the standard. Typically, the Tengwar (Tolkien’s elf script) characters are currently in
a PUA. Anybody is welcome to respect that proposition, but may also ignore it without troubles.

I chose to use the PUA in plan 16, ranging from U100000 to U10FFFD because it seems to be subject
of a bit less proposals than the others. And it also allows a nice naming scheme (which would also be

8

doable with the PUA of plan 15).
Now, each key needs to receive 4 new pseudo keysyms. And as much as possible, I want that to be

easy to remember and maintain. Since normal key usually have a “main” symbol which is in ASCII, even
ASCII 7 bits (letter or number), I chose to use pseudo keysyms of the shape U10aall where aa is the
ASCII code of the main symbol and ll is the level (hence from 05 to 08) we’re defining.

This choice allows to add up to 256 levels (the maximum possible) to each key with the same naming
scheme. The main drawback is that it leaves holes in the Unicode range used (typically because ASCII
points for uppercase are between number and lowercase, or because many punctuation symbols are not
the main symbol of a key). It is, however, easy to remember.

Note also that while it is quite good for letters and numbers, it is not so good with punctuation marks
which are not always the main symbol (depending on the layout. . .)

Anyway, for each of the “normal” keys on your keyboard, you now need to edit its key declaration
and add the new pseudo keycodes. For example, I now have:

key <AD01> {
type= "EIGHT_LEVEL_SEMIALPHABETIC_HYPER_SUPER",
symbols[Group1]= [b, B, bar, brokenbar, U106205, U106206, U106207, U106208]

};
...
key <AD04> {

type= "EIGHT_LEVEL_ALPHABETIC_HYPER_SUPER",
symbols[Group1]= [o, O, oe, OE, U106F05, U106F06, U106F07, U106F08]

};
...
key <AD06> {

type= "EIGHT_LEVEL_HYPER_SUPER",
symbols[Group1]= [dead_circumflex, exclam, exclamdown, NoSymbol,

U102105, U102106, U102107, U102108]
};

Make sure to preserve the variant (ALPHABETIC or SEMIALPHABETIC) that was here before (most of these
key probably had a FOUR_LEVEL_* type).

It may happen that some of these keys only had a TWO_LEVEL_* type beforehand (meaning that they
ignore AltGr). You can either decide to add new stuff for levels 3 and 4, or simply put a NoSymbol
keysym.

Note that for the already existing dead keys (notably, dead_greek for use in math formulas. . .), it is
also very easy to take advantage of editing this file to just add the keysym somewhere. This one already
exists, so no further work should be needed.

Now, the configuration of XKB is complete! After reloading it, Hyper+key and Super+key should
work. Since there are no glyphs on these Unicode points, they should probably be displayed as a small
rectangle with the corresponding number in it. Use xev if you want to double check everything.

4 XCompose
XCompose reads your ~/.XCompose file (if any), or the system wide one. These files contains lines that
tell which sequence of keysym should be turned into which symbol. As said, the dead_greek keysym is
already handled that way, that is /usr/share/X11/locale/en_US.UTF-8/Compose contains lines like
<dead_greek> <Y> : "Ψ" U03A8 # GREEK CAPITAL LETTER PSI

We’re going to do the same. Unfortunately, we do not have explicit keysyms names but still want to
use them. So we’ll have some translation to make.

As a proof of concept, get from https://http://www.lipn.fr/~moyen/Unicode_keyboard/ the 3
.pxc (pre-XCompose) files and place them in a ~/.XCompose-dir/ directory (may be a symlink). If you
place them elsewhere, you need to edit main.pxc and change the include lines to point to the correct
files (%H stands for $HOME and the path must be absolute and not relative to the current directory).

9

You can look at fraktur.pxc and blackboard_bold.pxc. They are written in the style of XCompose
that we want to manipulate: easy to understand and totally hardware independent (hence shareable).
However, the virtual keysyms dead_fraktur, dead_fraktur_bold and dead_blackboard_bold do not
exist, so we need to translate these pre-XCompose files into real XCompose files (using the U10xxxx
pseudo keysyms).

This translation is done by the translate_xcompose.pl script (same URL). This is mostly a glorified
sed which calls itself recursively on include *.pxc lines.

First, you may want to change the virtual to pseudo keysyms at the top of the .pxc files. Simply
replace the U10xxxx character by whichever suits you better. These lines must have the shape:
#PXC <virtual keysym> => <pseudo keysym>
Especially, they must start with #PXC. Extra white space and text is ignored but both the virtual and
peusdo keysym must be enclosed in <...> and separated by =>.

Next, run the script: translate_xcompose.pl main.pxc. This should generate three .xcompose
files (one for each input file); and these files should contain the pseudo keysyms (Unicode points). You
only need to run the script on the main file, it will recursively translate any included .pxc file.

Finally, edit your own ~/.XCompose file. It should contain (%L is the system wide file, depending on
your locale):

include "%L"

include "%H/.XCompose-dir/main.xcompose"

Plus any other personal definitions (or include) you may want to use.
Launch a new application (do not clone an existing one), or reboot (rebooting the X server should

be enough) to load your new XCompose file, and enjoy.

5 What next
If you want to have access to more special characters, you now just need to create a new .pxc file (using
explicit virtual keysyms names such as dead_arrow, dead_set_notation, . . .). Don’t forget to add a
translation directive on top of the .pxc. Include the .pxc from main.pxc, and run the Perl script (always
on main.pxc as you need to rebuild the inclusion of all subfiles in main.xcompose).

The .pxc are easily shareable (hence crowdsourceable). Running the script must be done after adding
or changing these, but is a minimum amount of work.

6 Legal-ish stuff
This document and the files available at https://http://www.lipn.fr/~moyen/Unicode_keyboard/
are CC-BY-NC-SA Jean-Yves Moyen, July 2017.

Comes with no warranty. Follow these instructions at your own risk.

10

